Способ восстановления на месте загрязненных гетерогенных почв

Реферат

 

Способ предназначен для восстановления на месте загрязненных гетерогенных почв. Способ предусматривает внесение материала для очистки от загрязняющих веществ в области загрязненной гетерогенной почвы, по меньшей мере, в одну область, проницаемую для жидкости. Через область почвы низкой проницаемости в пределах области загрязненной гетерогенной почвы между первым и вторым электродами, имеющими противоположные заряды, пропускают постоянный электрический ток. При этом первый электрод расположен на первом конце области загрязненной гетерогенной почвы, а второй электрод расположен на противоположном конце области загрязненной гетерогенной почвы. Это приводит к возникновению электроосмотического потока от второго электрода к первому электроду и/или электромиграционного движения ионных загрязняющих веществ в направлении к электроду противоположного заряда. Поперек области загрязненной гетерогенной почвы прикладывают гидравлический градиент для возникновения гидравлического потока от находящегося под высоким давлением конца области загрязненной гетерогенной почвы к находящемуся под низким давлением концу области загрязненной гетерогенной почвы. Технический результат заключается в создании промышленно осуществимого и экономичного способа восстановления почв на месте. 3 с. и 44 з.п. ф-лы, 2 ил.

Изобретение относится к восстановлению на месте загрязненных гетерогенных почв. В одном аспекте это изобретение относится к новому способу, сочетающему электроосмос и/или электромиграцию, гидравлический поток и очистку на месте от загрязняющих веществ в зонах очистки с помощью биологических, физикохимических или электрохимических средств. В еще одном аспекте это изобретение относится к новому способу восстановления на месте почв, загрязненных токсичными органическими соединениями и/или токсичными ионными загрязняющими веществами, такими, как металлы и радионуклиды.

Как правило, разложение токсичных органических соединений на безвредные продукты, такие, как CO2 и вода, можно провести либо биологическим, либо физикохимическим путем при условии, что очистка выполняется в регулируемой окружающей среде, причем ключевые рабочие параметры, такие, как параметры температуры, давления, смешивания, добавления реагентов или питательных веществ и т.д., оптимизированы. Примеры этих технологий включают сжигание и его разновидности, окисление водой субкритического давления, окисление с помощью ультрафиолетового (УФ) излучения/окисление H2O2 /окисление озоном/ каталитическое окисление, восстановительное дегалогенирование и биоразложение в оптимизированном биореакторе. На реактор приходится основная часть затрат на эти процессы вследствие либо экстремальных условий, необходимых при термических подходах, либо длительных периодов выдерживания, необходимых при биологических подходах. Чтобы решить эти проблемы, разложение загрязняющих веществ необходимо проводить на месте во избежание затрат и сложностей, связанных с выемкой и переработкой, а способ должен быть энергоэффективным и мягким по условиям его осуществления, чтобы минимизировать капитальные и эксплуатационные затраты.

Для восстановления загрязненной почвы и грунтовой воды было предложено и разработано много технологий на месте. Поскольку большинство подповерхностных почв гетерогенны, т. е. состоят из различных зон низкой проницаемости, например, глинистой почвы, илистой почвы или измельченной подстилающей породы, в областях высокой проницаемости, например, песчаной почвы, или наоборот, такие технологии, как правило, не очень эффективны.

Гидравлический, или приводимый в движение давлением поток, например, при прокачивании или промывке почвы, вызывает преимущественный поток в областях высокой проницаемости. Медленная диффузия загрязняющих веществ из зон низкой проницаемости на траектории предпочтительного потока обуславливает постепенное низкоуровневое высвобождение загрязняющего вещества и неудовлетворительно длительное время очистки. Это основная проблема технологии перекачивания и очистки, которая является основным способом, используемым при восстановлении грунтовых вод при загрязнении. Технология перекачивания и очистки, при которой воду сначала откачивают из загрязненных водоносных слоев, очищают, а потом сливают, довольно неэффективен, поскольку время очистки после реализации проектов значительно превышает время очистки, соответствовавшее первоначальным оценкам. В случаях неподвижной зоны, загрязненной значительными количествами поглощенных загрязняющих веществ, или присутствия жидкостей неводной фазы, проектное время очистки составляет сотни лет.

Ввиду ограничений, вносимых технологией перекачивания и очистки, были разработаны и оценены различные усовершенствования перекачивания и очистки. Они включают повторное впрыскивание очищенной грунтовой воды, пульсацию и биовосстановление на месте. Однако эти усовершенствованные способы не продемонстрировали значительных улучшений в получении постоянных растворов или уменьшении затрат. Обнаружено, что повторное впрыскивание очищенной грунтовой воды уменьшает время очистки на величину до 30%, но без какого бы то ни было снижения затрат. Пульсация системы перекачивания и очистки находит применение там, где диффузия регулирует высвобождение загрязняющих веществ, но исследования выявили, что время очистки при этом даже больше, хотя затраты могут быть и ниже, поскольку очищается меньше воды. Биовосстановление на месте также не повышает темпы очистки систем перекачивания и очистки там, где время очистки регулируется диффузией из неподвижной зоны. Кроме того, достигнуто лишь немногое в улучшении ситуации со временем очистки и приближении к целям восстановления в случае, когда значительные количества загрязняющих веществ присутствуют в зонах низкой проницаемости.

Для применения в процессах восстановления на месте загрязненных почв низкой проницаемости были предложены различные способы. Примером такого способа является электроосмос. Однако практикуемый в настоящее время электроосмос имеет ограничения, которые делают его коммерчески невыгодным.

Для восстановления на месте почв, загрязненных неионными растворимыми органическими соединениями, была предложена электрокинетика, в частности - электроосмос. Электроосмос обуславливает приложение электрического потенциала между двумя электродами, погруженными в почву, чтобы заставить воду в почвенной основе двигаться от анода к катоду, когда почвы заряжены отрицательно, так, как это происходит с глинистыми почвами. Однако, когда почва заряжена положительно, направление потока должно быть от катода к аноду. Этот способ применяют с тридцатых годов двадцатого века для удаления воды из глин, илов и мелкодисперсных песков. Основное преимущество электроосмоса как способа восстановления на месте трудновосстановимых сред, таких, как глина и илистый песок, заключается в присущей этому способу возможности заставить воду течь равномерно сквозь глину и илистый песок в 100-1000 раз быстрее, чем это можно осуществить гидравлическими средствами, и при очень низких затратах энергии. Электроосмос в том виде, каком он практикуется в настоящее время, имеет два основных ограничения, которые делают его непрактичным для восстановления в реальных полевых условиях. Во-первых, поток жидкости, стимулируемый электроосмосом, исключительно медленный, т.е. идущий со скоростью примерно 2,5 см/сутки (1 дюйм/сутки) для глинистых почв, что может привести к затрудненному и очень длительному процессу в крупномасштабных операциях. Во-вторых, несколько лабораторных исследований (см. Bruell, C.J. et al., "Electroosmotic Removal of Gasoline Hydrocarbons and TCE from Clay", J. Environ. Eng., Vol. 118, N 1, pp. 68-83, January/February 1992, u Segall, B. A. et al., "Electroosmotic Contaminate-Removal Processes", J.Environ. Eng., Vol. 118, N 1, pp. 84-100, January/February 1992 показали, что часть пласта почвы становится сухой приблизительно через месяц под влиянием электроосмоса, вследствие чего поток уменьшается и в конечном счете происходит остановка процесса. Еще одно лабораторное исследование (см. Shapiro et al., "Removal of Contaminants From Saturated Clay by Electroosmosis", Environ. Sci. Technol., Vol. 27 N 2 pp. 283-91, 1993) показало, что кислота, образовавшаяся у анода, перемещается через пласт почвы в направлении катода, вследствие чего имеет место уменьшенный электроосмотический поток и в конце концов происходит остановка процесса.

Помимо этого, электроосмос, как правило, неэффективен для почв относительно высокой проницаемости, например, относительно неплотно упакованных песчаных почв. Обычно для градиента электрического напряжения 1 В/см электроосмотическая проницаемость находится в диапазоне (10-5-10-4) см/сек. Для сравнения, гидравлические проницаемости песчаных почв обычно превышают 10-3 см/сек. Таким образом, в случае гетерогенных почв, как только жидкость выходит из зоны низкой проницаемости, она больше не находится под эффективным управлением электроосмотического усилия, и определять доминирующее направление потока жидкости будет гидравлическое усилие и/или сила тяжести. Это основная причина, по которой электроосмос считают имеющим ограниченное применение - только для очистки почв низкой проницаемости, имеющих гидравлическую проницаемость в диапазоне (10-8-10-4) см/сек.

Для применения в процессах восстановления почв, загрязненных ионными загрязняющими веществами, такими, как тяжелые металлы и радионуклиды, предложено несколько способов. Способы не на месте, например, сепарация, включают удаление загрязняющих ионных веществ и очистку почвы не на месте для удаления загрязняющих веществ. Примеры способов сепарации включают промывку и экстракцию почв. Однако способы не на месте коммерчески неприемлемы из экономических соображений, вытекающих из необходимости выемки и очистки загрязненной почвы. Способы на месте включают электромиграцию и иммобилизацию.

Электрокинетика, в частности, электромиграция, включает приложение электрического потенциала между электродами, погруженными в почву, чтобы заставить растворенные элементы, например, ионы металлов, мигрировать через раствор вдоль приложенного градиента электрического напряжения, т.е. совершать электромиграционное движение. Заряженные изотопы металлов в почве мигрируют к противоположно заряженным электродам и скапливаются у этих электродов. В том виде, как ее осуществляют в настоящее время, электромиграция имеет серьезные ограничения, которые делают ее неприемлемой для восстановления в реальных полевых условиях. Во- первых, pH раствора вблизи катода имеет тенденцию к соответствию высокой щелочности среды ввиду электролиза воды на электроде, и это вызывает осаждение большинства металлов в почве, затрудняя удаление загрязняющих веществ, а также блокируя поток воды через область загрязненной почвы. Во-вторых, электрокинетика сама по себе не очень устойчивый процесс вследствие присущих этому процессу концентрации, pH и осмотических градиентов в почве между электродами, что оказывает негативное влияние на этот процесс. Кроме того, почва и сама по себе изменяется со временем, например, почва будет претерпевать негативные изменения вследствие высыхания и растрескивания.

Иммобилизация изолирует загрязняющее вещество в твердой почвенной основе. Традиционными вариантами иммобилизации для почвы, загрязненной тяжелыми металлами являются кристаллизация/закрепление (К/З) и стеклование. При традиционных способах К/З обеспечивается получение монолитных блоков отходов, обладающих высокой структурной целостностью. Однако присутствие углеводородов мешает созданию К/З основы и может увеличить вымывание тяжелых металлов, когда металлы расчленяют органическую фазу. Стеклование обуславливает нагрев загрязненной почвы с образованием химически инертных материалов, например, стекла. При стекловании большие электроды внедряют в почву, которая содержит значительные количества силикатов. Прикладывают электрический ток, и генерируемое тепло расплавляет почву, в загрязняющие вещества постепенно вырабатываются вниз сквозь почву. Загрязняющие вещества в расплавленной почве, вероятно, не вымываются. Все же ни иммобилизация, ни стеклование не является экономически выгодным промышленным процессом.

Почва, загрязненная токсичными органическими соединениями и тяжелыми металлами и/или радионуклидами, создает дополнительные проблемы, поскольку схемы восстановления, приемлемые для одного типа загрязнения, зачастую неприемлемы для другого типа загрязнения. Например, традиционные способы восстановления в случае органических соединений, такие, как биовосстановление, сжигание и термодесорбция, как правило неэффективны в случае тяжелых металлов. Кроме того, присутствие большинства тяжелых металлов может оказывать отравляющее воздействие на микроорганизмы, используемые для разложения органических соединений. Очистка в случае загрязнения смешанными стоками обычно требует сочетания различных способов, что ведет к более высоким затратам, которые неприемлемы.

Поэтому было бы очень желательно разработать способ восстановления на месте, который промышленно осуществим и экономичен, а также решает все вышеуказанные проблемы, связанные с известными в настоящее время технологиями. Обнаружено, что сочетание электрокинетики, приводимой в действие давлением или гидравлического потока и разложения загрязняющих веществ на месте в зонах очистки с помощью биологических, физикохимических или электрохимических средств решает вышеуказанные проблемы.

Краткое изложение существа изобретения Техническая задача изобретения заключается в том, чтобы разработать способ восстановления на месте загрязненной гетерогенной почвы. Другая техническая задача изобретения заключается в том, чтобы разработать промышленно применимый и экономичный способ восстановления на месте загрязненной гетерогенной почвы. Еще одна техническая задача изобретения заключается в том, чтобы разработать способ восстановления на месте загрязненной гетерогенной почвы, не имеющий проблем, связанных с использованием электрокинетики, гидравлического потока и биологического или физикохимического разложения.

В соответствии с изобретением разработан способ восстановления на месте области загрязненной гетерогенной почвы, который включает внесение материала для очистки от загрязняющих веществ в области загрязненной гетерогенной почвы, по меньшей мере, в одну область, проницаемую для жидкости, в пределах области загрязненной гетерогенной почвы с образованием, по меньшей мере, одной зоны очистки в пределах области загрязненной гетерогенной почвы, пропускание постоянного электрического тока, по меньшей мере, через одну область почвы низкой проницаемости в пределах области загрязненной гетерогенной почвы между первым электродом и вторым электродом, имеющими противоположные заряды, причем (i) первый электрод расположен на первом конце области загрязненной гетерогенной почвы, а второй электрод расположен на противоположном конце области загрязненной гетерогенной почвы, или (ii) первый электрод расположен на первом конце каждой из областей почвы низкой проницаемости, а второй электрод расположен на противоположном конце каждой из областей почвы низкой проницаемости, (1) чтобы вызвать электроосмотический поток от второго электрода к первому электроду, (2) чтобы вызвать электромиграционное движение ионных загрязняющих веществ в направлении к электроду противоположного заряда, или (3) чтобы вызвать электроосмотический поток от второго электрода к первому электроду и электромиграционное движение ионных загрязняющих веществ в направлении к электроду противоположного заряда, и приложение гидравлического градиента поперек области загрязненной гетерогенной почвы, чтобы вызвать гидравлический поток от находящегося под высоким давлением конца области загрязненной гетерогенной почвы к находящемуся под низким давлением концу области загрязненнной гетерогенной почвы.

Краткое описание чертежей Фиг. 1 - изображение компоновки электроосмотического элемента, использованного в примере 1.

Фиг. 2 - изображение компоновки электроосмотического элемента, использованного в примере 2.

Подробное описание изобретения Первый вариант осуществления изобретения относится к способу восстановления на месте области загрязненной гетерогенной почвы, включающему: а) внесение материала для очистки от загрязняющих веществ в области загрязненной гетерогенной почвы, выбранного из группы, состоящей из микроорганизмов, питательных веществ, акцепторов электронов, катализаторов, адсорбентов, поверхностно- активных веществ, доноров электронов, сометаболитов, хелатирующих добавок, ионообменных смол, буферов, солей и их сочетаний, по меньшей мере, в одну область, проницаемую для жидкости, в пределах области загрязненной гетерогенной почвы с образованием, по меньшей мере, одной зоны очистки в пределах области загрязненной гетерогенной почвы; б) пропускание постоянного электрического тока, по меньшей мере, через одну область почвы низкой проницаемости в пределах области загрязненной гетерогенной почвы между первым электродом и вторым электродом, имеющими противоположные заряды, причем (i) первый электрод расположен на первом конце области загрязненной гетерогенной почвы, а второй электрод расположен на противоположном конце области загрязненной гетерогенной почвы, или (ii) первый электрод расположен на первом конце каждой из областей почвы низкой проницаемости, а второй электрод расположен на противоположном конце каждой из областей почвы низкой проницаемости, 1) чтобы вызвать электроосмотический поток от второго электрода к первому электроду, 2) чтобы вызвать электромиграционное движение ионных загрязняющих веществ в направлении к электроду противоположного заряда, или 3) чтобы вызвать электроосмотический поток от второго электрода к первому электроду и электромиграционное движение ионных загрязняющих веществ в направлении к электроду противоположного заряда; и в) приложение гидравлического градиента поперек области загрязненной гетерогенной почвы, чтобы вызвать гидравлический поток от находящегося под высоким давлением конца области загрязненной гетерогенной почвы к находящемуся под низким давлением концу области загрязненной гетерогенной почвы.

В первом варианте осуществления предлагаемого способа изобретение дополнительного включает: (г) 1) периодическое изменение на противоположную полярности первого и второго электродов для изменения на противоположное направления движения загрязняющих веществ через зоны очистки; 2) рециркуляцию воды из электроосмотического потока от первого электрода к второму электроду, или 3) периодическое изменение на противоположную полярности первого и второго электродов для изменения на противоположное направления движения загрязняющих веществ через зоны очистки и рециркуляцию воды из электроосмотического потока в направлении, противоположном электроосмотическому потоку. В первом варианте осуществления предлагаемого способа изобретение дополнительно включает периодическое изменение на противоположный гидравлического градиента поперек области загрязненной гетерогенной почвы, чтобы изменить на противоположное направление гидравлического потока через область загрязненной гетерогенной почвы. Изменение на противоположный гидравлического градиента можно осуществлять отдельно или в сочетании с изменением на противоположную полярности или с рециркуляцией электроосмотического потока.

Второй вариант осуществления изобретения относится к способу восстановления на месте области загрязненной гетерогенной почвы, включающему: (а) формирование, по меньшей мере, одной зоны, проницаемой для жидкости, в пределах области загрязненной гетерогенной почвы, (б) внесение материала для очистки от загрязняющих веществ в области загрязненной гетерогенной почвы, выбранного из группы, состоящей из микроорганизмов, питательных веществ, акцепторов электронов, катализаторов, адсорбентов, поверхностно-активных веществ, доноров электронов, сометаболитов, хелатирующих добавок, ионообменных смол, буферов, солей и их сочетаний, по меньшей мере, в одну область, проницаемую для жидкости, в пределах области загрязненной гетерогенной почвы с образованием, по меньшей мере, одной зоны очистки в пределах области загрязненной гетерогенной почвы; (в) пропускание постоянного электрического тока, по меньшей мере, через одну область почвы низкой проницаемости в пределах области загрязненной гетерогенной почвы между первым электродом и вторым электродом, имеющими противоположные заряды, причем (i) первый электрод расположен на первом конце области загрязненной гетерогенной почвы, а второй электрод расположен на противоположном конце области загрязненной гетерогенной почвы, или (ii) первый электрод расположен на первом конце каждой из областей почвы низкой проницаемости, а второй электрод расположен на противоположном конце каждой из областей почвы низкой проницаемости, 1) чтобы вызвать электроосмотический поток от второго электрода к первому электроду, 2) чтобы вызвать электромиграционное движение ионных загрязняющих веществ в направлении к электроду противоположного заряда, или 3) чтобы вызвать электроосмотический поток от второго электрода к первому электроду и электромиграционное движение ионных загрязняющих веществ в направлении к электроду противоположного заряда; и (г) приложение гидравлического градиента поперек области загрязненной гетерогенной почвы, чтобы вызвать гидравлический поток от находящегося под высоким давлением конца области загрязненной гетерогенной почвы к находящемуся под низким давлением концу области загрязненной гетерогенной почвы.

Во втором варианте осуществления предлагаемого способа изобретение дополнительно включает: (д) 1) периодическое изменение на противоположную полярности первого и второго электродов для изменения на противоположное направления движения загрязняющих веществ через зоны очистки, 2) рециркуляцию воды из электроосмотического потока от первого электрода ко второму электроду, или 3) периодическое изменение на противоположную полярности первого и второго электродов для изменения на противоположное направления движения загрязняющих веществ через зоны очистки и рециркуляцию воды из электроосмотического потока в направлении, противоположном электроосмотическому потоку. Во втором варианте осуществления предлагаемого способа изобретение дополнительно включает периодическое изменение на противоположный гидравлического градиента поперек области загрязненной гетерогенной почвы, чтобы изменить на противоположное направление гидравлического потока через область загрязненной гетерогенной почвы. Изменение на противоположный гидравлического градиента можно осуществлять отдельно или в сочетании с изменением на противоположную полярности или с рециркуляцией электроосмотического потока.

В еще одном варианте осуществления предлагаемых способов гидравлический поток отводят от находящегося под низким давлением конца области загрязненной гетерогенной почвы и очищают для удаления содержащихся в нем загрязняющих веществ, а очищенный гидравлический поток необязательно рециркулируют в область загрязненной гетерогенной почвы у находящегося под высоким давлением конца области гетерогенной почвы.

В одном варианте осуществления предлагаемых способов гидравлический градиент поперек области загрязненной гетерогенной почвы прикладывают непрерывно. В еще одном варианте осуществления предлагаемых способов гидравлический градиент поперек области загрязненной гетерогенной почвы прикладывают периодически, получая пульсирующий гидравлический поток. В другом варианте осуществления предлагаемых способов гидравлический поток и электроосмотический поток по существу текут в одном направлении. В еще одном варианте осуществления предлагаемых способов гидравлический поток и электроосмотический поток текут в противоположных направлениях. В том смысле, который здесь имеется в виду, термин "противоположные направления" включает все формы протекания гидравлического и электроосмотического потоков, за исключением потоков, по существу текущих в одном направлении, т. е. по существу противонаправленные, по существу перпендикулярные и проходящие под противолежащими углами, отличающимися от углов примерно 0o, примерно 90o и примерно 180o.

В соответствии с предлагаемыми способами, электроосмотический поток и/или электромиграционный поток могут существовать последовательно или одновременно. Кроме того, в соответствии с предлагаемыми способами, области, проницаемые для жидкости, в пределах области загрязненной гетерогенной почвы образуют до внесения материала для очистки от загрязняющих веществ или использования существующих областей, проницаемых для жидкости.

В том смысле, в каком он употребляется здесь, термин "область загрязненной гетерогенной почвы" означает область гетерогенной почвы, содержащую органические соединения и/или ионные загрязняющие вещества, такие, как металлы и/или радионуклиды, которая содержит области такой низкой проницаемости, что невозможно равномерно перекачивать жидкость через них гидравлическими средствами. Примеры таких областей низкой проницаемости включают (но не ограничиваются этим) глинистые и илистые почвы.

В том смысле, в каком он употребляется здесь, термин "электрокинетика" включает и электроосмос, и электромиграцию. Тип загрязняющих веществ в области загрязненной почвы и физические и химические характеристики области загрязненной почвы, например, pH и т.д., определят, будет ли результатом пропускания постоянного электрического тока между электродами электроосмотический поток, вызывающий движение неионных растворимых органических загрязняющих веществ, электромиграционное движение ионных загрязняющих веществ или оба эти движения. Относительная природа электромиграции по сравнению с электроосмосом такова, что движение ионных загрязняющих веществ путем электромиграции в 3-10 раз быстрее, чем поток, вызванный электроосмосом. В случаях, когда происходит и электроосмос, и электромиграция, можно использовать это различие для повышения эффективности очистки от органических и ионных загрязняющих веществ путем реализации способа и скорости, при которых происходит очистка от этих веществ в зонах очистки.

В вариантах осуществления изобретения, где используют рециркуляцию воды в направлении, противоположном направлению электроосмотического потока, отдельно или в сочетании со способом изменения на противоположную полярности электродов, воду можно рециркулировать любым традиционным способом, известным специалистам в данной области техники. Примеры таких способов включают, но не ограничиваются, перекачивание, использование соединительной трубы или трубки между электродами противоположного заряда, и, в случае вертикальных электродов у поверхности почвы, затопление поверхности между электродами. В настоящее время предпочитают рециркуляцию жидкости с помощью соединительной трубы или трубки между электродами противоположной полярности, чтобы обеспечить создание гидравлического перепада давления между электродами противоположного заряда с целью перемещения воды в направлении, противоположном электроосмотическому потоку, в частности, когда такую рециркуляцию используют в сочетании с изменением на противоположную полярности электродов, чтобы исключить потребность в дублирующем оборудовании.

В предпочтительных в настоящее время вариантах осуществления изобретения используют изменение на обратную электрической полярности электродов, чтобы исключить проблемы, связанные с длительной электрокинетической обработкой отдельно или в сочетании с изменением на обратный гидравлического градиента поперек области загрязненной гетерогенной почвы, чтобы изменить на обратное направление гидравлического потока через область загрязненной гетерогенной почвы.

Области, проницаемые для жидкости, в области загрязненной гетерогенной почвы можно образовать любым традиционным способом, известным специалистам в данной области техники. Кроме того, области, проницаемые для жидкости, используемые в изобретении, могут включать области, проницаемые для жидкости, существующие в пределах области низкой проницаемости, или области почвы высокой проницаемости. В том смысле, в каком он употребляется здесь, термин "область, проницаемая для жидкости" означает область или зону в пределах области загрязненной гетерогенной почвы, либо в пределах области низкой проницаемости или области почвы высокой проницаемости, которая доступна для проникновения в нее жидкости в процессе электроосмоса и/или прохождения гидравлического потока. Области, проницаемые для жидкости, могут быть дискретными областями или непрерывными областями, проницаемыми для жидкости. В том смысле, в каком он употребляется здесь, термин "непрерывные области, проницаемые для жидкости" означает области, образованные в пределах области загрязненной гетерогенной почвы, которая содержит смеси почвы и очищаемых материалов, в которой почва или очищаемые материалы могут быть непрерывной фазой. Примеры способов образования дискретных областей, проницаемых для жидкости, включают, но не ограничиваются, гидравлический разрыв, пневматический разрыв, импульсный разрыв, забивание шпунтовых свай, формирование траншей, направленное бурение и сочетания этих способов. В том смысле, в каком он употребляется здесь, термин "формирование траншей" включает технологию создания перемычек из разжиженной глины, при которой траншею заполняют разжиженной глиной, которая содержит материал для очистки от содержащегося в области загрязненной гетерогенной почвы загрязняющего вещества, при условии, что перемычка из разжиженной глины проницаема для жидкости при электроосмосе и/или прохождении частей гидравлического потока в рамках предлагаемого способа. Примером образования непрерывной области, проницаемой для жидкости, является бурение почвы/смешивание. Кроме того, используемые в изобретении проницаемые для жидкости области могут включать существующие области, проницаемые для жидкости, в пределах области загрязненной гетерогенной почвы. Примером существующих областей, проницаемых для жидкости, являются песчаные области в плотных почвах, т.е. областях почвы низкой проницаемости, которые обычно называют линзами. Предпочтительными в настоящее время способами образования дискретных областей, проницаемых для жидкости, являются гидроразрыв и забивание шпунтовых свай. Предпочтительным в настоящее время способом образования областей, проницаемых для жидкости, в областях маломощных загрязненных почв является формирование траншей.

В другом варианте осуществления предлагаемых способов, когда органические и/или ионные загрязняющие вещества не разлагаются в пределах зон очистки, т. е. когда загрязняющие вещества адсорбируются или иным способом содержатся в зонах очистки, загрязняющие вещества восстанавливают из зон очистки любым традиционным способом, известным специалистам в данной области техники, и в число этих способов входят (но оно этим не ограничивается) экстракция, промывка струей жидкости и физическое восстановление очищающего материала, например, удаляемого очищающего материала, такого, как пористый материал шпунтовых свай. Конкретный способ восстановления будет зависеть от типа очищающего материала, способа образования области, проницаемой для жидкости, и типа присутствующих загрязняющих веществ, и будет очевиден для специалистов в данной области техники.

В еще одном варианте осуществления предлагаемых способов их осуществляют с перерывами. В том смысле, в каком он употребляется здесь, термин "прерывистая обработка" означает (а), что дополнительный очищающий материал (дополнительные очищающие материалы) вводят в существующую зону очистки (существующие зоны очистки) при восстановлении уже имеющегося очищающего материала (уже имеющихся очищающихся материалов) до введения нового очищающего материала (новых очищающих материалов), как указано выше, или без восстановления уже имеющегося очищающего материала (уже имеющихся очищающих материалов), или (б) что постоянный электрический ток, который обеспечивает движущее усилие во время электрокинетического процесса, изменяется во время операции включения/отключения, чтобы обеспечить, например, продолжительность обработки стоков разлагаемых загрязняющих веществ в зонах очистки, например, путем биоразложения, до введения дополнительных загрязняющих веществ в зоны очистки.

В еще одном варианте осуществление предлагаемых способов дополнительные области, проницаемые для жидкости, а затем и зоны очистки образуют во время после начала восстановления на месте, чтобы осуществить дополнительную очистку области загрязненной почвы. Примером использования зон очистки, образованных после начала восстановления на месте является ситуация, в которой исходные зоны очистки используют для улавливания загрязняющего вещества, которое должно быть токсичным для очищающего материала, например, микроорганизмов, если очищающий материал присутствует с самого начала.

Гидравлический разрыв - это способ обеспечения доступа к подповерхностной почве в целях восстановления. Разрыв подповерхностных образований обеспечивают путем впрыскивания или закачивания разрывающей текучей среды через скважину со скоростью и давлением, достаточными для того, чтобы вызвать формирование разрыва в образовании, например, в области загрязнения гетерогенной почвы. Вязкость разрывающей текучей среды обычно повышают с помощью геля, например, растворимого в воле натурального или синтетического полимера. Примеры растворимых в воде полимеров включают (но не ограничиваются) гуар, гидроксипропилгуар, метилоксипропилгуар, метилцеллюлозу и гидроксицеллюлозу.

Гидравлический разрыв можно получить любым традиционным способом, известным специалистам в данной области техники, таким, как раскрытые в патентах США N 4964466, N 4378845 и N 4067389. Например, после размыкания дна скважины струей воды матрицу гуаровой камеди с гранулированным материалом, предпочтительно песком, суспендированным в ней, заполняют под достаточным давлением до тех пор, пока не образуется разрыв плоской формы. Для разрыва матрицы гуаровой камеди вводят фермент, который потом можно откачать, оставляя песчаную линзу. Эти разрывы могут находиться на расстоянии друг от друга до 20 см (8 дюймов). Питательные вещества, микроорганизмы, окислители, катализаторы, адсорбенты, поверхностно-активные вещества, доноры электронов, сометаболиты, желатирующие добавки, ионообменные смолы, буферные растворы и/или соли можно подавать в эти песчаные линзы, т.е. разрывы, с образованием зон очистки для разложения токсичных материалов, присутствующих в области, загрязненной гетерогенной почвы, в соответствии с предлагаемым способом. Гранулированный материал обычно называют раскалывающим агентом, и он необходим для того, чтобы препятствовать закрытию разрыва после того, как растворимый в воде полимер будет разрушен и удален.

В усовершенствованном способе гидравлического разрыва традиционную разрывающую текучую среду заменяют разрывающей текучей средой, содержащей водную транспортирующую среду и природный органический материал в качестве раскалывающего агента. В том смысле, в каком он употребляется здесь, термин "природный органический материал" относится к материалам, которые дают превосходные поверхности для микробных отложений, а также представляют собой долгосрочный источник пополнений питательных веществ для стимулирования роста микроорганизмов. Биоразложению хлорированных органических соединений, которое может потребовать присутствия определенных сометаболитов для быстрого разложения, может способствовать разнообразный органический состав этих материалов. Примеры природных орган