Хондроитиназа, способ ее получения и включающие ее фармацевтические композиции

Реферат

 

Изобретение относится к области медицины и биотехнологии и касается фермента хондроитиназы, применяемой в химико-фармацевтической промышленности, высокоочищенной хондроитиназы и способа получения фермента и фармацевтических композиций, содержащих фермент. Сущность изобретения включает фермент хондроитиназу АВС из клеток Proteus vulgaris с молекулярным весом 100000, изоэлектрической точкой 8,3-8,5, аланин в качестве N-концевой аминокислоты и пролин в качестве С-концевой аминокислоты. Способ получения включает экстракцию клеток указанного микроорганизма, удаление нуклеиновой кислоты, а также хроматографию с использованием сильной и слабой катионообменных смол. Очищенный фермент хондроитиназы АВС представляет собой иглообразные и призматические кристаллы с определенной структурой кристаллической решетки. Фармацевтические композиции представляют собой очищенный фермент и дополнительно неионный ПАВ, а также стабилизаторы. Технический результат заключается в повышении степени очистки и стабильности препарата. 6 с. и 14 з.п. ф-лы, 21 табл., 12 ил.

Изобретение касается очищенной хондроитиназы ABC и кристаллической хондроитиназы ABC предельно высокой чистоты и превосходной стабильности, способа получения хондроитиназы ABC и кристаллов хондроитиназы ABC и фармацевтической композиции, включающей хондроитиназу в качестве эффективного компонента.

Хондроитиназа ABC (EC 4.2.2.4) является ферментом, разрушающим гиалуроновую кислоту, хондроитинсульфат, хондроитин, дерматансульфат или подобное в смесь ненасыщенных дисахаридов и олигосахаридов. Известно, что этот фермент продуцируют такие бактерии как Proteus vulgaris.

Известен способ получения хондроитиназы ABC, включающий постепенное воздействие стрептомицина на суспензию разрушенных бактериальных клеток, фракционирование сульфатом аммония, хроматографию на DEAE-целлюлозе и хроматографию на фосфоцеллюлозе (J.Biol. Chem. 243, (7), 1523-1535 (1968)), способ? включающий постепенное хроматографирование суспензии разрушенных бактериальных клеток на DEAE-целлюлозе, хроматографию на оксиапатите, хроматографию на цинк-иммобилизованной агарозе, и гель-проникающую хроматографию (Agric. Biol. Chem. 50, (4), 1057-1059 (1986); открытый патент Японии (Kokai) N 122588/1987) и подобные.

С другой стороны, разработан способ разрушения межпозвоночных дисков (внутридисковая терапия: хемонуклеолиз) для лечения образования грыжи, которую считают причиной болей в пояснице человека. В этом способе в полость межпозвоночных дисков вводят химопапаин, который является производным протеазы из папайи, или производное колагеназы из бактерий для снятия припухлости дисков. Химопапаин продается в Европе и США в виде коммерческого препарата - лекарства с торговой маркой Химодиактин (Chymodiactin - лаборатории Smith) или Discase (Травенол - Travenol).

Однако внутридисковая терапия, использующая указанную протеазу, разрушает не только грыжу на диске, но и протеины в окружающих тканях. Это может являться причиной побочных эффектов, таких как нейропаралич, аллергия и подобное.

Mark R. Brown изучал ферменты, которые могут избирательно воздействовать на образование дисковой грыжи, и обратил свое внимание на разрушение протеогликана, являющегося основной частью диска с образованной грыжей. Результатом его исследования стали внутридисковая терапия с использованием хондроитиназы ABC или хондроитиназы AC (патент США N 4696816, A 61 K 37/48).

В частности, считают, что хондроитиназа ABC, производимая Proteus vulgaris, подходит для медицинского и коммерческого применения из-за ее способности селективно убирать боковые цепи хондроитинсульфата или дерматансульфата из протеогликана, ее неактивности по отношению к кератансульфату, гепарину и гепаринсульфату и ее высокой производительности. Поэтому получают ферменты, обладающие активностью хондроитиназы ABC, описанными ранее способами из культур Proteus vulgaris. Однако эти ферментативные препараты не подходят для использования в качестве лекарства для лечения дисковой грыжи или для использования в качестве реагента высокой чистоты, так как они обладают протеазной активностью или эндотоксинной активностью и содержат нуклеиновую кислоту. Они нестабильны как ферментные белки (J. Biol. Chem. 243, (7), 1523-1535 (1968); патент Великобритании 1067253, Agris. Biol. Chem. 50, (4), 1057-1059 (1986); открытый патент Японии (Kokai) NN 122588/1987 и 57180/1990).

По-видимому, причиной серьезных проблем использования хондроитиназы ABC в качестве лекарства является, главным образом, наличие примесей и нестабильность.

Краткое содержание изобретения. Следовательно, предметом настоящего изобретения является обеспечение новой хондроитиназы ABC высокой чистоты и кристаллической хондроитиназы ABC, не содержащей примесей, имеющей высокую специфическую активность и превосходную стабильность, и полезной в качестве лекарства, а также способа получения хондроитиназы ABC и кристаллической хондроитиназы ABC с хорошим выходом.

Другим предметом настоящего изобретения является обеспечение фармацевтической композиции, включающей хондроитиназу в качестве эффективного компонента.

Для разрушения этой проблемы заявители настоящего изобретения приложили усилия по очистке хондриэтиназы ABC и обнаружили, что очищенную хондроитиназу ABC получают, применяя способ, включающий экстракцию фермента из клеток микроорганизмов, удаление нуклеиновой кислоты из экстракта, содержащего фермент, хроматографирование экстракта, комбинируя слабую катионообменную смолу с сильной катионообменной смолой, при этом из хондроитиназы ABC полностью удаляют такие примеси как эндотоксин, нуклеиновая кислота, протеаза и подобные, и препарат демонстирует одну полосу в SDS-PAGE (додецилсульфат натрия - полиакриламид-гель - электрофорез) и один пик в HPLC-жидкостной хроматографии высокого давления (CPC - гель-проникающая хроматография; катионный обмен).

Обнаружено, что полученная таким образом хондроитиназа ABC кристаллизуется в кристаллическую хондроитиназу ABC, которая имеет специфическую активность в три раза больше, чем активность препаратов хондроитиназы, полученных обычным способом, сохраняет свою активность при хранении в течение длительного времени и высокоактивна в качестве лекарственного препарата. Эти полученные данные привели к завершению настоящего изобретения.

В соответствии с этим предметом настоящего изобретения является обеспечение хондроитиназы ABC высокой чистоты и стабильности, характеристики которой обсуждаются здесь далее.

Другим предметом настоящего изобретения является обеспечение способа получения хондроитиназы ABC высокой чистоты и стабильности, отличающегося тем, что включает: (i) стадию получения экстракта, содержащего фермент, из клеток микроорганизма, продуцирующего хондроитиназу ABC (стадия 1), (ii) стадию удаления нуклеиновой кислоты из эстракта, содержащего фермент (стадия 2), (iii) стадию хроматографирования, которая включает: а) адсорбцию хондроитиназы ABC при хроматографировании указанного экстракта, содержащего фермент, при использовании слабой катионообменной смолы, элюирование адсорбированного фермента, абсорбцию фермента в элюате и элюирование адсорбированного фермента при хроматографировании с использованием сильной катионообменной смолы (стадия 3-1) или б) адсорбцию хондроитиназы ABC при хроматографировании указанного экстракта, содержащего фермент, с использованием сильной катионообменной смолы, элюирование адсорбированного фермента, адсорбция фермента в элюате и элюирование адсорбированного фермента при хроматографии с использованием слабой катионообменной смолы (стадия 3-2).

В предпочтительном варианте настоящего изобретения указанный экстракт хондроитиназы ABC получают способом, который включает добавление буферного раствора с pH, близким к нейтральному, к увлажненным клеткам для получения суспензии клеток и физическую обработку клеток для их размельчения; или способом, который включает добавление раствора поверхностно-активного вещества с pH, близким к нейтральному, к увлажненным клеткам для получения суспензии клеток и перемешивание суспензии.

Указанное двухступенчатое хроматографирование при комбинации слабой и сильной катионообменных смол после удаления нуклеиновой кислоты из экстракта клеток, содержащего хондроитиназу ABC, дает хондроитиназу ABC высокой чистоты, более чистую и более стабильную, чем обычные препараты хондроитиназы ABC, и имеющую специфическую активность, которая более чем в три раза выше активности препаратов хондроитиназы ABC, полученных обычным способом.

Еще одним предметом настоящего изобретения является обеспечение кристаллической хондроитиназы ABC с иглообразными или призматическими кристалалми и характеристиками указанной очищенной хондроитиназы ABC, которую получают кристаллизацией указанной очищенной хондроитиназы ABC в полиэфире, имеющем гидроксильные группы на обоих концах (например, полиэтиленгликоль, полипропиленгликоль). Такая хондроитиназа ABC и ее кристаллы имеют высокую гомогенность, стабильные характеристики и высокую специфическую активность и демонтирует превосходную стабильность при хранении (например, ее активность слегка понижается при хранении в течение месяца при температуре 25-40oC).

Еще одним объектом настоящего изобретения является обеспечение композиций, содержащих хондроитиназу.

В частности, настоящее изобретение обеспечивает композицию, включающую хондроитиназу и сывороточный альбумин или желатин.

Настоящее изобретение обеспечивает, кроме того, композицию, включающую хондроитиназу и неионное поверхностно-активное вещество. Кроме того, предметом настоящего изобретения является обеспечение фармацевтической композиции для лечения смещения межпозвоночных дисков, включающей хондроитиназу.

Для этих композиций можно использовать не только упомянутую выше очищенную хондроитиназу, но также обычную хондроитиназу ABC или хондроитиназу AC.

Такие композиции включают раствор, который предотвращает абсорбцию хондроитиназы на стенках контейнера и, кроме того, предотвращает образование нерастворимых веществ при механических воздействиях, сохраняя, таким образом, высокую активность и применимость в качестве лекарства.

Другие и дополнительные объекты, признаки и преимущества настоящего изобретения проявятся более полно из следующего описания.

Краткое описание чертежей.

Фиг. 1 представляет микроскопическую фотографию кристаллов хондроитиназы ABC настоящего изобретения.

Фиг. 2 показывает соотношение между активностью и реактивным pH хондроитиназы ABC настоящего изобретения.

Фиг. 3 показывает соотношение между pH и остаточной активностью хондроитиназы ABC настоящего изобретения, когда фермент оставляют стоять при 25oC в течение 24 часов в различных буферных растворах при определенном pH; на чертеже линия, соединяющая белые кружочки, показывает остаточную активность для случая хранения фермента в ацетатном буферном растворе; штриховая линия, соединяющая крестики, - хранение в буферном растворе трисуксусная кислота; штриховая линия, соединяющая треугольники, - хранение в буферном растворе трис-HCl; и линия, соединяющая черные кружочки, - глицериновый буферный раствор.

Фиг. 4 показывает соотношение между остаточной активностью и реактивной температурой хондроитиназы ABC настоящего изобретения.

Фиг. 5 показывает соотношение между остаточной активностью хондроитиназы ABC настоящего изобретения и температурой, когда фермент хранили при различных температурах в течение 1 часа.

Фиг. 6 показывает хроматограмму, когда хондроитиназу ABC настоящего изобретения хроматогарфируют гель-проникающим методом при HPLC.

Фиг. 7 показывает SDS-PAGE полосы на различных стадиях процесса для очистки хондроитиназы ABC примера 1, где полоса A соответствует супернатанту обработки протамином; полоса B соответствует жидкости обработки CM-сефарозой (CM-Sepharose); полоса C соответствует жидкости (невосстановленной) после обработки S-сефарозой; и полоса D соответствует жидкости (восстановленной) после обработки S-сефарозой.

Фиг. 8 показывает соотношение между временем экстракции хондроитиназы ABC из клеток бактерий и активностью хондроитиназы ABC в примере 3.

Фиг. 9 показывает соотношение между временем, необходимым для экстракции клеток бактерий с использованием буферного раствора, содержащего Triton X-100, с различной концентрацией и активностью хондроитиназы ABC в примере 4, где кривая 1 соответствует экстракции с использованием буферного раствора при концентрации поверхностно-активного вещества 2% при 25oC; кривая 2 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 2% при 37oC; кривая 3 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 25oC; и кривая 4 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 37oC.

Фиг. 10 показывает соотношение между временем, необходимы для экстракции клеток бактерий при использовании буферного раствора, содержащего Brij-35, с различными концентрациями и активностью хондроитиназы ABC в примере 4, где кривая 1 соответствует экстракции с использованием буферного раствора с концентрацией поверхностно-активного вещества 2% при 25oC; кривая 2 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 2% при 37oC; кривая 3 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 25oC; и кривая 4 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 37oC.

Фиг. 11 показывает соотношение между временем, необходимым для экстракции клеток бактерий с использованием буферного раствора, содержащего Nonidet P-40 с различными концентрациями, и активностью хондроитиназы ABC в примере 4, где кривая 1 соответствует экстракции с использованием буферного раствора с концентрацией поверхностно-активного вещества 2% при 25oC; кривая 2 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 2% при 37oC; кривая 3 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 25oC; и кривая 4 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 37oC.

Фиг. 12 показывает соотношение между временем, необходимым для экстракции клеток бактерий с использованием буферных растворов, содержащих POELE с различными концентрациями, и активностью хондроитиназы ABC в примере 4, где кривая 1 соответствует экстракции с использованием буферного раствора с концентрацией поверхностно-активного вещества 2% при 25oC; кривая 2 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 2% при 37oC; кривая 3 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 25oC; и кривая 4 соответствует использованию буферного раствора с концентрацией поверхностно-активного вещества 5% при 37oC.

В деталях показан способ получения очищенной хондроитиназы ABC и кристаллов хондроитиназы ABC настоящего изобретения.

Для получения хондроитиназы ABC настоящего изобретения можно использовать любые клетки обычных известных микроорганизмов, например микроорганизмов, принадлежащих к Proteus vulgaris или подобным. Отдельным примером такого микроорганизма является Proteus vulgaris NCTC 4636 (ATCC 6896, 1ГО 3988).

Микроорганизмы можно культивировать обычным способом (например, J.Biol. Chem. , 243, (7), 1523-1535 (1968); открытый патент Японии (Kokai) N 122588/1987 или N 57180/1990). Увлажненные клетки собирают из культуры и суспендируют в буферном растворе с pH, близким к нейтральному, экстрагируя фермент из суспензии. Обычно в качестве буферного раствора с pH, близким к нейтральному, используют фосфатный буферный раствор, трис-HCl буферный раствор, ацетатный буферный раствор или подобные с pH от 6,0 до 8,0 и концентрацией от 1 до 100 мМ. Клетки размельчают при помощи шаровой мельницы (используют DYNO MILL или другие) для экстракции раствора фермента, содержащего хондроитиназу ABC, протеазу, другие ферменты, нуклеиновую кислоту, белки и подобное.

Эффективность экстракции хондроитиназы ABC из клеток можно увеличить, используя растворы поверхностно-активных веществ, то есть, используя буферные растворы, к которым добавлены поверхностно-активные вещества.

В настоящем изобретении можно использовать любые поверхностно-активные вещества, которые эффективно стимулируют экстракцию ферментов.

Неионные поверхностно-активные вещества, которые можно применять, включают алкильные эфиры полиоксиэтилена, п-трет-октилфенильные эфиры полиоксиэтилена, полисорбат и подобное. В качестве специфических примеров алкильных эфиров полиоксиэтилена приведены поверхностно-активные вещества эмульгирующего типа (Emulgen-уре), Liponox-типа, Brij-типа и подобные. Подходящими с коммерческой точки зрения являются среди них Emulgen 120, Emulgen 109P, Liponox DCH, Brij 35, 78, 76, 96, 56, 58, 98, Nikkol BL-9 EX, BL-21, BL-25 и подобные. Приведенные в качестве отдельных примеров п-трет-октилфонильные эфиры полиоксиэтилена являются поверхностно-активными веществами Triton-типа, Nonidet P-40 типа, Igepal/CA-типа, Polytergent C, Neutronyx-типа, Conco-типа и подобными. Среди них Triton X-100, X-45, X-114, X-102, X-165, X/305 X-405, Nonidet P-40, Igepal CA-630, Neutronyx 605, Conco IX-100 и подобные являются подходящими с коммерческой точки зрения. В качестве специфических примеров полисорбатов приведены поверхностно-активные вещества Tween-типа, Emasol-типа, Sorbester-типа, Crill-типа и подобные. Предпочтительными полисорбатами являются производные сорбитан-моно-9- октадеканоат-поли- (окси-1,2-этандиила) с коммерческой маркой Tween 80. Другими примерами коммерческих полисорбатов являются Tween 20, 40, 60, Emasol 4115, 4130 и подобные.

Среди приведенных выше поверхностно-активных веществ особенно предпочтительными являются алкильные эфиры полиоксиэтилена (например, лауриловый эфир полиоксиэтилена, полидоканал (polidocanal), называемые здесь далее "POELE") и подобные. Применение этих поверхностно-активных веществ не только эффективно промотирует экстракцию ферментов, но также дает в результате экстракт фермента, содержащий хондроитиназу ABC с меньшим количеством протезы, сопутствующего белка и нуклеиновой кислоты по сравнению с другими способами экстракции.

Экстракт фермента, полученный таким образом, хроматографируют, используя слабую катионообменную смолу или сильную катионообменную смолу, а затем можно получить хондроитиназу ABC с предельно высокой активностью, дающую одну полосу при электрофорезе.

В такой хондроитиназе ABC не обнаружено протеазной активности. Содержание эндотоксина в такой хондроитиназе очень маленькое, и не возникает проблем ее использования в качестве компонента лекарственных препаратов.

Для экстракции увлажненные культивированные клетки добавляют к буферному раствору, содержащему от 2 до 7% указанного поверхностно-активного вещества для получения суспензии клеток. Эту суспензию нагревают до температуры 15-45oC, предпочтительно до примерно 37oC, перемешивают в течение примерно 1-10 часов, предпочтительно около 2-6 часов, и охлаждают до комнатной температуры, отделяют экстракт от клеточного остатка такими способами разделения, как центрифугирование или подобные. Полученный таким образом экстракт, содержащий хондроитиназу ABC в качестве основного компонента, другие ферменты, белки и нуклеиновые кислоты, используют в следующей стадии очистки.

На стадии очистки из экстракта клеток удаляют белки, нуклеиновые кислоты и подобное. Для удаления белков и нуклеиновых кислот применяют любые традиционные способы. Когда принимают во внимание использование фермента в качестве компонента лекарства, особо предпочтительным способом удаления нуклеиновых кислот является добавка протаминсульфата.

Обработку протамином проводят, добавляя 3-7% раствор протаминсульфата к экстракту клеток до концентрации примерно 0,25 - 1%, и перемешивают смесь при температуре от примерно 4oC до комнатной в течение 10 - 30 минут, получая осадок нуклеиновых кислот и подобного. Затем осадок отделяют и удаляют при центрифугировании или др.

Полученный таким образом супернатант, содержащий хондроитиназу ABC, протеазу и другие ферменты, затем хроматографируют, используя катионообменную смолу.

Для получения очищенной хондроитиназы ABC очистку осуществляют хроматографическим способом, применяя комбинацию слабой катионообменной смолы и сильной катионообменной смолы.

Слабой катионообменной смолой, используемой в настоящем изобретении, является катионообменная смола с карбоксиалкильными группами, например карбоксиметильной группой, в качестве обменной группы. В качестве специфического примера приведено производное полисахарида (производное агарозы, производное сшитого декстрана и др.) с карбоксиметильной группой в качестве обменной группы.

Коммерческими примерами таких катионообменных смол являются CM-сефароза (CM-sepharose), CM-sephadex (торговые марки, производство Pharmacia) и подобные.

Катионообменная смола с сульфоалкильной группой в качестве обменной группы представлена как сильная катионообменная смола, применяемая в настоящем изобретении. В качестве специфических примеров приведены производные полисахаридов (производное агарозы, производное сшитого декстрана и др.) с сульфоэтильной группой или подобные. Коммерческими примерами таких сильных катионообменных смол являются S-Sepharose, SP-Sepharose (торговые марки, производство Pharmacia), SP-Sephadex (торговая марка, производство Pharmacia), SP-Toyopearl (торговая марка, производство Tosoh Co.) и подобные.

Далее приведен один пример хроматографического использования этих двух типов смол в комбинации.

Первое хроматографирование проводят, уравновешивая слабую катионообменную смолу таким буферным раствором (pH 6,5 - 7,5), который используют в экстракции клеток (например, 1-50 мМ фосфатный буферный раствор, трис-HCl буферный раствор, ацетатный буферный раствор и др.), с последующим контактом фермента, содержащего указанное поверхностно-активное вещество, с катионообменной смолой для абсорбции фермента и промывая катионообменную смолу обычно используемым солевым раствором (например, 20-26 мМ раствором NaCl) и/или упомянутым выше раствором поверхностно-активного вещества (например, 0,5% раствором POELE). Элюат, полученный растворением хлорида натрия в указанном буферном растворе, с концентрацией примерно 0,1 М контактирует с указанной смолой, элюируя фракции, обладающие ферментной активностью. В качестве способа элюирования можно применять как градиентное элюирование, так и ступенчатое элюирование. Хроматографирование можно осуществлять колоночным способом или периодическим способом.

Полученные таким образом фракции затем контактируют с сильной катионообменной смолой, которая находится в равновесии с тем же буферным раствором, для адсорбции хондроитиназы ABC. После промывания катионообменной смолы обычно применяемым солевым раствором (например, 20-50 мМ раствором NaCl) и/или водой выделяют хондроитиназу ABC путем градиентного элюирования, используя такой же буферный раствор (например, фосфатный буферный раствор, трис-HCl буферный раствор, ацетатный буферный раствор и др.), но содержащий NaCl с градиентом концентрации от 0 до 0,5 М, предпочтительно от 25 до 350 мМ. Это хроматографирование предпочтительно проводить колоночным способом. Возможно обратное применение хроматографии с использованием двух типов катионообменных смол.

Затем клетки экстрагируют буферным раствором, содержащим поверхностно-активное вещество, экстракт при этом содержит только очень небольшое количество примесей. В этом случае фермент можно очистить простыми способами, например без обработки для удаления нуклеиновых кислот из экстракта (такой как обработка протамином), только пропуская экстракт через колонку со слабой катионообменной смолой (например, СМ-Sepharose), адсорбируя хондроитиназу ABC, промывая колонку и элюируя фермент градиентным способом.

Раствор очищенного фермента, полученный хроматографическим способом, может служить лекарством, реагентом или подобным после концентрирования и удаления соли. По-другому, из концентрированного раствора без соли можно получить порошок при помощи обычной сушки (например, лиофилизацией) в условиях, которые не дезактивируют или денатурируют фермент.

Кроме того, указанный раствор очищенного фермента можно смешать с полиэфиром, имеющим гидроксильные группы на обоих концах (например, полиэтиленгликоль, полипропиленгликоль и др.) для кристаллизации хондроитиназы ABС. Кристаллы имеют ромбическую или моноклинную структуру, иглообразные, параметры кристаллической решетки приведены далее в примерах.

Далее приведен один пример проведения кристаллизации. К раствору фермента добавляют полиэтиленгликоль с соответствующим молекулярным весом, таким как 4000, 6000 или подобный. Раствор концентрируют до концентрации фермента 250-500 ед./мл и концентрации полиэтиленгликоля 5-20%, предпочтительно 10-15% и дают ему стоять при температуре от 4oC до комнатной до тех пор, пока не вырастут кристаллы фермента.

Очищенная таким образом хондроитиназа не содержит таких примесей, как эндотоксин, нуклеиновые кислоты, протеаза, другие белки и подобное и дает одну полосу в SDS-PAGE и один пик в HPLC (GPC, катионный обмен), а также имеет специфическую активность, увеличенную более чем в три раза по сравнению с хондроитиназой ABC, полученной обычными способами. Кроме того, в соответствии со способом настоящего изобретения в ходе получения продукта не требуется проведение таких процедур, как фракционирование сульфатом аммония, концентрирование/обессоливание и подобных, как в обычных способах, следовательно, можно сократить время производства хондроитиназы ABC, увеличить выход и снизить стоимость производства. Кроме того, способ настоящего изобретения можно применять со всеми его преимуществами независимо от количества получаемой хондроитиназы.

Кристаллическую хондроитиназу ABC получают упомянутым выше способом кристаллизации в виде иглообразных или призматических кристаллов (см. фиг. 1), гомогенную и со стабильными характеристиками. Она также имеет высокую специфическую активность и превосходную стабильность при хранении.

Далее приведены характеристики хондроитиназы ABC, полученной способом настоящего изобретения.

1) Воздействия. Действует на гиалуроновую кислоту, хондроитинсульфат, хондроинит и дерматансульфат, давая небольшое количество ненасыщенного олигосахарида с большим молекулярным весом на ранней стадии реакции и, в конечном счете, смесь ненасыщенного дисахарида (4-глюкуронил-N- ацетилгексозамина и его 4- и 6-сульфатов) и олигосахарида.

2) Оптимальный pH и стабильный pH. Оптимальным является pH от 8,0 до 8,2, когда субстратом в трис-HCl буферном растворе является хондроитинсульфат (фиг. 2). После хранения при pH от 5 до 9 и температуре 25oC в течение 24 часов фермент проявляет 80% или более остаточной активности (фиг. 3).

3) Проверка ферментативной активности. Измерение основано на производстве в ходе ферментативной реакции ненасыщенных дисахаридов, демонстрирующих значительное поглощение света в ультрафиолетовой области. В частности, ферментативную реакцию проводят в реакционном растворе фермента, содержащем фермент, 1,2 мг хондроитинсульфата C (субстрат), 50 мМ трис-HCl буферного раствора (pH 8-8,5) с 50 мМ ацетата натрия и 10 г казеина при 37oC в течение 20 минут. Реакцию прекращают, добавляя 0,05 M HCl (pH 1,8). Измеряют поглощение света при 232 нм. Отдельно выдерживают прогретый раствор денатурированного фермента (в качестве контроля) в растворе субстрата такого же состава, как описано выше, обрабатывают его таким же образом, как описано выше, и измеряют поглощение света при 232 нм. Количество ненасыщенных дисахаридов рассчитывают по увеличению поглощения света в образце по сравнению с контролем. Миллимолярный молекулярный коэффициент экстинкции 2-ацетамидо-2-деокси-3-O- (-D-глюко-4-ен-пиранозилуроновокислой)-6-O- сульфо-D-галактозы, использованный в рассчетах, равен 5,5. В результате определено, что одна единица (U) фермента катализирует выделение в реакции 1 микромоля ненасыщенных дисахаридов за одну минуту в описанных выше условиях проведения реакции.

4) Оптимальная температура реакции и температура устойчивости. Оптимальной температурой реакции является температура 37oC. Фермент демонтирует 90% и более активности при 30 - 37oC (фиг. 4). Фермент устойчив при 2 - 30oC и дезактивируется при 50oC, когда его хранят в трис-HCl буферном растворе (pH 7,0) в течение 1 часа (фиг. 5).

5) Ингибирование. Активность ингибируют ионами цинка (Zn2+), ионами никеля (Ni2+), ионами железа (Fe3+) и ионами меди (Cu2+), как показано в таблице 1.

6) Молекулярный вес. Электрофорез с использованием додецилсульфата натрия - полиакриламидного геля (SDS-PAGE) дает одну полосу. Молекулярный вес составляет около 100000 Да в обоих состояниях, восстановленном и невосстановленном. Молекулярный вес, определенный методом гель-проникающей хроматогарфии (HPLC) составляет 100000 дальтон (см. фиг. 6 условия обсуждаются ниже).

7) Изоэлектрическая точка. Изоэлектрическая точка 8,2 и 8,5 (в Phast System используют p1-калибровочный набор 3-10 в качестве стандарта, Phast Gel IEF pH 3-9; все использованные реагенты и приборы получены в Pharmacia).

8) Аминокислотный анализ. Результаты приведены в таблице 2.

Приведенный анализ проводят, гидролизуя хондроитиназу ABC в 6 М соляной кислоты при пониженном давлении и 110oC в течение 24 часов. В таблице приведены средние величины от трех исследованных образцов. Рассчеты выполнены для общего молекулярного веса 100000. Трипсин и цистеин не определяли.

9) Концевая аминокислота. N-концевым аминокислотным остатком, определенным по методу Edman (Edman degradation analysis, "Biochem. Experiments N1, Protein chemistry II, Determination of primary structure" 132-142, август 28, 1976, опубликовано Tokyo Kagaku Dojin) является аланин. Аминокислотная последовательность Ala-Thr-X-Asp-Pro-Ala-Phe-Asp-Pro-, где X - неопределенное звено.

C-концевой аминокислотной последовательностью, определенной карбоксипептидазным способом ("Biochem. Experiment N1, Protein Chemistry II, Determination of primary structure", 203-211) является -Ser-Leu-Pro.

Таким образом, доказано, что терминальной аминокислотной последовательностью хондроитиназы ABC настоящего изобретения является следующая: Ala-Thr-X-Asp-Pro-Ala-Phe-Asp-Pro-----Ser-Leu-Pro, где X - неопределенное звено.

10) Устойчивость при хранении. Фермент устойчив по крайней мере в течение трех месяцев при комнатной температуре как в растворе фосфатного буфера (pH 6-8), так и в сухом состоянии.

11) Специфическая активность. Содержание белка определяли методом Lowry, используя бычий сывороточный альбумин в качестве стандарта. Специфическая активность составляет по крайней мере 300 ед./мг белка.

12) Другое. Фермент дает один пик как в HPLC, так и в гель-проникающей (GPC) HPLC (катионный обмен). Условия и результаты проведения гель-проникающей хроматографии приведены далее.

Условия. Колонка TKS C3000 SWXL (производство Tosoh Co.). Элюент: 0,1 М раствор фосфатного буфера (pH 7.0), содержащий 0,2 М NaCl. Скорость элюирования: 0,5 мл/минуту. Температура процесса 35oC. Длина волны при детектировании: 280 нм. Заряжаемое количество: 20 л. Вещества-метки молекулярного веса: цитохром C (12,4 кДа), аденилактиназа (32 кДа) енолаза (67 кДа), лактатдегидрогеназа (142 кДа), глутаматдегидрогеназа (290 кДа). Все ферменты произведены Oriental Yeast Manufacturing Co. Ltd.

Результаты. Хондроитиназу ABC настоящего изобретения элюируют одним пиком при времени удерживания 18,43 мин (фиг. 6). Определен молекулярный вес фермента примерно 100000 дальтон на основании сравнения времени удерживания приведенных выше веществ-меток и их молекулярных весов.

Препарат практически не содержит эндотоксина. Содержание ДНК и протеазы ниже пределов обнаружения, в то время как коммерческая хондроитиназа ABC (Sei kagaku Corporation N 10032 по каталогу) содержит ДНК в количестве, превышающем предел обнаружения в 5000 раз, а протеазу в количестве, превышающем предел обнаружения в 200 раз.

Для сравнения хондроитиназы ABC настоящего изобретения и хондроитиназы ABC, свободной от протеазы (Seikagaku Corp. N 100332 по каталогу), которая, как известно, имеет наивысшую чистоту среди известных в настоящее время хондроитиназ, первая из двух имеет молекулярный вес около 100000 Да, определенный двумя методами SDS-PAGE и HPLC (GPC), в то время как вторая имеет молекулярный вес 80000, определенный методом SDS-PAGE, и около 120000-145000 дальтон, определенный методом гель-фильтрации. Это большая разница. К тому же, в то время как первая имеет специфическую активность 300 ед./мг белка или более, вторая имеет специфическую активность около 110 ед./мг белка. В отношении стабильности при хранении первая стабильна при комнатной температуре в течение по крайней мере трех месяцев, а вторая, как заявлено, стабильна в течение по крайней мере трех месяцев при температуре -70oC. Это также существенная разница. Кроме того, первая хондроитиназа ABC дает одну полосу в SDS-PAGE и один пик в HPLC (GPC), ее можно кристаллизовать и определить, таким образом, терминальную аминокислоту и изоэлектрическую точку, в то время как вторая не является ферментом, который можно определить как индивидуальное вещество, и, следовательно, невозможно идентифицировать ее терминальную аминокислоту и измерить изоэлектрическую точку.

Теперь будут описаны композиции и лекарства настоящего изобретения.

Первая иллюстративная композиция и лекарство, включающее хондроинтиназу и сывороточный альбумин или желатин. Такую композицию можно приготовить, получая водный раствор, содержащий добавки, описанные ниже, и имеющий нужный pH; смешивая этот раствор с очищенной хондроитиназой со специфической активностью, например 300 ед./мг или более, получая водный раствор, содержащий 5 ед. /мл или более (предпочтительно 10-1000 ед./мл) очищенной хондроитиназы; обычно фильтруя раствор, стерилизуя и получая жидкую композицию. Затем эту жидкую композицию можно перевести в сухую композицию, предпочтительно лиофилизированную композицию путем сушки при отсутствии нагревания (лиофилизацией или подобным образом). По-другому, жидкую композицию можно заморозить при температуре от -20oC до -80oC.

Основными добавками, смешиваемыми с очищенной хондроитиназой в композициях настоящего изобретения, являются белки, такие как сывороточный альбумин или желатин. Их можно применять вместе.

Для примера приводим сывороточный альбумин млекопитающих, например человека, кошки, лошади, свиньи, овцы, козы и др. Человеческий сывороточный альбумин, применимый для парентерального применения, является предпочтительным, когда композицию используют для инъекций человеку. Например, можно использовать человеческий сывороточный альбумин, полученный из плазмы здоровых людей, в качестве сырого материала, фракционировать его и очистить методом фракционирования с применением этанола (Cohn's ethanol fractionation method). Особенно предпочтительным является сывороточный альбумин, обработанный при нагревании, предпочтительно при 60oC в течение примерно 10 часов, для дезактивации вируса гепатита и подобных. HSA может содержать натрий-N-ацетилтриптофан и/или каприлат натрия, добавленные к нему в качестве стабилизаторов.

В качестве примера желатина можно привести желатин, полученный из таких животных как кошки и свиньи. В частности, используемый здесь желатин получен соответствующей обработкой коллагена, выделенного из кожи, костей и др. частей животных, для придания ему растворимости. Такой желатин включает желатин, обработанный кислотой (А-тип), который обрабатывают минеральными кислотами (pH 1-3, например, соляной кислотой, серной кислотой, сернистой кислотой, фосфорной кислотой и др.) и который имеет изоэлектрическую точку 7,0-9,0; и желатин, обработанный щелочью (B-тип), который обработан щелочами (например, известью и др.) и имеет изоэлектрическую точку 4,5-5,0. Желатин, обработанный кислотой, предпочтительнее для использования в настоящем изобретении. В качестве примеров обработанного кислотой желатина приводим коммерческий продукт Nippi желатин высокого качества (тип A) и подобны