Многошнековые экструдеры-смесители с модульными смесительными элементами
Реферат
Изобретение относится к области многошнековых экструдеров-смесителей с совместно вращающимися взаимосцепленными шнеками, предназначенных для обработки пластмассы. Многошнековый экструдер-смеситель содержит узел корпуса и шнеки. Корпус включает две примыкающие друг к другу и имеющие форму кругового цилиндра секции, каждая из которых имеет внутреннюю стенку. Шнеки расположены внутри секций цилиндра экструдера и выполнены с обеспечением возможности вращения в одном и том же направлении вокруг оси вращения. Каждый шнек включает множество взаимосцепленных транспортирующих шнековых элементов и, по меньшей мере, одну группу взаимосцепленных несимметричных модульных смесительных элементов. Транспортирующие шнековые элементы установлены с обеспечением возможности демонтажа на приводимом во вращение валу и закреплены на нем шпонками. Каждый из модульных смесительных элементов также установлен с возможностью вращения и демонтажа на валу и закреплен на нем шпонками. Каждая группа несимметричных модульных смесительных элементов включает в себя, по меньшей мере, один модульный смесительный элемент, имеющий левую крутку. Указанный смесительный элемент установлен ниже по течению, по меньшей мере, от одного модульного смесительного элемента, имеющего правую крутку. Каждый модульный смесительный элемент имеет множество несимметричных крыльев. Каждое из крыльев имеет переднюю поверхность и заднюю поверхность с кромкой крыла между ними. Передняя поверхность имеет меньший радиус кривизны, чем задняя поверхность. Описан также вариант выполнения несимметричного модульного смесительного элемента. Изобретение позволяет повысить напряжение сдвига в материале и улучшить таким образом диспергирующее смешивание. 3 с. и 18 з.п. ф-лы, 16 ил., 4 табл.
Изобретение относится к области многошнековых экструдеров-смесителей с совместно вращающимися взаимосцепленными шнеками, предназначенных для обработки пластмассы.
В частности, изобретение относится к таким экструдерам, имеющим совместно вращающиеся шнеки, включающие в себя группы модульных смесительных элементов несимметричной геометрии с относительно большими зазорами кромок крыльев, и в которых такие группы несимметричных модульных элементов можно устанавливать в любом подходящем осевом месте вдоль валов их соответствующих шнеков, избегая при этом использования перемешивающих блоков или перемешивающих дисков. Наиболее близким техническим решением в части "многошнековый экструдер-смеситель" по совокупности существенных признаков и достигаемому результату является многошнековый экструдер-смеситель, известный из патента США N 4752135 [B 29 B 7/48, 1988]. Известный многошнековый экструдер-смеситель содержит узел корпуса, включающий две примыкающие друг к другу и имеющие форму кругового цилиндра секции, каждая из которых имеет внутреннюю стенку, и шнеки, расположенные внутри секции цилиндра экструдера и выполненные с обеспечением возможности вращения в одном и том же направлении вокруг оси вращения. При этом каждый шнек включает множество транспортирующих шнековых элементов, установленных с обеспечением возможности демонтажа на приводимом во вращении валу и закрепленных на нем шпонками, и, по меньшей мере, одну группу несимметричных модульных смесительных элементов, каждый из которых установлен с возможностью вращения на валу и закреплен на нем шпонками. Далее транспортирующие шнековые элементы и модульные смесительные элементы взаимосцеплены. В известном двушнековом экструдере с взаимосцепленными совместно вращающимися шнеками обычно используют некоторое количество различных элементов, установленных вдоль соответствующих валов экструдеров в соответствии с последовательностью технологических функций, которые должен выполнять экструдер. Вообще говоря, шнеки в таком экструдере включают в себя некоторое количество транспортирующих (подающих вперед) шнековых элементов, предназначенных для приема пластмассы и добавок и для подачи их в специальную секцию экструдера, предназначенную для преобразования пластмассы в расплав термически гомогенного соединения, включающий добавки. Эта специальная секция экструдера обычно включает в себя некоторое количество смесительных элементов, как правило - в виде блоков или дисков, предназначенных для приложения большого количества энергии на единичный объем в пластмассу с добавками. Энергия вращательного движения, приложенная к смесительным элементам на шнеках экструдера, рассеивается в пластмассу, вызывая нагрев и инициируя перемешивание различных добавок в расплав соединения пластмассы. Наиболее близким техническим решением в части "модульный смесительный элемент" по совокупности существенных признаков и достигаемому результату является модульный смесительный элемент, известный из патента США N 4752135. Известный модульный смесительный элемент установлен с обеспечением возможности демонтажа на приводимый во вращение вал шнека экструдера-смесителя посредством шпоночного закрепления на этом валу и имеет осевое отверстие для размещения в нем вала. При этом осевое отверстие имеет, по меньшей мере, один шпоночный паз. Из вышеприведенного патента известен также другой вариант выполнения модульного смесительного элемента, который установлен с обеспечением возможности демонтажа на приводимый во вращение вал шнека экструдера-смесителя посредством шпоночного закрепления на этом валу и имеет осевое отверстие для размещения в нем вала и ось вращения, концентричную с осевым отверстием. При этом осевое отверстие имеет, по меньшей мере, один шпоночный паз, а несимметричный модульный смесительный элемент установлен на валу шнека экструдера-смесителя, предназначенного для использования двух взаимосцепленных совместно вращающихся шнеков, расположенных в соответствующих секциях цилиндра экструдера в виде двух примыкающих друг к другу и имеющих форму кругового цилиндра секций, каждая из которых имеет внутренний радиус Rв поверхности цилиндра экструдера. В этих смесительных элементах обычно используют специальный профиль поперечного сечения, который предназначен для обеспечения "эффективного соскабливания" (с очень малыми зазорами, такими как миллиметр или менее) между соседними смесительными элементами, и, как правило, также эффективного соскабливания между наружным диаметром смесительного элемента и внутренней стенкой цилиндра экструдера. В результате наличия этой геометрии очень малых зазоров, происходит интенсивное рассеяние энергии в смесительной секции экструдера, вызывающее экстремальный локализованный нагрев. Эта тепловая энергия, если ее не отводить быстро и непрерывно, приводит к перегреву расплава соединения с возможным разрушением пластмассы. Еще одна проблема, связанная со смесительными элементами, вообще говоря, заключается в их способности генерировать локализованные высокие давления, особенно - в непосредственной близости от кромки смесительных элементов. Эти локализованные высокие давления приводят к появлению усилий отклонения валов, которые подталкивают валы шнеков к внутренним поверхностям стенок цилиндра экструдера, ускоряя таким образом износ экструдера. С технологической точки зрения, такие локализованные высокие давления могут сплавлять и агломерировать твердые частицы, разрушенные ранее, противодействуя таким образом получению гомогенного расплава соединения. Кроме того, в таких известных экструдерах в случае диспергирующего или экстенсивного смешивания различные частицы текучей среды подвергаются воздействию очень неравномерных скоростей сдвига при перемешивании. Поэтому нужно повторять воздействие сдвигающего усилия перемешивания много раз, чтобы гарантировать, что все частицы текучей среды подвергались воздействию одинаковых уровней сдвига и/или изменения температуры. В основу изобретения положена задача создать многошнековый экструдер-смеситель, в котором за счет конструктивного выполнения модульных смесительных элементов обеспечивалось бы получение гомогенного расплава соединения при хорошем отводе тепла из смесительной секции экструдера. Поставленная задача решается тем, что в многошнековом экструдере-смесителе, содержащем узел корпуса, включающий две примыкающие друг к другу и имеющие форму кругового цилиндра секции, каждая из которых имеет внутреннюю стенку, и шнеки, расположенные внутри секции цилиндра экструдера и выполненные с обеспечением возможности вращения в одном и том же направлении вокруг оси вращения, причем каждый шнек включает множество взаимосцепленных транспортирующих шнековых элементов, установленных с обеспечением возможности демонтажа на приводимом во вращение валу и закрепленных на нем шпонками, и, по меньшей мере, одну группу взаимосцепленных несимметричных модульных смесительных элементов, каждый из которых установлен с возможностью вращения на валу и закреплен на нем шпонками, согласно изобретению каждая группа несимметричных модульных смесительных элементов включает в себя, по меньшей мере, один модульный смесительный элемент, имеющий левую крутку и установленный ниже по течению, по меньшей мере, от одного модульного смесительного элемента, имеющего правую крутку, при этом каждый модульный смесительный элемент имеет множество несимметричных крыльев. Поставленная задача решается также тем, что несимметричный модульный смесительный элемент, установленный с обеспечением возможности демонтажа на приводимый во вращение вал шнека экструдера-смесителя при шпоночном закреплении на этом валу и имеющий осевое отверстие для размещения в нем вала, при этом осевое отверстие имеет, по меньшей мере, один шпоночный паз, согласно изобретению, имеет множество несимметричных крыльев, при этом каждое из крыльев имеет переднюю поверхность и заднюю поверхность с кромкой крыла, расположенной между передней и задней поверхностями, а передняя поверхность имеет меньший радиус кривизны, чем задняя поверхность. Поставленная задача решается также альтернативным выполнением несимметричного модульного смесительного элемента, установленного с обеспечением возможности демонтажа на приводимый во вращение вал шнека экструдера-смесителя при шпоночном закреплении на этом валу и имеющего осевое отверстие для размещения в нем вала и ось вращения, концентричную с осевым отверстием, при этом осевое отверстие имеет, по меньшей мере, один шпоночный паз, а несимметричный модульный смесительный элемент установлен на валу шнека экструдера-смесителя, предназначенного для использования двух взаимосцепленных совместно вращающихся шнеков, расположенных в соответствующих секциях цилиндра экструдера в виде двух примыкающих друг к другу и имеющих форму кругового цилиндра секций, каждая из которых имеет внутренний радиус Rв поверхности цилиндра экструдера, который, согласно изобретению, имеет множество несимметричных крыльев, расположенных на противоположных сторонах оси вращения, каждое из которых имеет переднюю поверхность и заднюю поверхность с кромкой крыла, расположенной между передней и задней поверхностями, а передняя поверхность крыльев имеет выпуклый участок, примыкающий к кромке крыла и имеющий радиус R1, проходящий от центральной точки передней поверхности, при этом выпуклый участок радиуса R1, проходящий от центральной точки передней поверхности до точки на выпуклом участке передней поверхности, образует угол с первой радиальной линией, проходящей от оси вращения до указанной точки на указанном выпуклом участке передней поверхности, а задняя поверхность крыла сопрягается с кромкой крыла вдоль угла, причем геометрическая прямая линия, проходящая от задней поверхности в углу и являющаяся прямолинейным продолжением задней поверхности в указанном углу до некоторой точки на внутренней поверхности цилиндра экструдера-смесителя образует угол с касательной к внутренней поверхности цилиндра экструдера-смесителя в указанной точке, а угол больше, чем угол . Целесообразно, чтобы каждое крыло имело бы переднюю поверхность и заднюю поверхность с кромками крыла, расположенными между передней и задней поверхностями, при этом передняя поверхность образовывала бы угол клина передней поверхности с поверхностью внутренней стенки цилиндра экструдера, а задняя поверхность образовывала бы угол клина задней поверхности с поверхностью внутренней стенки цилиндра экструдера, причем угол , по меньшей мере, примерно на 5o был бы больше, чем угол , а также чтобы угол клина передней поверхности находился бы в диапазоне от примерно 5o до примерно 25o, а угол клина задней поверхности находился бы в диапазоне от примерно 10o до примерно 50o. Нужно, чтобы кромка крыла имела кромочный зазор от поверхности внутренней стенки цилиндра экструдера, имеющей внутренний радиус Rв цилиндра экструдера, а отношение кромочного зазора к внутреннему радиусу Rв цилиндра экструдера составляло от примерно 2% до примерно 15%, предпочтительно от примерно 3% до примерно 14%, при этом кромка крыла имеет окружную протяженность "e", а коэффициент "a" формы кромочного зазора определяется как отношение окружной протяженности "e" кромки крыла к кромочному зазору , причем коэффициент формы кромочного зазора находится в диапазоне от примерно 1 до примерно 8, предпочтительно от примерно 1,5 до примерно 6. Не менее предпочтительно, чтобы поверхность внутренней стенки цилиндра экструдера являлась концентричной относительно оси вращения, и окружная протяженность "e" кромки крыла являлась концентричной относительно оси вращения, причем кромочный зазор постоянен вдоль окружной протяженности "e". Рекомендуется, чтобы угол клина передней поверхности находился в диапазоне от примерно 12o до примерно 18o, а угол клина задней поверхности находился в диапазоне от примерно 20o до примерно 35o, причем угол , по меньшей мере, примерно на 6o больше, чем угол . Желательно, чтобы поверхность внутренней стенки имела внутренний диаметр D, а множество несимметричных крыльев простирались вдоль оси и имели некоторую угловую крутку относительно оси вращения, причем угловая крутка крыльев имеет входную часть в диапазоне от около 2 до около 8. Нужно, чтобы каждый из несимметричных модульных смесительных элементов имел некоторую осевую длину и осевое отверстие с множеством шпоночных пазов внутри, и крылья на каждом модульном смесительном элементе имели некоторую величину крутки от конца к концу относительно оси вращения, причем эта величина крутки от конца к концу равна частному от деления 180o на количество шпоночных пазов. Предпочтительно, когда на валу установлено с обеспечением возможности демонтажа и закреплено шпонками первое множество транспортирующих шнековых элементов и второе множество транспортирующих шнековых элементов, расположенных ниже по течению от каждой группы несимметричных модульных смесительных элементов, причем расположенные ниже по течению концы винтовых скребков транспортирующего шнекового элемента, смежные с расположенным выше по течению концом имеющего правую крутку модульного смесительного элемента, выровнены в группе с расположенными выше по течению концами крыльев имеющего правую крутку модульного смесительного элемента в указанной группе. Не менее предпочтительно, когда расположенные выше по течению винтовые скребки транспортирующего шнекового элемента, смежные с расположенным ниже по течению концом имеющего левую крутку модульного смесительного элемента, выровнены с расположенными ниже по течению концами крыльев имеющего левую крутку модульного смесительного элемента. Изобретение представлено воплощенным в экструдерах-смесителях, имеющих совместно вращающиеся взаимосцепленные шнеки, включающие в себя модульные смесительные элементы идентичной геометрии, имеющие относительно большие зазоры, и в которых их несимметричная геометрия обеспечивает динамическое клинообразное повышение давления для привода в движение относительно больших окружных потоков пластмассы через большие зазоры сдвига. Таким образом, преимущественно большие окружные потоки пластмассы приводятся в движение повторно путем воздействия динамического клинообразного увеличения давления, чтобы они могли проходить повторно через большие зазоры сдвига. Из-за этих относительно больших зазоров сдвига пластмасса перемешивается при более низких и более одинаковых температурах, чем это обычно происходит при использовании типичных известных перемешивающих элементов. В большинстве пластмасс вязкость уменьшается с повышением температуры. Следовательно, эти более низкие температуры позволяют обрабатывать пластмассу при более высокой вязкости, чем та, которая обычно имеет место в известных экструдерах-смесителях. Благодаря более высоким температурам, напряжения сдвига в материале становятся выше, улучшая таким образом диспергирующее смешивание, несмотря на относительно большие используемые зазоры. В число дополнительных преимуществ иллюстрируемых конкретных вариантов воплощения изобретения входят преимущества, вытекающие из того факта, что путем использования различных групп модульных смесительных элементов и путем установки их в избранные положения вдоль длины шнеков, операторы достигают требуемой гибкости в адаптации экструдеров-смесителей к оптимальным рабочим характеристикам во взаимозависимости со смешиваемыми конкретной пластмассой и конкретными добавками. Модульные смесительные элементы можно компоновать и собирать в различные группы в широком диапазоне осевых положений и конфигураций для повышения технологических характеристик, зональных уровней температуры и амплитуд и осевых мест динамических клинообразных и сдвигающих воздействий в спаренных цилиндрах экструдера и для увязки этих динамических эффектов с требуемыми свойствами смешиваемых пластмасс и добавок. Изобретение и его другие задачи, отличительные признаки, преимущества и особенности станут более понятными из нижеследующего подробного описания, рассматриваемого вместе с прилагаемыми чертежами, которые изображены не в масштабе, а, вместо этого, с акцентом на недвусмысленную иллюстрацию принципов изобретения. Одинаковые цифровые позиции обозначают одинаковые элементы, одинаковые составные части или сходные геометрические формы на всех различных видах. Прилагаемые чертежи, которые введены в описание и являются его неотъемлемой частью, иллюстрируют предпочтительные в настоящее время конкретные варианты воплощения изобретения и, наряду с вышеизложенным общим описанием и нижеследующим подробным описанием предпочтительных конкретных вариантов воплощения, служат для пояснения принципов изобретения. На чертежах: на фиг. 1 приведен схематический продольный вертикальный разрез на виде сбоку многошнекового экструдера-смесителя, имеющего взаимосцепленные совместно вращающиеся спаренные шнеки (из которых на фиг. 1 можно увидеть только один), включающие в себя несимметричные модульные смесительные элементы, имеющие относительно большие зазоры кромок крыльев. На фиг. 1A и 1B приведены увеличенные изображения частей конструкции, показанной на фиг. 1, причем на каждом чертеже изображена соответствующая группа модульных смесительных элементов. На фиг. 2 приведен увеличенный поперечный разрез при взгляде на оставшуюся часть конструкции (вниз по течению), сделанный либо вдоль плоскостей 2-2 на фиг. 1, либо вдоль плоскости 2-2 на фиг. 1A или плоскости 2-2 на фиг. 1B у нижних концов соответствующих модульных смесительных элементов. На фиг. 3 приведен другой увеличенный вид одного из модульных смесительных элементов, показанных на фиг. 2, в целях пояснения предпочтительных несимметричных геометрических взаимосвязей, предусмотренных в этих модульных смесительных элементах. На фиг. 3A приведена верхняя половина конструкции, показанной на фиг. 3 и 3A, в целях пояснения. На фиг. 3B показан другой увеличенный вид верхней половины конструкции, изображенной на фиг. 3 и 3A, в целях пояснения. На фиг. 4A и 4B представлены вертикальные виды с торца и сбоку, соответственно, несимметричного модульного смесительного элемента с двумя простирающимися вдоль оси крыльями, каждое из которых имеет правую (П (RH)) крутку. П-крутка - это прокачивающая вперед крутка, которую можно также назвать круткой, прокачивающей вниз по течению. На фиг. 4A представлен вид с торца смесительного элемента, изображенного на фиг. 4B, при взгляде на мысленно отсекаемую часть конструкции (вверх по течению), как показано стрелками 4A-4A. На фиг. 4B представлен вид сбоку смесительного элемента, изображенного на фиг. 4A, как показано стрелками 4B-4B. На фиг. 5A и 5B представлены вертикальные виды с торца и сбоку, соответственно, еще одного несимметричного модульного смесительного элемента, аналогичного тому, который показан на фиг. 4A и 4B, за исключением того, что два простирающихся вдоль оси крыла имеют каждое левую (Л (LH)) крутку. Л-крутка - это прокачивающая в обратном направлении крутка, которую можно также назвать круткой, прокачивающей вверх по течению. На фиг. 5A представлен вид с торца смесительного элемента, изображенного на фиг. 5B, при взгляде на мысленно отсекаемую часть конструкции (вверх по течению), как показано стрелками 5A-5A. На фиг. 5B представлен вид сбоку смесительного элемента, изображенного на фиг. 5A, как показано стрелками 5B-5B. На фиг. 6A и 6B представлены вертикальные виды с торца и сбоку, соответственно, несимметричного модульного смесительного элемента с П-круткой, аналогичного тому, который показан на фиг. 4A и 4B, за исключением того, что элемент, показанный на фиг. 6 имеет две трети осевой длины элемента, показанного на фиг. 4. На фиг. 6A представлен вид с торца смесительного элемента, изображенного на фиг. 6B, при взгляде на мысленно отсекаемую часть конструкции (вверх по течению), как показано стрелками 6A-6A. На фиг. 6B представлен вид сбоку смесительного элемента, изображенного на фиг. 6A, как показано стрелками 6B-6B. На фиг. 7A и 7B представлены вертикальные виды с торца и сбоку, соответственно, несимметричного модульного смесительного элемента с Л-круткой, аналогичного тому, который показан на фиг. 5A и 5B, за исключением того, что элемент, показанный на фиг. 7, имеет две трети осевой длины элемента, показанного на фиг. 5. На фиг. 7A представлен вид с торца смесительного элемента, изображенного на фиг. 7B при взгляде на мысленно отсекаемую часть конструкции (вверх по течению), как показано стрелками 7A-7A. На фиг. 7B представлен вид сбоку смесительного элемента, изображенного на фиг. 7A, как показано стрелками 7B-7B. На фиг. 8 представлен поперечный разрез профиля несимметричного модульного элемента, сделанный вдоль любой из соответствующих плоскостей 8-8 на фиг. 4B, 5B, 6B или 7B. Этот вид профиля модульного смесительного элемента показан наложенным на идеальный самопротирающийся профиль спаренных шнеков (показан заштрихованным). Этот "идеальный самопротирающийся профиль спаренных шнеков" является максимальной пропорциональной зоной такого профиля, который можно использовать в двушнековом экструдере с совместно вращающимися взаимосцепленными шнеками, в котором шнек непрерывно находится в контакте с совместно с ним вращающимся спаренным шнеком, а также непрерывно находится в контакте с внутренней поверхностью стенки цилиндра корпуса экструдера, имеющей форму кругового цилиндра. Сравнение профилей на фиг. 8 служит для того, чтобы подчеркнуть относительно большие зазоры, обеспечиваемые вокруг этих несимметричных модульных смесительных элементов. Описание предпочтительных конкретных вариантов воплощения На фиг. 1, 2, 3 и 3A изображен многошнековый экструдер 20, имеющий спаренные взаимосцепленные совместно вращающиеся шнеки 21 и 22. Поскольку на фиг. 1 представлен вертикальный разрез на виде сбоку, виден только один из шнеков - 21. Направление по течению через машину 20 показано стрелкой 23. В машине 20 корпус 24 шнеков 21 и 22 содержит множество сегментов цилиндра экструдера, с 26-1 по 26-9 включительно, которые взаимосвязаны с обеспечением возможности демонтажа в ориентированных вдоль оси положениях с помощью подходящих быстроразъединяемых крепежных средств, известных в данной области техники. Первый сегмент 26-1 цилиндра экструдера показан имеющим впускное отверстие 25 для подачи внутрь корпуса подходящих материалов, направление обработки которых показано стрелкой 27. На переднем (расположенном выше по течению) конце корпуса 24, как видно слева на фиг. 1, показан подходящий механизм привода 28 с механическими соединениями, указанными пунктирной линией 29, с соответствующими круглыми валами 30 (фиг. 2) шнеков 21 и 22 для вращения обоих шнеков с одинаковой скоростью в одном и том же направлении. Такой механизм привода 28 и механические соединения 29 с подходящими упорными подшипниками известны в данной области техники. Например, направление вращения шнеков 21 и 22 вокруг своих соответствующих осей 31 и 32 может быть против часовой стрелки, как показано стрелками 34', если смотреть в направлении 23 вниз по течению вдоль осей 31 и 32 шнеков. Заметно, что направление вращения против часовой стрелки, показанное стрелками 34', как видно при взгляде по течению вдоль этих стрелок 31 и 32, совпадает с направлением вращения при вращении по часовой стрелке, показанным стрелками 34, как видно при взгляде вверх по течению вдоль осей этих шнеков. Седьмой сегмент цилиндра экструдера, 26-7, показан имеющим вентиляционное отверстие 36 для высвобождения летучих веществ, показанных стрелкой 37. Девятый сегмент цилиндра экструдера, 26-9, на заднем (расположенном ниже по течению) конце корпуса 24 образует выпускное отверстие 38 корпуса, из которого выходит смешанный экструдат, показанный стрелкой 39. Задний (расположенный ниже по течению) выступающий конец 33 вала 30 шнека 21 виден справа на фиг. 1. Понятно, что в выпускном отверстии 38 обычно установлена подходящая матрица (не показана), и экструдат 39 выходит из экструдера 20 через эту матрицу. Каждый круглый вал 30 шнека включает в себя один или несколько шпоночных пазов 40 (фиг. 2), проходящих в продольном направлении соответствующего вала параллельно соответствующей оси 31 или 32 для сцепления с соответствующими шпоночными пазами 44 в элементах, установленных на валу с целью обеспечения жесткого соединения привода вращения между каждым круглым валом 30 шнека и элементами, установленными на нем с обеспечением возможности демонтажа. В области впускного отверстия 25 (фиг. 1) каждый шнек 21 и 22 включает в себя множество взаимосцепленных совместно вращающихся шнековых элементов 45 и 46, установленных конец к концу на своих соответствующих валах и закрепленных на них шпонками. Отметим, что транспортирующие шнековые элементы 46 длиннее, чем шнековые элементы 45, а винтовые скребки 49 элементов 45 имеют пропорционально более длинную заборную часть, чем винтовые скребки 47 элементов 45, для быстрой транспортировки подаваемых материалов 27 вниз по течению от впускного отверстия 25. Каждый из транспортирующих шнековых элементов 45 и 46 показан имеющим два винтовых скребка 47 и 49, соответственно. Каждый такой скребок простирается вокруг своей соответствующей оси 31 или 32 шнека на один полный виток, т.е. на 360o. Поскольку винтовые скребки 47 на каждом транспортирующем элементе 45 имеют одновитковую конфигурацию, это приводит к получению непрерывных винтовых скребков, простирающихся по всей осевой длине всех смежных собранных транспортирующих элементов 45 и 46, когда эти транспортирующие элементы установлены последовательно на соответствующем валу 30 шнека и закреплены на нем шпонками конец к концу, как показано на фиг. 1. Подаваемые материалы 27 включают в себя подходящую пластмассу и подходящие добавки, подготавливаемые и смешиваемые в экструдере 20. Транспортирующие шнековые элементы 45 и 46 в соответствующих шнеках 21 и 22 подают эти обрабатываемые материалы в первую группу 50-1 модульных смесительных элементов 51 и 52, установленных конец к концу на своих соответствующих валах 30. Такая смесительная группа 50-1, как показано, включает в себя несимметричный модульный смесительный элемент 51 с П-круткой, смежный с несимметричным модульным смесительным элементом 52 с Л-круткой и расположенный непосредственно перед ним (выше по течению). Отметим, как лучше всего видно на фиг. 1A, что два винтовых скребка 47 транспортирующего элемента 45, который расположен непосредственно перед (выше по течению) модульным смесительным элементом 51, выравнены по соответствующим кромкам 60 (фиг. 2, 4A и 4B) крыльев 62 (фиг. 2, 4A и 4B) этого смесительного элемента 51. Таким образом две кромки 60 крыльев смесительного элемента 51 эффективно образуют продолжения вниз по течению двух винтовых скребков 47, но угол наклона винтовой линии и заборная часть кромок 60 крыльев отличаются от угла наклона винтовой линии и заборной части скребков 47. Иными словами, происходит резкое изменение (уменьшение) крутки винтовой линии на стыках, где соответствующие винтовые скребки 47 сопрягаются посредством соответствующих кромок 60 крыльев. Ниже по течению от первой смесительной группы 50-1 на соответствующем шнеке 21 или 22 находится другая смесительная группа 50-2 (фиг. 1B), показанная содержащей множество несимметричных смесительных элементов 53 и 54 (фиг. 6A, 6B и 7A, 7B, соответственно). Между смесительными группами 50-1 и 50-2 расположено множество смежных последовательно собранных транспортирующих шнековых элементов 45, установленных на соответствующем валу 30 и закрепленных на нем шпонками. Показаны четыре элемента 45 плюс короткий шнековый транспортирующий элемент 48, в котором его два винтовых скребка 47 простираются каждый вокруг своей соответствующей оси 31 или 32 на половину полного витка, т.е. на 180o. Отметим, как наиболее ясно видно на фиг. 1, что оба винтовых скребка 47 транспортирующего шнекового элемента 48, расположенные непосредственно после (ниже по течению) модульного смесительного элемента 52, выравнены по кромкам 60 двух крыльев 64 (фиг. 5A и 5B) этого смесительного элемента 52. Таким образом, два винтовых скребка 47 этого расположенного ниже по течению смежного транспортирующего элемента 45 эффективно образуют расположенные ниже по течению продолжения кромок 60 крыльев 64 смесительного элемента 52, но имеется резкое реверсирование крутки винтовой линии на стыке этих соответствующих транспортирующих ниже по течению винтовых скребков 47 и кромок 60 перекачивающих выше по течению крыльев 64. Оба скребка 47 короткого шнекового транспортирующего элемента 48 выравнены по кромкам 60 крыльев 66 (фиг. 2, 6A и 6B) модульного смесительного элемента 53, так что эти кромки крыльев эффективно образуют расположенные ниже по течению продолжения этих винтовых скребков 47, но имеется резкое изменение (уменьшение) крутки винтовой линии на стыках между винтовыми скребками и смежными расположенными ниже по течению кромками 60 крыльев. Между второй смесительной группой 50-2 и выпускным отверстием 38 экструдера находится конечная последовательность шнековых транспортирующих элементов, содержащая расположенные друг за другом: два шнековых элемента 45, два более длинных шнековых элемента 46 со скребками 49, имеющими меньший шаг винтовой линии и более длинную заборную часть около вентиляционного отверстия 36, и еще семь шнековых элементов 45. Эта оконечная последовательность из семи шнековых элементов 45 служит для создания давления с целью продвижения экструдера 39 через матрицу (не показана), расположенную в выпускном отверстии 38. Более длинные шнековые элементы 46 с их более длинной заборной частью обеспечивают увеличенную скорость передачи вниз по течению для предотвращения заполнения цилиндра экструдера вблизи вентиляционного отверстия 36 с целью упрощения высвобождения летучих веществ 37. Отметим, что конец 33 каждого вала включает в себя крепежное средство, например - такое, как стопорная гайка с шайбой, навинченная на конец вала для захвата и удержания цепочки собранных элементов 45, 46, 51, 52, 45, 48, 53, 54, 45, 46 и 45, установленных на своих соответствующих валах 30 и образующих шнеки 21 и 22. В каждом шнеке 21 и 22 два скребка 47 транспортирующего элемента 45, установленные непосредственно после (ниже по течению) модульного смесительного элемента 54 второй смесительной группы 50-2, как более ясно показано на фиг. 1B, выравнены по кромкам 60 крыльев 68. Имеется резкое реверсирование крутки винтовой линии на стыке, где каждый транспортирующий вниз по течению винтовой скребок 47 сопрягается с кромкой каждого перекачивающего вверх по течению крыла модульного смесительного элемента 54. Чтобы описать признаки различных несимметричных модульных смесительных элементов 51, 52, 53 и 54, полезно использовать некоторые определенные термины, поясняемые ниже. В том смысле, каком они употребляются здесь, нижеследующие термины, размеры, коэффициенты и отношения предназначены для отражения следующего. "Горизонтальный", "вертикальный", "верхний", "нижний", "вверх", "вниз", "направленный вверх" и "направленный вниз" - это термины, употребляемые для удобства и ясности при описании составных частей, элементов, деталей или направлений, видимых или показанных со ссылкой на различные изображения чертежей, в предположении, что соответствующие чертежи расположены в их обычной вертикальной ориентации. Следует понять, что эти термины не предназначены для ограничения, поскольку при эксплуатации экструдера 20 составные части, элементы, детали или направления в экструдере могут перемещаться или поворачиваться в различные ориентации или угловые положения из числа тех, которые показаны на чертеже. Термин "материал" предназначен для интерпретации и в смысле единственного, и в смысле множественного числа для удобства и исключения употребления термина "материал (ы)". Термин "пластмасса" предназначен для охвата любой подходящей пластмассы или пластмасс, которые могут включать любые подходящие добавки для смешивания в экструдере-смесителе 20. Термины "шпоночный паз", "шпонка" и "закрепленный шпонкой" предназначены для интерпретации в достаточно широком смысле, со включением других эквивалентных средств, например - таких, как шпоночная канавка, для обеспечения жесткой взаимосвязи привода вращения между приводимым во вращение валом и транспортирующим шнековым элементом или несимметричным модульным смесительным элементом, установленным с обеспечением возможности демонтажа на таком валу и приводимым этим валом во вращение. Перечисленные ниже обозначающие символы имеют соответствующий смысл, указанный после этих символов: "D - внутренний диаметр (БД) стенки цилиндра экструдера, который также может быть назван диаметром отверстия цилиндра экструдера или внутренним диаметром цилиндра экструдера; - кромочный зазор; e - ширина кромки в окружном направлении на фиг. 3, 3A и 3B; Ф - угловая ширина кромки; Ф1 - угловая ширина передней боковой кромки в окружном направлении; Ф2 - угловая ширина задней боковой кромки в окружном направлении; Rв - внутренний радиус цилиндра экструдера; R0 - радиус кромки; X0 - базовая полуширина; R1 - радиус передней поверхности; X1 - координата центральной точки передней поверхности вдоль нормали к крылу; Y1 - координата центральной точки передней поверхности вдоль нормали к базовой линии; - угол клина передней поверхности; R2 - радиус задней п