Фторированные углеводороды, способы их получения, смазка для холодильных машин и смазка для магнитной регистрирующей среды

Реферат

 

Описываются новые фторированные углеводороды, содержащие в молекуле, по крайней мере, один атом кислорода формулы I, где каждый из R1, R2 и R3 представляет собой частично или полностью фторированную линейную или разветвленную алкильную группу, содержащую от 1 до 30 атомов углерода, R4 представляет собой линейную или разветвленную алкильную группу, содержащую от 1 до 30 атомов углерода или простую полиэфирную группу, содержащую от 2 до 100 атомов углерода. Описываются способы их получения, смазка для холодильных машин и смазка для магнитной регистрирующей среды на их основе. Технический результат - создание новых фторированных углеводородов, обладающих высокой совместимостью с водородсодержащими галогенированными углеводородами и хорошей стойкостью, которые растворяются в обычных органических растворителях и могут быть применимы в качестве смазок и масла для холодильных машин. 12 с. и 5 з.п. ф-лы, 4 табл.

Описание Настоящее изобретение относится к новым соединениям, которые обычно используются в качестве смазок, и к способу получения таких соединений, в частности к фторированным углеводородам, содержащим в своих молекулах атомы кислорода или атомы серы и применяемым в качестве масел для холодильных машин или в качестве смазок для магнитных регистрирующих сред.

Изобретение также касается применения упомянутых фторированных углеводородов, в особенности в качестве масел для холодильных машин и смазок для магнитных регистрирующих сред.

Термин "холодильные машины", который здесь употребляется, включает тепловые насосы.

Масла для холодильных машин Известными прежде в качестве масел для холодильных машин являются минеральные масла, такие как парафиновые масла, нафтеновые масла и т.п., и синтетические масла, такие как алкилбензольные масла, сложноэфирные масла и т.п. Такие масла применяются главным образом в холодильных машинах, в которых в качестве хладагента используют трихлорфторметан (R-11), дихлордифторметан (R-12) или подобные соединения. Однако в последнее время высказано предположение, что хлорсодержащие, полностью галогенированные углеводороды, такие как R-11 или R-12, выброшенные в атмосферу, будут истощать озоновый слой стратосферы, что оказывает очень вредное влияние на экосистему земли, в том числе на людей. Поэтому международное соглашение предусматривает ограничение потребления и производства определенных хладагентов, таких как R-11 и R-12.

В качестве хладагентов, заменяющих R-11 или R-12, предложено использовать CH2FCF3 (R-134a) или подобные водородсодержащие фторированные углеводороды. Маловероятно, чтобы предложенные углеводороды истощали озоновый слой, но они плохо совмещаются с обычно применяемыми рефрижераторными маслами. Вследствие этого недостатка, когда в холодильной машине в качестве хладагента применяют водородсодержащий фторированный углеводород вместе с обычно применяемым рефрижераторным маслом, холодильная машина быстро выходит из строя из-за пониженного срока службы компрессора, и производительность и коэффициент полезного действия холодильной машины существенно снижаются.

Принимая во внимание упомянутую проблему, можно использовать в качестве рефрижераторных масел фторсодержащие масла, так как считается, что такие масла хорошо совмещаются с водородсодержащими фторированными углеводородами. Такие соединения выпускаются промышленностью под торговыми наименованиями "Fomblin" (продукт Montefluos Co., Ltd.), "Krytox" (продукт E.I. du Pont de Nemours & Co., Inc.), "Demnam" (продукт Daikin Industries Ltd.) и т.д. Соединения состоят в основном из повторяющихся звеньев, имеющих следующие формулы: -(CF2CF2CF2-O)-.

в которых n и m, каждый, являются целыми числами, равными или большими 1.

Однако, такие известные фторсодержащие масла недостаточно полно совместимы с хладагентами. Это происходит, по-видимому, потому, что такие фторсодержащие масла в своем составе содержат мало или вовсе не содержат водорода. Кроме того, такие фторсодержащие масла затруднительно применять для коммерческих целей, так как мономеры, соответствующие содержащимся в их структурах повторяющимся звеньям, являются дорогостоящими.

Когда в качестве хладагента применяют упомянутый водородсодержащий фторированный углеводород, для улучшения совместимости между хладагентом и рефрижераторным маслом полезно использовать в качестве рефрижераторного масла фтор- и водородсодержащие масла. Поэтому понятно, что является важной разработка подходящего способа получения фтор- и водородсодержащих масел, чтобы реализовать их применение.

Фтор- и водородсодержащие масла раскрываются в публикациях не прошедших экспертизу заявках на патент Японии N 205491/1991, N 7798/1991 и т.д. Однако эти масла имеют недостатки. Например, масла содержат в качестве основного звена соединение, имеющее перфторполиэфирную связь, а мономер, используемый в качестве исходного соединения, является дорогостоящим. Более того, поскольку фторсодержащая часть мономера в своей основе оканчивается на COF, продукт реакции мономера с углеводородным соединением представляет собой сложный эфир и является чувствительным к гидролизу.

С другой стороны, когда получают соединение иное, чем сложный эфир, необходимо трансформировать концевую группу -COF фторсодержащего соединения до -CH2OH, например, путем реакции восстановления. Следовательно, для осуществления реакции требуется многостадийная процедура. Так как получаемое таким образом рефрижераторное масло является дорогостоящим, реализация применения такого рефрижераторного масла может оказаться трудной. Соединения на основе сложных полиэфиров, раскрытые в публикациях не прошедших экспертизу заявок на патент Японии N 128991/1991 и N 179091/1991, и т.д., как сообщается, хорошо совмещаются с R-134a, но являются весьма гигроскопичными и склонны к гидролизу или подобному разложению вследствие присутствия в соединении сложноэфирной группы, что порождает проблему со сроком службы.

Смазки для магнитных регистрирующих сред Для улучшения стабильности при перемещении и срока службы магнитных регистрирующих сред предложен способ, при котором необходимо включать смазку в магнитный слой или наносить ее на тонкий магнитный слой таким способом, чтобы получить центрифуговое покрытие или покрытие, наносимое погружением. Например, в качестве такой смазки известны фторсодержащий простой полиэфир и подобные соединения, раскрываемые в публикации не прошедшей экспертизу заявки на патент Японии N 113130/1986.

При получении кроющей композиции с использованием упомянутого фторсодержащего полиэфира последний полностью не диспергируется в обычном углеводородном органическом растворителе. Поэтому смазка легко удаляется из магнитного слоя при скользящем контакте регистрирующей среды с магнитной головкой, что делает эту среду неудовлетворительной по показателям износостойкости и сроку службы.

Некоторые фторсодержащие растворители способны полностью растворять фторсодержащие простые полиэфиры. Но обычные растворители, такие как трихлортрифторэтан, не могут далее применяться вследствие возникшей в последние годы проблемы истощения озонового слоя. Другие фторсодержащие растворители (такие как C6F14), которые не вызывают проблемы истощения озонового слоя, являются дорогостоящими, хотя способны растворять обычные фторсодержащие простые полиэфиры. Кроме того, такие растворители, как сообщается, способствуют глобальному потеплению, и таким образом, их применение требует большой осторожности.

Целью настоящего изобретения является предложить новые соединения, преимуществами которых являются высокая совместимость с водородсодержащими галогенированными углеводородами и хорошая стойкость, причем соединения являются пригодными как масла для холодильных машин, использующих галогенированные углеводороды в качестве хладагентов, и предложить способ получения таких соединений.

Другой целью настоящего изобретения является предложить новые соединения, которые растворяются в обычных органических растворителях и которые применимы в качестве смазок для магнитных регистрирующих сред, и предложить способ получения таких соединений.

Еще одной целью настоящего изобретения является предложить масла для холодильных машин и смазки для магнитных регистрирующих сред, в которых применяются упомянутые новые соединения.

Новые соединения настоящего изобретения представляют собой фторированные углеводородные соединения, изображаемые формулами с (I) по (V) (символы, которые обозначают заместители, и их значение в формулах описываются позднее в каждом параграфе).

Формула (I) Фoрмулa (II) (R5O)dR6 Фoрмулa (III) (R10OCH2)nR12(CH2OR11)m Фoрмулa (IV) Фoрмулa (V) Соединения настоящего изобретения будут описываться ниже в соответствии с их строением и способом их получения.

Соединения формулы (I) Каждый из заместителей R1, R2 и R3 в формуле (I) представляет собой атом фтора или частично, или полностью фторированную, с линейной или разветвленной цепью, алкильную или алкенильную группу, содержащую от 1 до 30 атомов углерода, предпочтительно - от 1 до 10 атомов углерода, предпочтительнее - от 1 до 5 атомов углерода (которая частично может быть галогенирована иным галогеном, чем фтор).

Используемый здесь термин "частично или полностью фторированный" относится к заместителям, в структуре которых атомы водорода алкильной или алкенильной группы частично или полностью замещены атомом или атомами фтора. Термин "которые могут быть частично галогенированы иным галогеном, чем фтор" используется для обозначения заместителей со структурой, в которой оставшиеся атом или атомы водорода частично фторированной алкильной или алкенильной группы частично или полностью замещены атомом или атомами галогена, иными, чем атомы фтора.

Примерами заместителей, изображаемых R1, R2 и R3, являются линейные или разветвленные насыщенные фторалкильные группы, линейные или разветвленные ненасыщенные фторалкенильные группы и т.п.

Среди соединений формулы (I) (которые далее могут упоминаться как "соединения (I)") соединения, содержащие в качестве заместителей R1, R2 и R3 фторалкильные или фторалкенильные группы, имеющие соотношение фтор/углерод, по крайней мере, 0,6, предпочтительно, по крайней мере, 1, предпочтительнее, по крайней мере, 1,5, являются подходящими для применения в качестве рефрижераторных масел и в качестве смазок для магнитных регистрирующих сред.

Конкретные примеры заместителей, изображаемых R1, R2 и R3, приводятся ниже. Эти заместители являются предпочтительными, потому что исходные вещества являются легко доступными при коммерческом производстве. Однако изобретение ими не ограничивается.

F- , CF3(CF2)n - (n = целому числу от 0 до 2), (CF3)2CF(CF2)m - (m = целому числу от 0 до 2), R4 в формуле (I) представляет собой алкильную или алкенильную группу с линейной или разветвленной цепью, содержащую от 1 до 30 атомов углерода, предпочтительно - от 5 до 25 атомов углерода, предпочтительнее - от 10 до 20 атомов углерода (которая может быть частично галогенирована), или простую полиэфирную группу, содержащую от 2 до 500 атомов углерода, предпочтительно - от 20 до 200 атомов углерода (которая может быть частично галогенирована).

Термин "которая может быть частично галогенирована" используется здесь для того, чтобы включить заместители со структурой, в которой атомы водорода алкильной, алкенильной или простой полиэфирной группы частично замещены атомами галогена. Заместители, изображаемые R4, включают заместители, в которых атомы водорода алкильной, алкенильной или простой полиэфирной группы частично замещены заместителем (заместителями) иными, чем атомы галогена. Примерами заместителей иных, чем атомы галогена, являются гидроксил, тиол, алкоксигруппа, нитрильная группа, нитрогруппа, простая эфирная группа, тиоэфирная группа, сложноэфирная группа, карбонил, сульфонил, сульфинил, карбоксил, карбоксилат, аминогруппа, тиокарбаматная группа, амидная группа, имидная группа, фосфин, сложная фосфороэфирная группа и т.д.

Полиалкиленгликоль, окончание молекулы которого модифицировано алкоксигруппой, может быть использован в качестве исходного вещества (предшественника), подходящего для формирования простой полиэфирной группы (полиалкиленгликолевой группы) как заместителя R4. Подходящими полиалкиленгликолями для применения в качестве исходного вещества являются полиалкиленгликоли, имеющие кинематическую вязкость при 40oC от 1 до 500 сст, предпочтительно - от 3 до 350 сст, препочтительнее - от 5 до 200 сст.

Конкретные примеры заместителей, изображаемых R4, приводятся ниже. Эти группы являются предпочтительными, потому что исходные материалы являются легко доступными для коммерческого производства. Однако настоящее изобретение ими не ограничивается.

CnH2n+1 - (n = целое число 10 - 30), CmH2m-1 - (m = целое число 10 - 30), ChH2h-3 - (h = целое число 10 - 30), CH3(OCH2CH2)l - (l = целое число 1 - 100), X в формуле (I) представляет собой атом кислорода или атом серы.

Способ получения соединений (I) Соединения (I) настоящего изобретения могут быть получены различными способами, как правило, по реакции, изображаемой следующей реакционной схемой.

Схема реакции (A) Здесь R1, R2, R3, R4 и X имеют те же значения, что и в формуле (I), и определяются так же, как сделано выше для формулы (I).

Исходное соединение (VI) может быть выбрано в соответствии с сочетанием заместителей, изображаемых R1, R2 и R3, в целевом соединении (I). Конкретные примеры приводятся ниже. Эти соединения, упоминаемые в качестве примеров, являются легко доступными, и, таким образом, являются предпочтительными, но не ограничивают изобретение.

CF3CF=CF2 (гексафторпропен), (CF3)2CFCF=CFCF3 (димер гексафторпропена, D-1), (CF3)2C=CFCF2CF3 (димер гексафторпропена, D-2), (CF3)2CFCF=C(CF3)CF2CF2CF3 (тример гексафторпропена, T-1), ((CF3)2CF)2)C=CFCF3 (тример гексафторпропена, T-1).

Исходное соединение (VII) может быть выбрано в соответствии с сочетанием заместителей, изображаемых R4 и X, в целевом соединении (I). Конкретные примеры приводятся ниже. Эти соединения, упоминаемые в качестве примеров, являются легко доступными и, таким образом, предпочтительными. Изобретение, однако, не ограничивается этими примерами.

Высшие спирты с линейными или разветвленными цепями: н-C10-20H21-41OH; изо-C10-20H21-41OH и т.п.

(Эти примеры включают как чистые соединения одного вида, так и смеси соединений, которые отличаются друг от друга по числу атомов углерода).

Высшие линейные или разветвленные алкенилспирты: н-C10-20H19-39OH; изо-C10-20H19-39OH; н-C10-20H17-37OH; изо-C10-20H17-37OH и т.п.

(Эти примеры включают чистые продукты одного вида и смеси соединений, которые отличаются друг от друга по числу атомов углерода.) Кокосовые алкилспирты.

Линейные или разветвленные высшие тиолы: н-C10-20H21-41SH; изо-C10-20H21-41SH и т.п.

(Эти примеры включают чистые продукты одного определенного вида и смеси соединений, которые отличаются друг от друга по числу атомов углерода.) Модифицированный по концам полиэтиленгликоль.

Модифицированный по концам полипропиленгликоль.

Модифицированный по концам полибутиленгликоль.

Реакция может быть осуществлена в присутствии или в отсутствии растворителя. Количество используемого растворителя составляет от 0,1 до 100 крат, предпочтительно - от 0,5 до 10 крат, предпочтительнее - от 1 до 5 крат, от общего количества - по объему - исходного соединения (VI) и исходного соединения (VII). Примерами подходящих растворителей являются апротонные полярные растворители, такие как метилэтилкетон, ацетон, ДМФА, ДМСО, NMP, сульфолан, диглим, триглим, эфир, ТГФ, хлороформ, дихлорметан и т.п.

В реакции в качестве катализатора или в качестве акцептора для удаления HF, образующейся как побочный продукт, может быть применен основной катализатор. Основной катализатор используют в количестве, составляющем от 0,001 до 10 эквивалентов, предпочтительно - от 0,01 до 5 эквивалентов, предпочтительнее - от 0,1 до 2 эквивалентов, по отношению к любому из исходных соединений (VI) и (VII). Примерами основных катализаторов являются неорганические основания, такие как КОН, NaOH, K2CO3, Na2CO3 и т.п., и органические основания, такие как триэтиламин, трибутиламин и т.п.

Температура реакции составляет от -10 до 200oC, предпочтительно - от 0 до 150oC, предпочтительнее - от 0 до 100oC. Давление при реакции составляет от 0 до 50 кг/см2 G, предпочтительно - от 0 до 20 кг/см2 G, предпочтительнее - от 0 до 10 кг/см2 G. Время реакции составляет от 30 минут до 100 часов, предпочтительно - от 2 до 50 часов.

Соотношение исходного соединения (VI) и исходного соединения (VII), которое применяют в реакции, а именно - эквивалентное отношение (VI)/(VII), составляет 0,1 - 20, предпочтительно - 0,5 - 10, предпочтительнее - 0,5 - 3.

Исходные соединения могут быть загружены в реакцию одновременно или одно из исходных соединений может быть добавлено к другому по каплям, или соединения могут быть загружены путем вдувания одного соединения к другому.

Не существует конкретных ограничений по способу обработки, которую осуществляют после завершения реакции, т.е. по способу извлечения соединения (I) из реакционной смеси. Соединение может быть очищено обычными способами. Конкретнее, реакционную смесь гасят (прерывают реакцию) большим количеством воды и экстрагируют несмешивающимся с водой растворителем (таким как CFC-113 (далее - S-3), дихлорметан, хлороформ и т.п.). Экстракт промывают кислотой, щелочью, насыщенным водным раствором хлористого натрия или подобным, сушат над безводным сульфатом натрия или над безводным сульфатом магния. После фильтрации растворитель из фильтрата отгоняют при пониженном давлении, в результате чего может быть извлечено соединение (I). Когда требуется, полученный продукт может быть очищен перегонкой в вакууме, колоночной хроматографией или подобными способами.

Соединение формулы (II) Символ d в формуле (II) соответствует 1 или 2.

R5 в формуле (II) представляет собой частично или полностью фторированную, линейную или разветвленную алкильную, алкенильную или алкоксиалкильную группу, содержащую от 1 до 50 атомов углерода, предпочтительно - от 1 до 35 атомов углерода, предпочтительнее - от 2 до 26 атомов углерода (которая может быть частично галогенирована иным галогеном, чем фтор, и может содержать в своей структуре от 1 до 3 групп OH), или частично или полностью фторированную простую фторполиэфирную группу, содержащую от 2 до 700 атомов углерода, предпочтительно - от 3 до 300 атомов углерода, предпочтительнее - от 5 до 150 атомов углерода (которая может быть частично галогенирована иным галогеном, чем фтор, может содержать от 1 до 3 ненасыщенных связей в своей структуре и может включать простую эфирную связь или связи в боковой цепи).

Термин "частично или полностью фторированный", который здесь используется, относится к (i) заместителям со структурой, в которой атомы водорода алкильной, алкенильной или алкоксиалкильной группы частично или полностью замещены атомом или атомами фтора, или к (ii) простой фторполиэфирной группе, содержащей, по крайней мере, один атом фтора в молекуле. Термин "который может быть частично галогенирован галогеном иным, чем фтор", который здесь используется, относится к (i) заместителям со структурой, в которой оставшиеся атомы водорода частично фторированной алкильной, алкенильной или алкоксиалкильной группы частично или все замещены атомом или атомами галогена иного, чем фтор, или к (ii) простой фторполиэфирной группе, содержащей в молекуле, по крайней мере, один атом галогена иного, чем фтор, и термин "который может содержать в своей структуре от 1 до 3 групп OH", используемый здесь, относится к структуре, в которой от 1 до 3 атомов водорода замещены группами OH. Термин "который может содержать от 1 до 3 ненасыщенных связей в структуре используется здесь для включения ненасыщенной простой фторполиэфирной группы, содержащей от 1 до 3 углерод-углеродных двойных связей и тройных связей в целом на заместитель в структуре, также как и насыщенной простой фторполиэфирной группы (не содержащей углерод-углеродной двойной связи или тройной связи). Термин "который может содержать простую эфирную связь или связи в боковой цепи" используется здесь для включения простой фторполиэфирной группы, содержащей эфирную связь или связи в боковой цепи, так же как и группы, содержащей простую эфирную связь или связи в основной цепи.

Примерами заместителей, изображаемых R5, являются линейные или разветвленные фторалкильные группы или гидроксифторалкильные группы, имеющие насыщенную структуру, или линейные или разветвленные фторалкенильные группы или гидроксифторалкенильные группы, имеющие ненасыщенную структуру, и т.п.

Среди соединений формулы (II) соединения, содержащие в качестве заместителя R5 фторалкильную, фторалкенильную, фторалкоксиалкильную или простую фторполиэфирную группу, имеющие атомное соотношение фтор/углерод, по крайней мере, 0,6, предпочтительно, по крайней мере 1, предпочтительнее, по крайней мере 1,5, являются подходящими для применения в качестве рефрижераторных масел и в качестве смазок для магнитных регистрирующих сред.

Характерные примеры заместителей, изображаемых R5, приводятся ниже. Эти заместители являются предпочтительными, так как исходные соединения являются легко доступными в коммерческом производстве. Однако настоящее изобретение ими не ограничивается.

(CF3)2CF(CF2CF2)nCH2 CH2OCH2CH(OH)CH2- (n = целое число 0 - 10), CF3CF2(CF2CF2)mCH2 CH2OCH2CH(OH)CH2- (m = целое число 0 - 10), H(CF2CF2)lCH2 CH2CH(OH)CH2- (l = целое число 0 - 10), (CF3)2)CF(CF2CF2)kCH2 CH(OH)CH2- (k = целое число 0 - 10), CF3CF2(CF2CF2)jCH2CH(OH)CH2- (j = целое число 0 - 10), (CF3)2CF(CF2CF2)aCH2CH2- (a = целое число 0 - 10), CF3CF2(CF2CF2)bCH2CH2- (b = целое число 0 - 10), H(CF2CF2)cCH2- (c = целое число 0 - 10), HCF2CF2-, HCClFCF2-, HCF2CClF-, (i = целое число 1 - 20) где x, y, z, v и w, каждый, представляют собой целые числа от 0 до 100 при условии, что они одновременно не могут быть равными нулю, и R7 представляет собой атом галогена или алкоксигруппу, содержащую от 1 до 3 атомов углерода (которая может быть частично или полностью фторирована), или R8 (CF(CF3(CF2O)p(CF2 CF2O)q(CF2O)rCFHCF2-, где p, q и r, каждый, представляют собой целые числа от 0 до 100 при условии, что они одновременно не могут быть нулями, и R8 представляет собой атом галогена или алкоксигруппу, содержащую от 1 до 3 атомов углерода (которая может быть частично или полностью фторирована).

Простая фторполиэфирная группа, изображаемая R5, может быть получена с использованием в качестве исходного вещества (предшественника) простого фторполиэфира, содержащего в основной цепи соответствующий простой перфторполиэфир, не полностью фторированный простой полиэфир, галогенированный простой фторполиэфир, частично замещенный атомом другого галогена, или подобное. Характерные примеры простых фторполиэфиров, применимых в качестве исходных веществ (их производители и торговые наименования) приводятся ниже. Эти упоминаемые в качестве примеров материалы являются желательными для применения, поскольку они представляют собой коммерческие продукты и являются легко доступными. Но изобретение ими не ограничивается.

"Demnam" (продукт Daikin Industries Ltd.); "Krytox" (продукт E.I. du Pont de Nemours & Co., Inc.); "Fomblin Y" (продукт Montefluos Co., Ltd.); "Fomblin Z" (продукт Montefluos Co., Ltd.); "Fomblin K" (продукт Montefluos Co., Ltd.); "Barierta" (продукт NOK).

Предпочтительными простыми фторполиэфирами, пригодными в качестве исходных соединений, являются фторполиэфиры, имеющие атомное соотношение фтор/углерод, по крайней мере, 0,6, предпочтительно - по крайней мере 1,0, предпочтительнее - по крайней мере 1,5.

Когда d в формуле (II) представляет собой 1, R6 представляет собой монофункциональную группу, конкретно - линейную или разветвленную алкильную группу или алкенильную группу, содержащую от 1 до 30 атомов углерода, предпочтительно - от 1 до 10 атомов углерода, предпочтительнее - от 1 до 5 атомов углерода, которая может быть частично галогенирована, или простую полиэфирную группу, содержащую от 2 до 500 атомов углерода, предпочтительно - от 10 до 300 атомов углерода, предпочтительнее - от 20 до 200 атомов углерода, которая может быть частично галогенирована.

Заместители, изображаемые R6, включают заместители со структурой, в которой группа замещается заместителем иным, чем атом галогена. Примерами заместителей, отличных от атома галогена, являются гидроксил, тиол, алкоксигруппа, нитрильная группа, простая нитроэфирная группа, простая тиоэфирная группа, сложноэфирная группа, карбонильная группа, сульфонил, сульфинил, карбоксил, карбоксилатная группа, аминогруппа, тиокарбаматная группа, амидная группа, имидная группа, фосфин, сложная фосфорэфирная группа и т.п.

Когда d в формуле (II) равен 1, полиалкиленгликоль, окончание молекулы которого модифицировано алкоксигруппой, может быть использован в качестве исходного вещества (предшественника) для формирования простой полиэфирной группы (полиалкиленгликолевой группы) как заместителя R6. Подходящими полиалкиленгликолями для применения в качестве исходных веществ являются полиалкиленгликоли, имеющие кинематическую вязкость при 40oC от 1 до 500 сст, предпочтительно - от 3 до 350 сст, предпочтительнее - от 5 до 200 сст.

Конкретные примеры монофункциональных групп, изображаемых R5, приводятся ниже. Эти группы являются предпочтительными, потому что исходные материалы являются легко доступными при коммерческом производстве. Однако настоящее изобретение ими не ограничивается.

CnH2n+1 - (n = целое число 10 - 30), CmH2m-1 - (m = целое число 10 - 30), ChH2h-3 - (h = целое число 10 - 30), ClClH2l - (l = целое число 10 - 30), Cl(CH2)7CH = CH(CH2)8 -, CH3(OCH2CH2)k - (k = целое число 1 - 100), (j = целое число 1 - 100), (i = целое число 1 - 100), (p = целое число 1 - 100), (q = целое число 1 - 100 и r = целое число 1 - 10), (s = целое число 1 - 100).

Когда d в формуле (II) равен 2, R6 представляет собой бифункциональную группу, конкретно - линейную или разветвленную бифункциональную алкильную группу или бифункциональную алкенильную группу, содержащую от 1 до 10 атомов углерода, или бифункциональную простую полиэфирную группу, содержащую от 2 до 500 атомов углерода, предпочтительно - от 10 до 300 атомов углерода, предпочтительнее - от 20 до 200 атомов углерода. Заместители, обозначаемые R6, включают бифункциональные группы со структурой, в которой атомы водорода частично замещены атомом или атомами галогена, и бифункциональные группы со структурой, в которой атомы водорода частично замещены другими, отличными от атома галогена, заместителями. Примерами заместителей, отличных от атомов галогена, являются гидроксил, тиол, алкоксигруппа, нитрильная группа, нитрогруппа, простая эфирная группа, простая тиоэфирная группа, сложноэфирная группа, карбонил, сульфонил, сульфинил, карбоксил, карбоксилатная группа, аминогруппа, тиокарбаматная группа, амидная группа, имидная группа, фосфин, сложная фосфороэфирная группа и т.п.

Когда d в формуле (II) равен 2, полиалкиленгликоль с молекулами, модифицированными на концах алкоксигруппой, может быть использован в качестве исходного вещества (предшественника), пригодного для формирования бифункциональной простой полиэфирной группы (бифункциональной полиалкиленгликолевой группы) как заместителя R6. Подходящими полиалкиленгликолями для применения в качестве исходных соединений являются полиалкиленгликоли с кинематической вязкостью при 40oC от 1 до 500 сст, предпочтительно - от 3 до 350 сст, предпочтительнее - от 5 до 200 сст.

Конкретные примеры бифункциональных групп, обозначаемых R6, приводятся ниже. Эти группы являются предпочтительными, потому что исходные материалы являются легко доступными при коммерческом производстве. Однако настоящее изобретение ими не ограничивается.

-(ChH2h)- (h - целое число от 0 до 10), (t - целое число от 1 до 100).

Способ получения соединений (II) Соединения (II) могут быть получены разными способами.

Например, когда R5 в формуле (II) представляет собой любой из заместителей, приведенных ниже HCF2CF2-, HCClFCF2-, HCF2CClF-, CF3CFHCF2-, CF3CF = CF-, CF2 = CFCF2-, CH3CF2-, (CF3)2CHCF2-, HOC(CF3)2-, R7(CF2CF2CF2O)x (CFHCF2CF2O)y (CH2CF2CF2O)z (CCl2CF2CF2O)v (CClFCF2CF2O)wCFHCF2 - Cl(CF2CClF)iCFHCClF - (i = целое число 1 - 20).

в которых каждый из x, y, z, v и w представляет собой целое число от 0 до 100 при условии, что они не могут одновременно быть равными нулям, R7 представляет собой атом галогена или алкоксигруппу, содержащую от 1 до 3 атомов углерода (которая может быть частично или полностью фторирована), или R8(CF(CF3)CF2O)p (CF2CF2O)q(CF2O)rCFHCF2-, где p, q и r, каждый, представляют собой целые числа от 0 до 100 при условии, что они не могут быть одновременно равны нулям, R8 представляет собой атом галогена или алкоксигруппу, содержащую от 1 до 3 атомов углерода (которая может быть частично или полностью фторирована), и когда d в формуле (II) равен 1, а R5 представляет собой любой из следующих заместителей: CnH2n+1 - (n = 10 - 30), CmH2m-1 - (m = 10 - 30), ChH2h-3 - (h = 10 - 30), ClClH2l - (l = целое число 1 - 10), Cl(CH2)7CH = CH(CH2)8-, CH3(OCH2CH2)k - (k = целое число 1 - 100), (j = целое число 1 - 100), (i = целое число 1 - 100), (p = целое число 1 - 100), (q = целое число 1 - 100) или в которых s является целым числом от 1 до 100 и r является целым числом от 0 до 10 или когда d в формуле (II) равен 2, а R6 представляет собой заместитель -(ChH2h)- (h - целое число от 1 до 10), соответствующее соединение (II) может быть, как правило, получено по реакционной схеме (B) или по реакционной схеме (C), приведенным ниже.

Реакционная схема (B) (d = 1, и R6 - монофункциональная группа) Реакционная схема (C) (d = 2, и R6 = бифункциональная группа) Исходное соединение [VIII] , изображаемое R5 , включает, например, фторолефины и фторкетоны, примеры которых приводятся ниже.

CF2 = CF2, CClF = CF2, CF3CF = CF2, CH2 = CF2, (CF3)2C = CF2, (CF3)2C = O, Cl(CF2CClF)iCF = CClF (i = целое число 1 - 20), (CF3)2CFCF=CFCF3, (CF3)2C=CFCF2CF3, (CF3)2CFCF=C(CF3)CF2CF2CF3, ((CF3)2CF)2C=CFCF3, (CF3)2C=C(CF2CF3)CF(CF3)2, R7(CF2CF2CF2O)x (CFHCF2CF2O)y (CH2CF2CF2O)z(CCl2CF2 CF2O)v (CClFCF2CF2O)wCF=CF2 В этих соединениях x, y, z, v и w, каждый, являются целыми числами от 0 до 100 при условии, что они одновременно не могут равняться нулям, и R7 представляет собой атом галогена или алкоксигруппу, содержащую от 1 до 3 атомов углерода (которая может быть частично или полностью фторирована), или R8(CF(CF3)CF2O)p(CF2CF2O)q (CF2O)rCF= CF3, где каждый из p, q и r является целым числом от 0 до 100, при условии, что они одновременно не могут быть нулями, R8 представляет собой атом галогена или алкоксигруппу, содержащую от 1 до 3 атомов углерода (которая может быть частично или полностью фторирована), и R5 и R6 имеют значения, установленные выше.

Исходное соединение (VIII) может быть выбрано в соответствии с заместителями, обозначенными R5, в целевом соединении (II). Многие соединения могут быть названы в качестве примеров, и конкретные примеры включают фторолефины и фторкетоны, перечисленные ниже. Эти соединения являются предпочтительными, потому что они являются легко доступными. Но изобретение этими соединениями не ограничивается.

CF2=CF2 (тетрафторэтилен) CClF=CF2 (хлортрифторэтилен) CF3CF=CF2 (гексафторпропен) CH2=CF2 (винилиденфторид) (CF3)2C=CF2 (октафторизобутен) (CF3)2C=O (гексафторацетон) Cl(CF2CClF)1-20CF=CClF (CF3)2CFCF=CFCF3 (димер гексафторпропена, D-1) (CF3)2C=CFCF2CF3 (димер гексафторпропена, D-2) (CF3)2CFCF=C(CF3)CF2CF2CF3 (тример гексафторпропена, T-1) ((CF3)2CF)2C=CFCF3 (тример гексафторпропена, T-2) C3F7OCF=CF2 C3F7OCF(CF3)CF2OCF=CF2 C3F7O(CF(CF3)CF2O)2CF=CF2.

Исходное соединение (IX) и исходное соединение (IX') могут быть выбраны в соответствии с заместителями, обозначенными R6, в целевом соединении (II). Типичные примеры приводятся ниже.

Соединение (IX) Высшие разветвленные спирты: н-C10-20H21-41OH, изо-C10-20H21-41OH и т.п.

(Примеры включают чистые продукты одного вида и смеси соединений, которые отличаются друг от друга по числу атомов углерода).

Высшие алкенилспирты с разветвленными цепями: н-C10-20H19-39OH; изо-C10-20H19-39OH; н-С10-20H17-37OH; изо-C10-20H17-37OH, и т.п.

(Примеры включают чистые продукты одного определенного вида и смеси соединений, которые отличаются друг от друга по числу атомов углерода.) Кокосовые алкилспирты ClC2H4OH; Cl(CH2)7CH=CH(CH2)8OH и т.п.

Соединение (IX') Модифицированный по окончаниям полиэтиленгликоль.

Модифицированный по окончаниям полипропиленгликоль.

Модифицированный по окончаниям полибутиленгликоль.

(p = целое число от 1 до 100); (q - целое число от 1 до 100), r - целое число от 1 до 10); (s - целое число от 1 до 100).

Эти реакции могут проводиться в присутствии или в отсутствии растворителя. Количество используемого растворителя составляет от 0,1 до 100 крат, предпочтительно - от 0,5 до 10 крат, предпочтительнее - от 1 до 5 крат, от общего объема исходного соединения (VIII) и исходного соединения (IX) или исходного соединения (IX'). Примерами пригодных растворителей являются апротонные полярные растворители, такие как метилэтилкетон, ацетон, ДМФА, ДМСО, NMP, сульфолан, диглим, триглим, эфир, ТГФ, хлороформ, дихлорметан и т.п.

В этих реакциях в качестве катализатора или акцептора для удаления HF, образовавшейся как побочный продукт, может быть использован основной катализатор. Основной катализатор применяют в количестве от 0,001 до 10 эквивалентов, предпочтительно от 0,01 до 5 эквивалентов, предпочтительнее - от 0,1 до 2 эквивалентов, по отношению к любому из исходных соединений (VIII), (IX) и (IX'). При