Способ и устройство для генерации газового импульса высокого давления с использованием топлива и окислителя, которые являются относительно инертными в условиях окружающей среды
Реферат
Изобретение относится к области создания источников газовых импульсов высокого давления, например, для ускорения снарядов. Технический результат - повышение эффективности газовых импульсов. Источник газового импульса высокого давления для ускорения, например, снаряда вдоль ствола пушки включает в себя структуру, содержащую высоковольтный электрод для установления осевых электрических разрядов в соответствующих осевых зазорах (разрядных промежутках) позади выходного отверстия, где размещен снаряд. Плазма втекает под прямыми углами относительно осевых разрядов в массу метательного взрывчатого вещества, которая при этом преобразуется в компонент газового импульса высокого давления. Зазоры устроены так, что при сдвиге снаряда из своего начального положения и при его нахождении в стволе мощность, подведенная к плазме через зазоры, более близкие к выходному отверстию, больше мощности, подведенной к плазме через зазоры, более удаленные от выходного отверстия. Во избежание повреждения пушки зазоры устроены так, что мощность, подводимая к плазме, одинакова во всех разрядах при первоначальном образовании плазмы. Зазоры имеют стенки, которые эродируют различно при приложении разрядов так, что имеется более быстрая эрозия в стенках зазоров, более близких к выходному отверстию, чем в стенках зазоров, более удаленных от выходного отверстия. Масса метательного взрывчатого вещества включает в себя твердое топливо и окислитель, которые не вступают в реакцию при условиях окружающей среды, когда часть топлива упирается в структуру. 2 с. и 25 з.п. ф-лы, 5 ил.
Изобретение имеет главным образом отношение к созданию источников газовых импульсов высокого давления, в особенности подходящих для ускорения снарядов, а более конкретно, имеет отношение к созданию источников газовых импульсов высокого давления, включающих в себя твердое топливо и не газовый окислитель, которые являются относительно инертными в условиях окружающей среды и которые испаряются для создания импульса.
Источники газовых импульсов высокого давления, построенные с использованием электротермической технологии, раскрыты, например, в патентах США 4590842; 4715261; 4974487 и 5012719. В некоторых из этих известных устройств исключено использование энергичных химикатов, которые часто становятся нестабильными и постоянно создают проблемы безопасности. В этих известных источниках газовых импульсов формируется капиллярный разряд в промежутке между двумя раздвинутыми друг от друга электродами, установленными на противоположных концах диэлектрической трубки, преимущественно изготовленной из полиэтилена. При создании между электродами напряжения разряда в промежутке (зазор) образуется высокотемпературная плазма высокого давления, которая вызывает удаление материала с диэлектрической стенки. Имеющая высокое давление, высокотемпературная газовая плазма течет вдоль области разряда в продольном направлении и выходит через отверстие, выполненное в электроде на одном из концов разрядного промежутка. Газ, вытекающий продольно из промежутка через отверстие, создает газовую струю с высоким давлением и высокой скоростью, которая может ускорять снаряд до высокой скорости. В патенте США 4974487 плазма, имеющая высокое давление и высокую температуру, взаимодействует с массой метательного взрывчатого вещества для образования высокотемпературного метательного взрывчатого вещества. В патенте США 5012719 образуется водород при взаимодействии плазмы, протекающей через отверстие, с гидридом металла и с некоторыми другими материалами, при этом получают водород с высоким давлением. Плазма охлаждается при взаимодействии с охладителем, например, водой, в ходе экзотермической химической реакции. В патенте США 4974487 давление, воздействующее на тыльную сторону снаряда, поддерживается главным образом постоянным в ходе ускорения снаряда в стволе, несмотря на то, что объем полости ствола между выходным отверстием источника высокого давления и снарядом возрастает. Такой результат достигнут за счет увеличения электрической мощности, подводимой к капиллярному разряду, главным образом линейно в функции времени. Наиболее близкими к заявленному способу и устройству являются известные способ и устройство для генерации газового импульса высокого давления по патенту США 5072647. В этом патенте раскрыто наличие разрядного элемента, а также принудительное испарение вещества. Согласно патенту плазменный разряд высокого давления создается в промежутке между двумя раздвинутыми друг от друга электродами. Давление плазмы в разряде достаточно для ускорения снаряда в стволе пушки (пусковой установки). Плазма образована в конструкции со стенками, между которыми заключен разряд, которые имеют отверстия, через которые происходит истечение плазмы в поперечном направлении относительно разряда. Камера, окружающая стенку, содержит пульпу воды с частицами металла, что позволяет получить водород высокого давления, который вытекает в продольном направлении относительно разряда и воздействует на тыльную часть снаряда. Для поддержания давления газообразного водорода, воздействующего на снаряд, на относительно постоянном уровне в ходе ускорения снаряда в стволе, производят увеличение электрической мощности, подводимой к капиллярному разряду, главным образом линейно в функции времени. Некоторые концепции, использованные в патенте США 5072647, заложены в находящейся на рассмотрении заявке на патент США 08/238433, поданной 5 мая 1994 г. В этой заявке раскрыта конструкция, в которой сформированы по меньшей мере несколько электрических разрядов через осевые зазоры (промежутки), расположенные позади выходного отверстия источника газового импульса высокого давления, причем эта конструкция в особенности подходит для ускорения снаряда. Разряды принуждают вытекать плазму с компонентами, направленными под прямыми углами относительно осевых разрядов. Обычная масса метательного взрывчатого вещества, например, черного пороха, или масса, создающая водород, как это раскрыто в патенте США 5,072,647, могут быть использованы для создания потока плазмы в результате процесса разряда. При воздействии плазмы, полученной при разряде, на массу метательного взрывчатого вещества, создается газовый импульс высокого давления. Специалистам, работающим в данной области, понятно, что желательно, чтобы плазма, ускоряющая снаряд, создавала максимальное давление возможно ближе к его основанию, то есть в тыльной части снаряда. Поэтому, после первоначального ускорения снаряда, желательно, чтобы мощность вблизи от снаряда, на фронте источника плазмы, была больше, чем мощность в задней части источника плазмы. Однако при создании плазмы с таким распределением мощности или энергии, имеется тенденция к образованию волн давления в источнике плазмы. Такие волны давления в электрическом источнике плазмы с высокой энергией (до нескольких миллионов джоулей) могут быть разрушительными для пусковой установки снаряда, на которой установлен такой источник высокого давления. Поэтому желательно иметь в источнике плазмы высокого давления по меньшей мере несколько осевых электрических разрядов для первоначального создания плазмы, имеющей ориентировочно одну и ту же мощность для всех зазоров (разрядных промежутков). После того, как снаряд сместился из своего исходного положения, становится желательным осуществление подвода мощности к плазме таким образом, чтобы в том месте, которое находится возможно ближе к снаряду, эта мощность была больше, чем мощность для плазмы на большем удалении от снаряда. Проблема с указанными выше типами устройств состоит в том, что плазма имеет тенденцию к протеканию через ограничивающую ее конструкцию к электроду, необходимому для установления осевых электрических разрядов; при этом электрод должен находиться под высоким потенциалом относительно близких к нему металлических частей. Если плазма имеет высокую температуру в момент падения на электрод, то на электрод попадает множество носителей заряда, что приводит к понижению электрического сопротивления между электродом и металлическими частями. При этом возникает параллельный контур протекания тока, в который отбирается ток от желательных разрядов. При этом исходные электрические разряды в результате имеют тенденцию к затуханию. Для преодоления этой проблемы в известных ранее устройствах существовала общая практика проектирования конструкций, в которых электроды установлены на большем расстоянии от разрядной структуры. При таком построении устройства происходит значительное рассеивание температуры плазмы, что снижает число носителей зарядов плазмы, падающих на электрод. Однако такая удлиненная конструкция не является оптимальной для гильз (патронов) снарядов, предназначенных для использования в установках военного назначения. Многие из указанных проблем были рассмотрены и разрешены в находящейся на одновременном рассмотрении, переуступаемой обычным образом, заявке Гольдштейна и др. (Lowe, Price, LeBlanc & Becker, реестр 277-042), озаглавленной "Гибридная электротермическая пушка с мягким материалом для запрета нежелательного потока плазмы и с зазорами для установления поперечного разряда плазмы", заявленной 26 октября 1994 г. В этой заявке раскрыт источник газовых импульсов высокого давления, в особенности приспособленный для ускорения снаряда вдоль ствола пушки. Этот источник включает в себя структуру, предназначенную для установления по меньшей мере нескольких осевых электрических разрядов в соответствующих осевых зазорах позади выходного отверстия; снаряд первоначально установлен непосредственно перед лицевой стороной выходного отверстия. При возникновении разрядов происходит образование потока плазмы с компонентами, идущими под прямыми углами относительно осевых разрядов в течение значительного промежутка времени, когда образуется импульс и пока снаряд проходит по стволу. Масса метательного взрывчатого вещества под воздействие возникающего от разрядов потока плазмы преобразуется плазмой в компоненту высокого давления газового импульса. Осевые зазоры (разрядные промежутки) устроены таким образом, чтобы после первоначального формирования импульса и его получения, то есть после того, как снаряд сдвигается от своего исходного положения, но все еще находится в стволе, мощность, которая прикладывается к плазме через зазоры, расположенные ближе к выходному отверстию, была больше прикладываемой к плазме мощности через зазоры, расположенные дальше от выходного отверстия. В результате к тыльной части (основанию) снаряда прикладывается большая мощность и давление, что приводит к более эффективному ускорению снаряда и к его более высокой скорости. Чтобы избежать повреждения или разрушения конструкции для создания газового импульса высокого давления, например, пушки со стволом, осевые зазоры устроены таким образом, что при первоначальном создании плазмы и возникновении импульса, мощность, прикладываемая к плазме, главным образом одинакова для всех электрических разрядов. Преимущественно, зазоры имеют стенки, которые эродируют (разъедаются) различным образом при воздействии разрядов таким образом, что во время приложения мощности к зазорам стенки зазоров, более близкие к выходному отверстию и снаряду, эродируют быстрее, чем стенки зазоров, более удаленные от выходного отверстия и снаряда. Первоначально развивающаяся во всех зазорах мощность является ориентировочно одинаковой. После однократного использования разрядной конструкции она выбрасывается, как это и происходит обычно для ускоряющих частей снарядных гильз. В соответствии с одним из вариантов осуществления настоящего изобретения стенки зазоров, более близкие к снаряду, имеют более малые радиусы, чем стенки зазоров, более удаленные от снаряда, для того, чтобы создавать большую эрозию в стенках зазоров, более близких к снаряду, чем в стенках зазоров, более удаленных от снаряда. Аналогичный результат достигается установкой стенок зазоров, более близких к снаряду, ближе друг к другу, чем стенок зазоров, более удаленных от снаряда. Большая (более высокая степень) однородность начального приложения мощности к зазорам обеспечена комбинацией двух указанных выше факторов, то есть применением стенок зазоров, более близких к снаряду, с меньшим радиусом, чем у стенок зазоров, более удаленных от снаряда, и установкой стенок зазоров, более близких к снаряду, ближе друг к другу, чем стенок зазоров, более удаленных от снаряда. Длина зазора и радиус стенки должны изменяться постепенно от одного зазора к другому, чтобы половины зазоров, ближние к выходному отверстию, могли иметь одинаковую первую конфигурацию, в то время как зазоры, удаленные от выходного отверстия, могли иметь одинаковую вторую конфигурацию, которая отлична от первой конфигурации. Использование зазоров с различной геометрией исходит из предположения, что в ходе разряда все длины зазоров увеличиваются. Увеличение длины более малых зазоров превышает увеличение длины больших зазоров. В результате образуется сдвиг мощности плазмы в направлении к фронту источника плазмы, где расположены меньшие зазоры. Аналогичным образом, по мере возрастания радиальных радиусов стенок зазора сопротивление плазмы в этом зазоре уменьшается, что приводит к меньшему рассеиванию мощности в таком зазоре при равной длине зазоров. Уменьшение рассеивания мощности в зазорах с более толстыми стенками приводит к меньшей эрозии с этих стенок, причем наблюдается меньшая эрозия толстых стенок, более удаленных от снаряда, по сравнению с более тонкими стенками, более близкими к снаряду. Преимущественно, каждая стенка является частью элемента, имеющего внешнюю периферию позади (по ту сторону) стенки. Внешняя периферия образована не электропроводным материалом, который эродирует под воздействием плазмы с меньшей скоростью, чем материал стенки. В результате внешняя периферия сохраняет свою геометрию во время разряда, так что плазма, падающая на ее внешнюю поверхность, не изменяет разрядную структуру. Это позволяет обеспечить предсказуемые характеристики истечения плазмы из разрядной структуры в метательное взрывчатое вещество. Источник электрической мощности, подключенный к структуре, обеспечивает сохранение практически постоянного давления, приложенного к снаряду, когда снаряд ускоряется в стволе, несмотря на то, что объем ствола между выходным отверстием источника высокого давления и основанием снаряда увеличивается. Для достижения этой цели источник мощности (силовой источник) первоначально создает электрический импульс высокой мощности для первоначального приложения плазмы высокого давления от многих разрядов к снаряду. Затем, после сдвига снаряда от его исходного положения, к зазорам прикладывается меньшая электрическая мощность. В этот момент времени запасенная потенциальная энергия массы метательного взрывчатого вещества преобразуется в давление, которое прикладывается к снаряду посредством ствола. Затем приложенная к зазорам электрическая мощность возрастает для увеличения давления плазмы, при этом давление, полученное от преобразованной массы метательного взрывчатого вещества, соответствующее полному давлению, приложенному к снаряду, остается ориентировочно постоянным, начиная от момента времени, который слегка сдвинут от момента первоначальной генерации разряда, до конца разряда, что обычно составляет около 1.000 микросекунд после возникновения первоначального разряда. В этой известной конструкции масса метательного взрывчатого вещества именуется черным порохом. Однако преимущества безопасности более ранних электротермических устройств не включены в конструкцию этой находящейся на одновременном рассмотрении заявки. Кроме того, использование черного пороха в соответствии с этим известным решением, является не очень эффективным, так как фракция черного пороха сгорает слишком поздно для того, чтобы создать давление в основании снаряда. Кроме того, электрическая энергия может быть подана в импульс слишком поздно, в течение последней части импульса давления, когда давление постепенно снижается до нуля. В связи с изложенным, основной задачей настоящего изобретения является создание нового и усовершенствованного устройства и способа для выработки газового импульса высокого давления, в особенности подходящего для создания перемещения снаряда в стволе пушки. Другой задачей настоящего изобретения является создание новой и усовершенствованной снарядной гильзы и электротермической структуры для перемещения снаряда с высокой скоростью в стволе пушки. Еще одной задачей настоящего изобретения является создание нового и усовершенствованного способа выработки газового импульса высокого давления из массы не газообразного материала, который является относительно инертным и, следовательно, безопасным при условиях окружающей среды, и который испаряется и вступает в химическую реакцию таким образом, что относительно большой процент потенциальной энергии при этом преобразуется в кинетическую энергию. Дополнительной задачей настоящего изобретения является создание нового и усовершенствованного электротермического устройства, которое включает в себя по меньшей мере несколько размещенных по оси зазоров для образования плазмы, которая истекает радиально по отношению к структуре, содержащей осевые зазоры, причем в устройстве использована масса метательного взрывчатого вещества, которое является относительно инертным при условиях окружающей среды, и большой процент которого преобразуется в кинетическую энергию. Дальнейшей задачей настоящего изобретения является создание новой и усовершенствованной гильзы (патрона), которая включает в себя снаряд, связанный со структурой для выработки по меньшей мере нескольких смещенных по оси плазменных струй, которые втекают в метательное взрывчатое вещество, масса которого радиально смещена относительно структуры и является относительно инертной при условиях окружающей среды, однако имеет относительно большой процент потенциальной энергии, который преобразуется в кинетическую энергию. В соответствии с первым аспектом в настоящем изобретении предлагается устройство для ускорения снаряда вдоль ствола пушки, имеющего продольную ось, включающее в себя структуру по меньшей мере с несколькими осевыми зазорами для установления по меньшей мере нескольких электрических разрядов позади снаряда. Разряды принуждают вытекать плазму с компонентами, направленными под прямыми углами относительно осевых разрядов, в течение существенного времени, когда снаряд перемещается в стволе. Масса метательного взрывчатого вещества под воздействием возникающего от разрядов потока плазмы преобразуется в газ высокого давления для ускорения снаряда в стволе в ответ на образование плазмы, возникающей от попадания разрядов на массу метательного взрывчатого вещества. Масса метательного взрывчатого вещества включает в себя твердое топливо и окислитель, которые не вступают в реакцию при условиях окружающей среды, когда часть топлива упирается в структуру. Топливо и окислитель испаряются и их температура поднимается за счет плазмы до температуры, достаточно высокой для развития экзотермической химической реакции, в результате протекания которой создается газовый импульс высокого давления, который прикладывается к снаряду. Осевые зазоры (разрядные промежутки) устроены таким образом, чтобы мощность, которая прикладывается к плазме через зазоры, расположенные ближе к снаряду, создавала первоначальное испарение топлива в самой ближней к снаряду области ранее испарения топлива в самой удаленной от снаряда области, с последовательным испарением более удаленного от снаряда топлива. Это устройство преимущественно содержит патрон, включающий в себя снаряд. Преимущественно, зазоры (разрядные промежутки) устроены таким образом, что большая мощность приложена к зазорам, расположенным ближе к снаряду, чем к зазорам, более удаленным от снаряда. Кроме того, масса топлива представляет собой твердое вещество, ограниченное областью, расположенной в непосредственной близости от разрядов, а окислитель расположен во второй области, радиально позади той области, где расположено топливо. Окислитель может представлять собой жидкость, имеющуюся в первой и второй областях, или твердое тело, имеющееся во второй области. Преимущественно, топливо представляет собой порошок, расположенный в сетке с размерами ячеек меньше размера зерна порошка. Расположенная в области непосредственной близости масса топлива имеет уменьшающееся поперечное сечение вдоль структуры в направлении увеличения расстояния от снаряда. В соответствии с предпочтительным вариантом осуществления настоящего изобретения зазоры имеют стенки, которые эродируют различно при приложении разрядов, причем более быстрая эрозия наблюдается в стенках зазоров, более близких к снаряду, чем в стенках зазоров, более удаленных от снаряда. Стенки установлены на кольцах, соосных с осью структуры, причем диаметры колец, расположенных ближе к снаряду, меньше диаметров колец, более удаленных от него. Сетка имеет постоянный цилиндрический диаметр, соосный с кольцами. При таком построении создается эффект сопла для транспортирования топлива и окислителя к выходному отверстию для приложения газового импульса высокого давления к снаряду. В соответствии с предпочтительным вариантом осуществления настоящего изобретения стенки зазоров содержат твердый материал, например углерод, который испаряется в результате разряда и вступает в экзотермическую химическую реакцию с окислителем для образования части газового импульса высокого давления, который прикладывается к снаряду. В соответствии с другим аспектом в настоящем изобретении предлагается устройство для создания газового импульса высокого давления вдоль продольной оси к выходному отверстию. Это устройство включает в себя структуру по меньшей мере с несколькими осевыми зазорами для создания по меньшей мере нескольких осевых электрических разрядов позади выходного отверстия. Разряды принуждают вытекать плазму с компонентами, направленными под прямыми углами относительно осевых разрядов. Масса метательного взрывчатого вещества под воздействием возникающего от разрядов потока плазмы преобразуется потоком плазмы в газовый импульс высокого давления. Зазоры имеют стенки, которые эродируют различно при приложении разрядов, и имеют более быструю эрозию в стенках зазоров, более близких к выходному отверстию, чем в стенках зазоров, более удаленных от выходного отверстия. Масса метательного взрывчатого вещества включает в себя твердое топливо и окислитель, которые не вступают в реакцию при условиях окружающей среды, когда часть топлива упирается в структуру. Топливо и окислитель испаряются и их температура поднимается за счет плазмы до температуры, достаточно высокой для развития экзотермической химической реакции, в результате протекания которой создается газовый импульс высокого давления, который прикладывается к выходному отверстию. Указанное устройство преимущественно используется для ускорения снарядов, в особенности снарядов, содержащих патроны (гильзы), которые включают в себя снаряд. В соответствии с дальнейшим аспектом осуществления настоящего изобретения в нем предлагается способ создания газового импульса высокого давления, направленного к выходному отверстию, за счет химической реакции твердого топлива с не газообразным окислителем, путем инициализации испарения топлива в непосредственной близости от выходного отверстия, с последующим постепенным испарением топлива на большем расстоянии от выходного отверстия и с испарением окислителя. В ходе реакции окислитель и топливо находятся одновременно в парообразном состоянии. Реакция протекает таким образом, что первоначально к выходному отверстию прикладываются газовые реагенты высокого давления, наиболее близкие к выходному отверстию, и окислитель. С течением времени к выходному отверстию прикладываются газовые реагенты высокого давления, более удаленные от выходного отверстия, и окислитель. Топливо и окислитель не вступают в химическую реакцию при условиях окружающей среды. Преимущественно, топливо испаряется приложением возникающей под действием электрических разрядов плазмы к топливу. Электрические разряды имеют большую мощность в плазме ближе к выходному отверстию, чем в плазме на удалении от выходного отверстия. Преимущественно, топливо выбирают из группы, которая включает в себя главным образом полиэтилен, углерод, нитрат триэтаноламмония (TEAN), бутират ацетат целлюлозы (CAB) и гидрозин боран, а окислитель выбирают из группы, которая включает в себя главным образом твердый нитрат аммония (HA), KClO4, NaClO4, водный раствор HA, жидкий гидроксил нитрата аммония (ГНА) а также раствор, содержащий H2O2. В соответствии с предпочтительным вариантом осуществления настоящего изобретения топливо и окислитель соответственно включают в себя полиэтилен и нитрат аммония, которые испаряются и вступают в химическую реакцию для создания газового импульса высокого давления в соответствии с реакцией CH2 + 3NH4NO3 ---> CO2 + 7H2O + 3N2 + тепло. (1) Альтернативно или дополнительно, топливо преимущественно включают в себя углерод, который испаряется и вступают в химическую реакцию с нитратом аммония в соответствии с реакцией C + 2NH4NO3 ---> CO2 + 2N2 + 4Н2O + тепло (2) Указанные ранее и другие характеристики и преимущества изобретения будут более ясны из последующего детального описания конкретного примера его выполнения, приведенного со ссылкой на сопроводительные чертежи. На фиг. 1 показан вид сбоку в сечении патрона (гильзы, снаряженного снаряда) в соответствии с настоящим изобретением, которым заряжают ствол пушки. На фиг. 2 показан вид сбоку в сечении преимущественного варианта патрона, показанного на фиг. 1. На фиг. 3 детально изображен участок патрона, показанного на фиг. 2. На фиг. 4 приведена блок-схема источника питания для управления патроном фиг. 1-3. На фиг. 5а и 5в показаны кривые электрической мощности и давления источника фиг. 4, которые прикладываются к структуре фиг. 1 и 2. Обратимся теперь к рассмотрению фиг. 1, на которой показан патрон 10 с круговым поперечным сечением, коаксиальный с осью 42, который введен в казенную часть 12 пушки 14, содержащей металлический ствол 16 с цилиндрическим отверстием 18. После установки патрона высоковольтный электрод 20 патрона через контакты переключателя 22 подключают к высоковольтным клеммам 24 источника питания 26 постоянного тока, который имеет заземленную клемму 28, подключенную к внешней металлической стенке, образующей ствол 16. Обычно силовой источник 26 создает достаточную энергию для ускорения снаряда 30 патрона 10 в отверстии 18 и по его длине. Силовой источник 26 создает условия для выработки в патроне 10 импульса плазмы высокого давления, который взаимодействует с массой метательного взрывчатого вещества 31, которое включает в себя массу топлива 34 и массу окислителя 35. Масса метательного взрывчатого вещества 31 выделяет химическую энергию, которая создает импульс давления, который в сочетании с давлением плазмы приводит в движение снаряд 30. Типичные уровни энергии силового источника 26 имеют порядок 0,4- 1,6 МДж для орудия калибра 30 мм, с пиковым напряжением в диапазоне 4 - 20 кВ, с выдаваемой мощностью около ~ 1 ГВт. Патрон 10 кроме снаряда 30 включает в себя разрядную структуру 32, имеющую круговое поперечное сечение и коаксиальную с осью 42, предназначенную для генерации плазмы высокого давления и высокой энергии при замыкании переключателя 22. Разрядная структура 32 окружена твердой, преимущественно порошкообразной массой топлива 34. Масса топлива 34 является достаточно инертной при условиях окружающей среды, то есть при атмосферном давлении и при температуре от -40 до 50oC, и ограничена не металлической сеткой 33 в непосредственной близости от структуры 32, за исключением крайнего кончика структуры. Предпочтительным материалом в качестве топлива 34 является полиэтилен, хотя могут быть использованы и другие материалы, например, углерод, TEAN, CAB и гидрозин боран. Сетка 33 содержит электрически изолированные ячейки, размер которых мельче размера порошка, образующего массу топлива 34. Сетка 33 имеет цилиндрическую боковую стенку 37, коаксиальную оси 42 и окружающую разрядную структуру 32. Основание сетки 33 прикреплено к электрически изолированному блоку 106. На переднем конце разрядной структуры 32 имеется электрически изолированная шайба 80, с которой совмещена и в которую упирается плоская концевая шайба 39 сетки 33. Сетка 33 испаряется в поздней стадии электрического импульса за счет высокой температуры, создаваемой плазмой, возникающей в структуре 32. Твердотельная или жидкая масса окислителя 35, который является безопасным в обращении (при нормальном обращении военного персонала) и не реагирует с топливом 34 при условиях окружающей среды, контактирует с топливом внутри сетки 33, окружает сетку и обычно заполняет объем внутри электрически изолированного патрона и корпуса 36, в направлении вперед от электрически изолированного блока 106. Альтернативно, вся масса твердого окислителя 35 может находиться вне сетки 33, причем такая конфигурация в некоторой степени безопаснее, чем в случае нахождения в контакте масс топлива и окислителя. Типичными материалами для массы твердого окислителя 35 являются твердый нитрат аммония (далее именуемый НА), KClO4, твердый NaClO4, водный раствор HA, жидкий гидроксил нитрата аммония (ГНА) и H2O2 в растворе с водой; обычно этот последний раствор содержит около 65% по весу H2O2. Масса топлива 34 преобразуется в газ высокого давления с относительно низкой температурой, а окислитель испаряется и разлагается на образующие молекулы за счет воздействия плазмы, выделяемой в структуре 32. Разложившийся окислитель и топливо вступают в химическую реакцию с созданием энергетического газа с низким атомным весом, который используется для придания ускорения снаряду 30. В соответствии с предпочтительным вариантом осуществления настоящего изобретения, когда топливом является CH2, а окислителем NH4NO3, химическая реакция соответствует уравнению CH2 + 3NH4NO3 ---> CO2 + 7H2O + 3N2 + 5,2 кДж/г реагента, (3) Можно показать, что в гильзе калибра 120 мм, в которой НА уплотнен до 1,55 г/см2, а CH2 имеет плотность около 1 г/см2, содержится 8,7 л HA и 0,8 л CH2 с общим весом 14,3 кг и с химической потенциальной энергией 74 МДж, которая может быть преобразована ориентировочно в 17 МДж кинетической энергии при приложении устройством 26 к структуре 32 от 0,6 до 1,6 МДж электрической энергии. По той причине, что масса топлива 34 и масса окислителя 35 являются чрезвычайно стабильными и не могут вступать в химическую реакцию до тех пор, пока к разрядной структуре 32 не приложена достаточная электрическая энергия, гильза (патрон) 10 может быть изготовлена без особых предосторожностей, которые не требуются также при ее техническом обслуживании. Обычно для превращения массы топлива 34 в пар требуется 1-2 кДж электрической энергии на 1 кг массы топлива. По той причине, что масса окислителя 35 свободно распадается раньше в течении импульса, приложенного к разрядной структуре 32, отсутствует риск развития чрезмерно высокого и, возможно, разрушительного давления в стволе 16. Структура 30 устроена таким образом, что топливо в переднем конце патрона 10, то есть вблизи от основания снаряда 30, испаряется раньше топлива посредине и в задних участках патрона. Поэтому топливо содействует образованию высокого давления, прикладываемого к снаряду 30, в течение всего времени ускорения снаряда в стволе 16. Импульс мощности, приложенный источником 26 к структуре 32, и физическая конфигурация разрядной структуры таковы, что топливо надлежащим образом преобразуется в газ и соответствующим образом регулируется. Для обеспечения управляемого испарения массы топлива 34 важно, что она ограничена экраном 33 в непосредственной близости к структуре 32. Из соображений безопасности в качестве топлива и окислителя выбраны соответственно полиэтилен и нитрат аммония. Кроме того, при испарении они создают больше энергии, чем черный порох или аналогичные известные ранее взрывчатые вещества. Продукты реакции полиэтилена и нитрата аммония имеют большую плотность, чем черный порох или аналогичные известные ранее взрывчатые вещества, так что эти продукты реакции могут быть приложены при заданном давлении (которое должен выдерживать ствол) к снаряду в течение более длительного периода времени для патронов с таким же объемом. Полиэтилен и нитрат аммония в значительной степени снижают температуру плазмы, так что ствол 16 плазмой не повреждается. В результате выработки плазмы высокого давления в структуре 32, первоначально преобразованной массами 34 и 35 в газ высокого давления, снаряд 30, который первоначально был зафиксирован на хрупкой торцевой стороне 104 корпуса патрона 36, с ускорением вылетает из структуры 32. Когда торцевая сторона 104 разрывается за счет давления от плазмы, то образуется выходное отверстие для газового импульса высокого давления, вырабатываемого химическим и электрическим источниками. В результате этого снаряд 30 приводится в движение по оси отверстия 18 ствола 16. Как показано на фиг. 2, патрон 10 содержит выступающий в осевом направлении металлический стержень 40, который коаксиален с продольной осью 42 отверстия ствола 18. Один из концов металлического стержня 40 выступает в заднем направлении за металлическую тыльную стенку 100 корпуса патрона 36 и имеет резьбу 44, на которую навинчен цилиндрический металлический электрод 20, который предназначен для избирательного приложения высокого напряжения от выводов 24 источника 26 высокого напряжения. Металлический стержень 40 вставлен в электроизоляционную трубку 46 практически по всей его длине, от электрода 20 до конца металлического стержня, ближайшего к снаряду 30. По внешнему диаметру стержень 40 надлежащим образом соединен, например, приклеен, к внутренней поверхности трубки 46. Структура для выработки по меньшей мере нескольких, например, 13 осевых разрядов в направлении оси 42 включает в себя распределенные по оси кольца 50.1 - 50.12 и металлическую втулку 52, которые коаксиальны, расположены по окружности и соединены с изоляционной трубкой 46. (В том случае, когда кольца 50.1 - 50.12 упоминаются в общем виде, то они могут именоваться как кольца 50 или каждое из колец 50). Как это подробно показано на фиг. 3, каждое из колец 50 содержит металлическую, а преимущественно изготовленную из углерода, внутреннюю часть 54, имеющую внешнюю кольцевую (в поперечном сечении) стенку, соединенную с внутренней цилиндрической стенкой электрически изолированного кольцевого внешнего участка 56. Металлическая часть 54 каждого из колец 50 имеет идущую в радиальном направлении стенку 58, которая совмещена с соответствующей идущей в радиальном направлении стенкой 60 кольцевого участка 56. Кольцевой участок 56 изготовлен из такого материала (например, из каптона или лексана), который эродирует со значительно меньшей скоростью, чем металлическая стенка 58, при приложении электрического разряда, который устанавливается в зазоре (промежутке) 62 между смежными, обращенными друг к другу металлическими стенками 58 смежных колец 50. Для уменьшения первоначального потребления энергии от источника высокого напряжения 26 применена расплавляемая металлическая проволока 64 (фиг. 3), которая проходит между обращенными друг к другу стенками металлических частей 54 смежных колец 50 и соединяет их. Проволока 64 обрывается при первоначальном подводе мощности от источника 26 к электроду 20 при замыкании переключателя 22. Каждое из колец 50 содержит паз 66, направленный по оси вдоль его внутренней, идущей по окружности, стенки. Каждый из пазов 66 идет от участка стенки 58 к осевому центру каждого из колец 50 на расстояние, которое