Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят

Реферат

 

Изобретение относится к способам очистки от радиоактивных и вредных химических веществ газовых выбросов, образующихся при переработке отработавшего ядерного топлива. Способ заключается в такой последовательности улавливания отдельных-вредных компонентов, при которой улавливание каждого вредного компонента является подготовительной операцией для выделения последующего. При этом используются режимы и реагенты, позволяющие получать высокие коэффициенты очистки по всем примесным компонентам: аэрозолям, нитрозным газам, йоду-129, радиоуглероду, радиокриптону, ксенону и др. Заявленный способ носит комплексный характер, обеспечивает минимальный объем вторичных отходов в химической форме, удобной для длительного хранения, захоронения или возможного использования. 2 з.п.ф-лы, 2 ил.

Изобретение относится к способам очистки от радиоактивных и вредных химических веществ (ВХВ), содержащихся в газовых выбросах, образующихся при переработке отработавшего ядерного топлива (ОЯТ). ОЯТ после измельчения на куски размером 5-10 см загружают в аппарат-растворитель, где его растворяют в горячей азотной кислоте. При этом образуется сложного состава парогазовая фаза, содержащая помимо ингредиентов воздуха, пары воды, азотной кислоты, оксиды азота, тритий, йод, радиоуглерод, радиоактивные благородные газы. Многие из них находятся в различных валентных формах и химических состояниях. При выносе этой смеси из растворителя газом-носителем образуются твердые и жидкие аэрозоли, которые могут содержать весь спектр вредных компонентов, включая уран и плутоний. Необходима тщательная очистка газовых выбросов. Чтобы удовлетворить требованиям, предъявляемым НРБ-86 и существующими санитарными правилами, необходимо извлечь из выбрасываемых в атмосферу газов все вредные компоненты с максимальной степенью очистки. Наиболее полно такие требования изложены в Технико-экономическом обосновании завода РТ-2 (ТЭИ завода РТ-2, инв. N 6156, 1994 г.). В данном документе дается обоснование необходимой степени очистки газовых выбросов от аэрозолей, йода-129, радиокриптона, радиоуглерода, трития, других радионуклидов, а также от нитрозныx газов других ВХВ.

Наиболее близким к заявляемому является способ, описанный в патенте N 2711374 ФРГ, МКИ G 21 F 9/02 от 21.09.78 г. Согласно этому способу предлагается смешивать отходящие из растворителя газы с газом-носителем в химической форме, близкой к одному из радиоактивных веществ, с последующим их разделением. Задача очистки газовых выбросов при общей весьма высокой сложности процесса (введение газа-носителя оксида азота, образующегося в результате диспропорционирования высших оксидов азота) сужается здесь до улавливания нитрозных газов, йода-129 и криптона-85. Принципиальная схема очистки по прототипу приведена на фиг. 1.

Согласно способу-прототипу из реактора-растворителя 1 газы, содержащие пары воды, азот, оксиды азота, пары азотной кислоты, ксенон, криптон и йод, направляются в конденсатор 2. Здесь задерживается часть паров, оксидов азота и йода. Далее газы следуют в абсорбционную колонну 3 и промываются азотной кислотой. Покидающие абсорбционную колонну 3 газы следуют через конденсатор 4, где освобождаются от высших оксидов азота, которые через проводник 5 возвращаются в начало ввода газа 6. Из конденсатора 4 газы попадают в разделительную колонну 7, где разделяются путем дистилляции на две фракции, одна из которых содержит радиоактивные вещества с газом-носителем, а другая фракция, не содержащая их, через дополнительный адсорбер 8 выбрасывается в дымовую трубу 9. Первая фракция подается в головную часть разделительной колонны 10. Из этой колонны смесь радиоактивных веществ и газа-носителя через проводник 11 подается в основание колонны 12 двойной химической переработки. Ксенон, отделенный в основании колонны 10, сбрасывается. Остающиеся в газе оксиды азота после колонны 12 собираются в конденсаторе 16, а образующаяся азотная кислота может быть направлена снова в растворитель 1. Колонна 15 и конденсатор 20, связанные в одну систему с колоннами 12-13, отстойником 14, служат для обработки оксидов азота в азотную кислоту, сюда вводится, а именно в головную часть колонны 13, стехиометрическое количество кислорода.

Отстойный продукт конденсатора 2 и абсорбционной колонны 3 подвергают десорбции в 17 и 18, а в аппарате 19 газ освобождают от йода.

Основные недостатки описанного способа заключаются в: - большой сложности процесса; - отсутствии на первых этапах очистки от аэрозолей и пыли, что приводит к загрязнению всей системы и образованию вторичных отходов, жидких и твердых; - необходимости введения газа-носителя - монооксида азота, который согласно описанию образуется в результате диспропорционирования высших окислов в конце схемы. Это означает, что оксидов азота через всю систему очистки проходит достаточно много, в противном случае необходим дополнительный генератор оксидов азота; - отсутствии очистки от радиоуглерода; - необходимости точного контроля и дозировки вводимых сторонних реагентов, например, кислорода; - необходимости строгого соблюдения режима работы всех аппаратов, которых даже на принципиальной схеме достаточно много (одних конденсаторов для выделения из газа оксидов азота приведено в количестве четырех). В схеме не описан способ выделения йода-129 из азотной кислоты, что предполагает использование твердого сорбента, по-видимому, на основе серебра.

Задачей предлагаемого изобретения является: - упрощение и удешевление процесса с одновременным повышением надежности схемы очистки газовых выбросов от вредных компонентов; - улавливание всего спектра вредных составляющих, а также потенциально полезных ингредиентов, например, ксенона; - уменьшение объемов твердых и жидких вторичных отходов газоочистки с максимальным возвращением в цикл улавливаемых технологических продуктов, например, оксидов азота - азотной кислоты; - комплексный подход к системе газоочистки с учетом специфики поведения каждого компонента с возможностью маневрирования при выделении и последующем обращении с каждым отдельным вредным ингредиентом.

Суть предлагаемой комплексной системы газоочистки заключается в следующем: на пути следования выбросных газов создаются несколько ступеней для улавливания аэрозолей, оксидов азота, йода, трития, углерода-14, радиокриптона и ксенона.

Способ поясняется схемой, изображенной на фиг. 2.

В реактор-растворитель 1 подается воздух, обогащенный кислородом, для облегчения выноса элементарного йода в систему улавливания; окисления NO в NO2.

Воздух интенсивно подается в момент пикового выделения оксидов азота и йода, выделение которых коррелирует между собой. Газовый поток после очистки от аэрозолей, охлаждения и конденсации паров воды, кислоты в дефлегматоре и на аппаратах аэрозольной очистки 2, 3, 4, 5 поступает на первую абсорбционную колонну 6. Колонна орошается слабой азотной кислотой с добавкой 2-5 мас.% пероксида водорода. Пероксид водорода в данных условиях служит для окисления образующейся в результате растворения оксидов азота азотистой кислоты в азотную, тем самым препятствует вторичному образованию оксидов азота по реакции: 2HNO2 ---> H2О + NO2 + NO.

Реакция протекает мгновенно. В то же время пероксид окисляет летучую форму йода (J2) в нелетучий йодат (JO3-).

После насыщения поглотителя до 4-6 м/л азотная кислота с йодной выводится в отдельный поток и поступает на переработку с целью их разделения в узел 11. Выделение йода осуществляется либо отдувкой воздухом при температуре 70-80oC в присутствии 2 мас.% пероксида водорода, либо с использованием метода экстракции органическим растворителем, например, бензолом или РЭД-4 в присутствии восстановителя, например, гидразина. Выделяемый йод поступает на переработку с целью получения твердой формы отходов, удобной для захоронения или долговременного хранения, а азотная кислота после специальной подготовки используется в технологии.

Газовый поток после очистки от основной части оксидов азота и йода содержит остаточные количества указанных веществ, весь углерод-14 в форме CO2, радиокриптон и стабильный ксенон. Он поступает на очистку во вторую колонну 7, содержащую 2-4 М раствор гидроксида натрия с добавкой 2-5 мас.% восстановителя, например, мочевины. Во второй колонне 7 происходит доулавливание оксидов азота и йода, улавливание радиоуглерода. Промывной раствор этой колонны работает до остаточной концентрации по NaOH, равной 0,2-0,5 М/л, после этого поступает на переработку с целью выделения в твердой фазе углерода-14 (BaCO3 или CaCO3) и йода на узел 12. После удаления из раствора углерода и йода он подкрепляется концентрированным раствором NaOH до 2-4 М/л и вновь поступает в цикл очистки газовых выбросов. Таким образом, абсорбционная колонна 7, выполняя основную роль по улавливанию радиоуглерода, является стерегущей для йода и нитрозных газов. В случае аварийной ситуации на головных ступенях системы газоочистки она не дает выйти йоду и оксидам азота в вентиляцию.

Газовый поток после промывки в колонне 7 поступает на очистку от радиокриптона 9 и стабильного ксенона 8 и после этого выбрасывается в дымовую трубу 10. Основная подготовка газа к улавливанию РБГ заключается в осушке газа. Используется либо метод абсорбции на жидких поглотителях (фреонах), либо метод адсорбции на твердых сорбентах (цеолитах). При этом в процессе улавливания РБГ осуществляется дополнительная очистка от йода, оксидов азота, радиоуглерода, которые также можно вывести по мере накопления в отдельные фракции и присоединить к ранее выделенным.

Таким образом, преимущества предлагаемого способа заключаются в следующем: - в очистке газовых выбросов подход комплексный, т.е. улавливание каждого компонента служит подготовкой к выделению последующего; - нет необходимости дополнительно вводить газ носитель-оксид азота, который необходимо специально получать; - каждый вредный компонент выводится в отдельную фракцию, обеспечивающую удобство и простоту в дальнейшем обращении с ним с целью захоронения или использования; - в процессе используются доступные дешевые реагенты, осуществлен отказ от дефицитного серебра с сохранением высокой степени очистки газа от йода; - вследствиe многобарьерности очистки повышается степень очистки газовых выбросов, уменьшается вероятность аварийных выбросов вредных веществ в атмосферу; - и, наконец, схема очистки достаточно проста в исполнении, контроле и управлении.

Пример 1. 0,5 кг нарубленного на куски длиной ~ 5 см отработавшего ядерного топлива ВВЭР-1000 с выгоранием ~ 40 МBт/сутт урана загружали в аппарат-растворитель общим объемом 10 л. После проверки герметичности всей системы в растворитель подавали ~ 3 л 8 М азотной кислоты и медленно поднимали температуру раствора до 100oC. В системе газоочистки были расположены последовательно дефлегматор, аэрозольный фильтр, колонна-абсорбер с HNO3+H2O2 (2-5 мас. %), абсорбционная колонна с NaOH+(NH2)2CO (~ 0,3 М/л) и абсорбционный узел для улавливания ксенона и криптона методом селективной абсорбции на фреоне-13. За кинетикой выделения газа следили с помощью расходомеров, а за скоростью растворения ОЯТ - по содержанию в отходящем газе криптона-85.

В процессе растворения из аппарата-растворителя в систему газоочистки поступал парогазовый поток, состоящий из оксидов азота (до 70% в максимуме), паров воды, азотной кислоты, компонентов воздуха, углекислого газа до 0,1 об. %, йода-129 (со средней концентрацией ~ 100 мг/м, ксенона (в максимуме ~ 0,1 об. %), криптона (85Kr) (в максимуме ~ 0,01 об.%). Основное количество выделяющихся при растворении оксидов азота, йода, ксенона и криптона наблюдалось в течение 40-50 мин после начала нагревания раствора. В этот период в растворитель подавали дополнительно ток кислорода с расходом ~ 100 л в 1 ч. Суммарный расход газа при этом на выходе из установки был равен ~ 1 м3/ч. При таком режиме растворения из азотно-кислого раствора удалялось в газовую фазу 98% йода от его исходного содержания в ОЯТ.

Оксиды азота и йод улавливались в абсорбционной колонне, орошаемой водой, содержащей 2 мас.% пероксида водорода. Режим работы колонны обеспечивал соотношение газ/жидкость 250: 1, при комнатной температуре. Поглощение оксидов азота осуществлялось на 99% и около 99% йода, поступающих в головную часть колонны. Оставшиеся количества этих компонентов поступали в колонну со щелочным поглотителем (4 М NaOH + 0,3 м/л (NH2)2CO, где доулавливались, образуя нитрат натрия и йодид натрия. Здесь же улавливался радиоуглерод в химической форме карбонатов натрия.

После щелочной промывки отходящий газ поступал на осушку и очистку от жидких аэрозолей и далее направлялся в систему селективной абсорбции радиокриптона и ксенона фреоном-13. При этом на первой абсорбциионной колонне этого узла выделяли стабильный ксенон, а на второй - осуществляли улавливание криптона (85Kr).

Получаемые вторичные жидкие отходы далее перерабатывали с целью выделения вредных составляющих в отдельные фракции для длительного хранения или использования.

Регенерированная азотная кислота, содержащая йодную, подавалась на отдельную тарельчатую колонну, где методом противотока воздухом проводили отдувку йода. При режиме работы колонны: расходное соотношение газ/жидкость не ниже 100, температура раствора, равная 70oC, содержание пероксида водорода не ниже 2 мас.%, йод отдувался на 98%. Переходящий в газовую фазу йод улавливали в 2-4 М/л растворе NaOH, который далее направляли на переработку с целью получения твердой композиции CuJ + Cu, удобной для длительного контролируемого хранения.

Очищенная азотная кислота направлялась на специальную подготовку и повторно использовалась в технологии переработки ОЯТ.

Из щелочного поглотителя 2-й колонны после выработки его до остаточной концентрации 0,2-0,5 М/л NaOH выделяли углерод-14 в химической форме BaCO3. Выход ~ 99%. Также очищали этот раствор от накопившегося в нем йода-129 (при многократном использовании), выделяя его либо в форме элементарного йода, либо в виде твердых малорастворимых соединений.

Выделенные на конечной стадии очистки ксенон и криптон разделяли, чистили от компонентов воздуха (N2, O2,) и компримировали в баллоны под давлением.

В проведенном таким образом эксперименте по очистке парогазовых выбросов из растворителя были достигнуты следующие коэффициенты очистки: по йоду-129 > 102, по углероду-14 > 20, по аэрозолям > 107, по криптону-85 > 102, по тритию - 102, по оксидам азота < 7102.

Пример 2. На экспериментальной установке по растворению ОЯТ, состоящей из реактора-растворителя общим объемом 25 л с системами обеспечения реагентами, воздухом и т.д., газового стенда, включающего дефлегматор, аэрозольные фильтры, абсорбционные колонны: 1-я - для улавливания оксидов азота и йода; 2-я - для улавливания радиоуглерода, абсорбционные колонны для улавливания ксенона и радиокриптона с системами контроля, анализа и управления и системой захолаживания их жидким азотом, растворяли четыре партии ОЯТ массой 7,1 кг (0,5; 2,7; 1,9; 2,0 кг). Нарубленное на куски топливо загружали в реактор в кислоту HNO - 8 М/л, объемом 15 л, герметизировали и поднимали температуру раствора до кипения. Процесс растворения, контроль и управление проводили аналогично. Контроль за процессом осуществляли в течение растворения по отбираемым из аппаратов пробам, по выходу в газовую фазу криптона-85 (непрерывно), по пробам, отобранным из всех аппаратов газоочистки после окончания растворения. Анализ проводили по всем летучим и газообразным компонентам. Выделение ксенона и радиокриптона проводили с помощью адсорбционного метода, в данном случае с использованием активированного угля марки СКТ-2Б. Разогревания угля за счет адсорбции оксидов азота не наблюдалось, содержание их перед адсорбционными колоннами было на пределе чувствительности определения хроматографическим методом.

Выделение йода из образующейся в колонне 1 регенерированной азотной кислоты осуществляли методом экстракции в РЭД-4 после восстановления йодной кислоты гидразином. В органический растворитель извлекали > 99% йода.

В проведенном эксперименте были достигнуты следующие коэффициенты очистки: аэрозоли > 108, йод-129 > 102, углерод-14 - 20, криптон-85 ~ 103, оксиды азота ~ 103,

Формула изобретения

1. Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении ОЯТ, включающий улавливание аэрозолей и пыли, нитрозных газов, радиойода и радиоактивных благородных газов (РБГ), отличающийся тем, что очистку проводят в последовательности, при которой улавливание каждого компонента является подготовительной операцией для выделения последующего, при этом после улавливания аэрозолей и пыли проводят совместное улавливание нитрозных газов и йода в слабокислом поглотителе, содержащем добавки несолеобразующего окислителя в количестве 2 - 5 мас.%, например, пероксида водорода, после чего осуществляют улавливание радиоуглерода с доочисткой газового потока от нитрозных газов и йода щелочным поглотителем, содержащим добавки несолеобразующего восстановителя в количестве 2 - 5 мас.%, например, мочевину или гидроксинамин, а улавливание РБГ, в частности, ксенона и криптона с окончательной очисткой от всех вредных примесей проводят методом селективной абсорбции либо адсорбции на твердых сорбентах.

2. Способ по п.1, отличающийся тем, что над поверхностью раствора ОЯТ в момент пикового выделения нитрозных газов и йода дополнительно пропускают поток газа-поглотителя, максимально насыщенного кислородом.

3. Способ по п.1, отличающийся тем, что фракционирование образующихся в процессе газоочистки вторичных отходов в виде азотной и йодной кислот проводят методом отдувки йода при 70 - 80oC и при добавке слабого восстановителя, например пероксида водорода, в количестве 1 - 2 мас.% либо экстракцией элементарного йода после восстановления йодноватой кислоты, например, гидразином, а из слабощелочного раствора с остаточной концентрацией 0,2 - 0,5 М/л NaOH выделяют радиоуглерод и радиойод в форме твердых химических соединений.

РИСУНКИ

Рисунок 1, Рисунок 2