Газотурбинная установка

Реферат

 

Установка может быть использована для регенерации тепла от источника тепла. Газотурбинная установка включает по меньшей мере одну газовую турбину, теплообменное средство для подогревания сжатого газа теплом источника тепла, средство для подачи подогретого сжатого газа в турбину для расширения газа и превращения его энергии в книнетическую энергию в газовой турбине, изотермический газовый компрессор. Изотермический газовый компрессор приводится в действие от пневмопривода. Компрессор имеет средство для образования струи распыленной жидкости в камере сжатия для охлаждения газа при его сжатии. Жидкость из холодного сжатого газа, выпущенного непосредственно из камеры сжатия, удаляется при помощи средства для удаления жидкости в виде влагоотделителя. В качестве пневмопривода может быть использован ротационный компрессор или камера сгорания. Установка включает магистральный нагреватель, содержащий камеру сгорания или внешний источник нагрева. Установка может включать вторую и третью газовые турбины, средство для подачи части холодного сжатого газа на лопасти газовых турбин для их охлаждения с тем, чтобы получить более высокую температуру на входе турбины. Дополнительные газовые турбины и вспомогательные теплообменники должны быть меньше, чем основные составляющие системы. Газотурбинная установка может включать термокомпрессоры, компрессор с замкнутым и открытым циклом, в которые тепло подается посредством инжектирования горячей жидкости. Кроме того, термокомпрессор может быть включен в цикл генерирования энергии и газификации. Компрессор имеет различные варианты выполнения поршней и корпусов. Может работать в режиме реверса. Использование в газотурбинной установке различных вариантов выполнения компрессора позволяет повысить эффективность и экономичность установки. 15 з.п. ф-лы, 18 ил.

Изобретение относится к газотурбинным установкам, предназначенным для регенерации тепла, поступающего от источника тепла.

Наиболее близким аналогом для настоящего изобретения является газотурбинная установка, содержащая газовую турбину, теплообменное средство для подогревания сжатого газа теплом источника тепла, средство для подачи подогретого сжатого газа из теплообменного средства непосредственно в турбину для расширения подогретого сжатого газа без сжигания таким образом, что температура газа на выходе газовой турбины была ниже, чем температура подогретого сжатого газа на входе газовой турбины, газовый компрессор для получения сжатого газа, включающий камеру сжатия для помещения газа, предназначенного для сжатия, поршень сжатия, приводное средство для приведения в движение поршня в камеру сжатия газа и клапанное средство для обеспечения всасывания сжатого газа из камеры сжатия (SU 13340 А, 31.03.30).

Недостатком известной установки является то, что избыточное тепло отходящего газа безвозвратно теряется, если его не преобразовать в полезную энергию.

Задачей настоящего изобретения является повышение эффективности установки за счет регенерации тепла отходящих газов.

Задача решается за счет того, что газотурбинная установка, содержащая газовую турбину, теплообменное средство для подогревания сжатого газа теплом источника тепла, средство для подачи подогретого сжатого газа из теплообменного средства непосредственно в турбину для расширения подогретого сжатого газа без сжигания таким образом, что температура газа на выходе газовой турбины была ниже, чем температура подогретого сжатого газа на входе газовой турбины, газовый компрессор для получения сжатого газа, включающий камеру сжатия для помещения газа, предназначенного для сжатия, поршень сжатия, приводное средство для приведения в движение поршня в камеру сжатия газа из камеры сжатия, дополнительно содержит средство для образования струи распыленной жидкости в камере сжатия для охлаждения газа при его сжатии в ней, соединительные средства, связанные с поршнем газового компрессора для обеспечения подачи энергии к поршню и средство для удаления жидкости из холодного сжатого газа, выпущенного непосредственно из камеры сжатия, при этом газовый компрессор выполнен изотермического сжатия для получения холодного сжатого газа.

Задача решается также тем, что установка содержит дополнительную газовую турбину и средство для подачи горячего выхлопного газа низкого давления из газовой турбины в теплообменное средство для подогревания холодного сжатого газа из изотермического компрессора.

Кроме того, установка может дополнительно содержать магистральный нагреватель для генерирования горячего газа высокого давления из части подогретого сжатого газа, поступающего из теплообменного средства, и средство для подачи горячего газа высокого давления для приведения в действие турбины.

Также задача решается за счет того, что магистральный нагреватель содержит камеру сгорания, сжигающую топливо в подогретом сжатом газе и производящую дымовой газ в качестве горячего газа высокого давления.

Кроме того, магистральный нагреватель содержит внешний источник нагрева.

Задача решается также за счет того, что установка содержит средство для подачи части холодного сжатого газа на лопасти газовой турбины для их охлаждения.

Установка также содержит третью газовую турбину, второе теплообменное средство для подогревания части холодного сжатого из горячего газа низкого давления, выходящего из упомянутой дополнительной газовой турбины, и средство для подачи подогретого сжатого газа из второго теплообменного средства для приведения в действие третьей газовой турбины.

Кроме того, третья газовая турбина является воздушной турбиной.

Задача решается также за счет того, что установка содержит компрессор для подачи горячего сжатого газа для приведения в действие изотермического компрессора.

Изотермический газовый компрессор дополнительно содержит вторую камеру и второй поршень, косвенно механически связанный с поршнем сжатия.

Поршень сжатия и второй поршень могут быть соединены между собой коленчатым валом.

Приводное средство для приведения в движение поршня в камеру сжатия газа содержит средство для подачи горючей топливной смеси во вторую камеру, посредством чего ее сгорание приводит в движение второй поршень из второй камеры.

Газовая установка дополнительно содержит средство для подачи сжатого газа из камеры сжатия во вторую камеру.

Задача решается также тем, что установка включает теплообменное средство, размещенное с возможностью подогрева сжатого газа из камеры сжатия газом из второй камеры.

Установка может включать теплообменное средство, размещенное с возможностью подогрева сжатого газа из камеры сжатия теплом от конца и/или стенки второй камеры.

Кроме того, средство для удаления жидкости содержит влагоотделитель.

Сущность изобретения поясняется чертежами, где: фиг. 1 изображает блок-схему варианта газотурбинной установки, включающей изотермический компрессор; фиг. 2 изображает блок-схему другого варианта газотурбинной установки объединенной с изотермическим компрессором; фиг. 3 изображает вариант установки, отапливаемой углем или другим топливом и объединяющей изотермический компрессор и воздушную турбину; фиг. 4 изображает блок-диаграмму другого варианта газотурбинной установки, включающей и газовую, и воздушную турбину; фиг. 5 изображает устройство для накопления и хранения холодного сжатого газа; фиг. 6 изображает устройство для извлечения накопленного сжатого газа для генерирования энергии; фиг. 7 изображает блок-схему, иллюстрирующую два устройства для накопления энергии; фиг. 8 изображает вариант термокомпрессора и дополнительной установки для генерирования энергии; фиг. 9 изображает другой вариант термокомпрессора и дополнительной установки для генерирования энергии; фиг. 10 показывает еще один вариант термокомпрессора вместе с дополнительной установкой для генерирования энергии; фиг. 11 показывает другой вариант термокомпрессора и дополнительной установки для генерирования энергии; фиг. 12 показывает другой вариант термокомпрессора и дополнительной установки для генерирования энергии; фиг. 13 изображает блок-схему системы для отбора пара из выхлопного газа; фиг. 14 изображает блок-схему варианта газотурбинной установки с замкнутым циклом, включающей термокомпрессор; фиг. 15 изображает блок-диаграмму варианта установки для генерирования энергии, включающей термокомпрессор и вторую газовую турбину для отбора избыточного тепла; фиг. 16 изображает варианты термокомпрессоров с замкнутым и открытым циклом, в которые тепло подается посредством инжектирования горячей жидкости; фиг. 17 изображает вариант термокомпрессора, включенного в цикл генерирования энергии и газификации; фиг. 18 изображает вариант термокомпрессора, включающий два альтернативных устройства для накопления энергии: Газотурбинная установка с камерой сгорания и изотермическим компрессором Согласно фиг. 1 газотурбинная установка, обозначенная позицией 1, содержит газовую турбину 2, изотермический компрессор 3, теплообменное средство в виде теплообменника 4 для подогрева холодного сжатого газа, использующего горячий газ низкого давления, выходящий из газовой турбины 2, и магистральный нагреватель 5 для генерирования горячего газа высокого давления из подогретого сжатого газа для приведения в действие газовой турбины 2. Эта газовая турбина 2 приводит в действие генератор электричества 6. Магистральный нагреватель 5 содержит камеру сгорания для сжигания топлива в подогретом газе, находящемся под давлением, в результате чего продуктом горения или дымовым газом является горячий газ высокого давления.

Если изотермический компрессор 3 включает газовый компрессор, он обычно приводится в действие газовой турбиной. Например, в компрессоре с газовым приводом горячий сжатый газ может обеспечиваться обычным компрессором. Этот тип изотермического компрессора производит большую массу холодного сжатого газа, чем обычный компрессор для данной подводимой мощности. Однако в изотермическом компрессоре с жидкостным приводом будет производиться та же самая масса газа, что в обычном компрессоре, но при этом требуется меньше энергии. Следовательно, либо для приведения в действие компрессора будет употребляться меньше энергии от газовой турбины, либо энергия для приведения в действие изотермического компрессора будет такой же самой, что и для обычного компрессора за исключением того, что будет произведена большая масса газа для использования в запуске газовой турбины.

Поскольку отходящее от газовой турбины тепло используется для подогрева впускаемого газа, нет необходимости в утилизирующем тепло парогенераторе и связанной с ним паровой турбине, которые необходимы в комбинированном цикле газовой турбины и парогенератора. Поскольку парогенератор не требуется, ограничения, налагаемые на газотурбинную установку парогенератором, исключаются. Следовательно, температура отходящего от газовой турбины тепла может быть увеличена выше значения, соответствующего паровому циклу, и оптимизирована для получения наилучшей производительности газовой турбины. Это может включать использование газовой турбины с более, чем одной стадией сжигания (т.е. подогрев газовой турбины). Кроме того, часть охлажденного сжатого газа из изотермического компрессора может быть использована для усиления охлаждения лопастей газовой турбины с тем, чтобы получить более высокую температуру на входе турбины.

В цикле может быть использована любая форма систем охлаждения, например мокрые, сухие или смешанного типа башенные холодильники или прямое охлаждение атмосферным воздухом, или массой воды, например, из моря, реки и т.п. В случае, когда холодным сжатым газом является воздух и горячим газом высокого давления являются дымовые газы или продукты сгорания, можно получить больше тепла из дымового газа, чем это необходимо для подогрева холодного сжатого воздуха (благодаря различию в теплоемкости двух газовых потоков). Это избыточное тепло может быть использовано для других целей, например для нагрева дополнительного потока холодного сжатого воздуха, который затем расширяется (без сжигания топлива) через одну или более воздушные турбины для генерирования большей мощности, возможно используя один или более вспомогательных теплообменников для достижения этого.

Дополнительные газовые турбины и вспомогательные теплообменники должны быть намного меньше, чем основные составляющие системы, поскольку поток через эту часть контура должен быть только частью основного потока. Альтернативно дополнительное тепло от дымовых газов может быть использовано для некоторых других внешних целей. На фиг. 2 представлена блок-схема газотурбинной установки, обозначенной позицией 7, которая воплощает первую из этих альтернатив.

Газотурбинная установка и вспомогательные газовые турбины Газотурбинная установка 7 содержит газовую турбину 8, которая запускает первый генератор 9, изотермический компрессор 10, теплообменник 11, для нагревания холодного сжатого воздуха из компрессора отходящими газами от газовой турбины 8. Большая часть подогретого сжатого воздуха подается в камеру сгорания для сжигания с топливом и получения дымового газа для газовой турбины 8, и часть подогретого сжатого воздуха подается на вход первой дополнительной газовой турбины 12, которая запускает второй генератор 13. Отходящий от первой газовой турбины 12 воздух пропускается через теплообменное средство воздух-воздух (воздушный) в виде теплообменника 14 для подогрева части холодного сжатого воздуха из изотермического компрессора для приведения в действие второй газовой турбины 15. В этом варианте газотурбинной установки изотермический компрессор 10 является компрессором с газовым приводом, который приводится в движение ротационным компрессором 16, приводимым в движение газовой турбиной 8.

Установка с газовой турбиной и изотермический компрессор Вместо магистрального нагревателя 17, содержащего камеру сгорания, установка может содержать внешний источник нагрева, которым может быть угле- или нефтесжигающая печь, тепло, получаемое от химических или промышленных процессов, ядерный реактор или солнечная печь. На фиг. 3 изображена блок-схема газотурбинной установки, содержащей газовую турбину 18, при этом магистральным нагревателем 19 в установке является углесжигающая печь. Устройство подобно тому, что изображено на фиг. 1, за исключением того, что холодный сжатый воздух из изотермического компрессора 20 подогревается отходящим воздухом от газовой турбины и подогретый воздух из теплообменника нагревается магистральным нагревателем 19 и затем расширяется в газовой турбине. Такое устройство должно использоваться в тех случаях, когда нежелательно пропускать через турбину продукты сгорания из камеры сгорания. Очень похожий контур должен использоваться для источников тепла (например, промышленных, химических, солнечных ядерных, геотермальных), где нет продуктов сгорания. Существенное отличие должно заключаться в том, что углесжигающая печь должна быть заменена другим типом теплообменника.

Как и для газотурбинной установки, изображенной на фиг. 1, внешний греющий цикл может включать стадии подогрева в процессе расширения воздуха в турбине. Особенностью любого открытого или замкнутого внешнего греющего цикла, который не имеет продуктов сгорания в качестве рабочей жидкости, является то, что теплоемкость отходящего газа от турбины является, по существу, такой же, что и теплоемкость впускаемого газа. Следовательно, нет избытка тепла, которое иначе должно было быть вследствие различия в теплоемкости двух газовых потоков, и, следовательно, в этой части контура нет дополнительных турбин. На фиг. 4 изображен другой вариант газотурбинной установки, обозначенной позицией 21, которая включает и газовую турбину 22, приводящую в движение первый генератор 23, и газовую турбину 24, приводящую в движение второй генератор 25. Тепло отходящего газа от газовой турбины 22 извлекается путем нагрева источника холодного сжатого воздуха, который затем расширяется в объеме газовой турбины 24. Поскольку газовая турбина используется на конечной низкотемпературной стадии цикла генерирования энергии, этот цикл упоминается как воздушный балластный цикл.

Газотурбинная установка с воздушным балластным циклом Согласно фиг. 4 горячий сжатый воздух от первого ротационного компрессора 26 подается в камеру сгорания 27 для сжигания с топливом. Дымовой газ затем подается на вход газовой турбины 22, которая приводит в действие первый генератор 23. Горячий сжатый воздух от второго обычного ротационного компрессора 28 подается в изотермический компрессор 29, который может быть компрессором с газовым приводом. Холодный сжатый воздух из изотермического компрессора 29 направляется в теплообменник 30, в котором сжатый воздух нагревается горячим отходящим газом от газовой турбины 22. Горячий сжатый воздух из теплообменника 30 подается на вход газовой турбины 24, которая приводит в действие второй генератор 25.

Хотя воздушный балластный цикл с изотермическим компрессором 29 может быть не настолько эффективны, как цикл, представленный на фиг. 1 и 2, существенным преимуществом этого цикла является то, что газовая турбина, используемая в цикле, может быть одной из тех, которые в настоящее время используются в существующих газотурбинных установках, Следовательно, этот вариант исключает дорогостоящее усовершенствование газовой турбины и также исключает капитальные вложения в парогенераторы, используемые с СССТ.

Способ накопления и извлечения энергии Изотермический компрессор может быть использован для накопления энергии в форме сжатого газа, например воздуха. Уже существуют схемы накопления энергии в форме сжатого газа, но использование обычных компрессоров означает, что существенная доля энергии рассеивается в виде тепла и не может быть извлечена и утилизирована. Если воздух сжимается изотермически, расходуется меньше энергии в процессе сжатия, и большая доля исходной энергии может быть извлечена и утилизирована. Холодный сжатый воздух может храниться в соответствующих больших замкнутых камерах или полостях, которые могут вынести наложенное давление без чрезмерных утечек. Например, для этих целей могут быть использованы вышедшие из использования шахты или нефтяные скважины. Отработавшие прибрежные или находящиеся в открытом море нефтяные скважины должны иметь преимущество в том, что море будет обеспечивать естественную внешнюю герметизацию, которая будет замедлять утечку.

Обычно для эксплуатации изотермического компрессора в качестве изотермического расширителя охлажденный сжатый газ из накопителя вводится в камеру сжатия и обеспечивается возможность его расширения, при котором поршень выдвигается из камеры. Когда газ расширяется, в камере для поддержания температуры газа постоянной или для увеличения температуры газа распыляется жидкость. Энергия сжатия (и тепловая) газа преобразуется в кинетическую энергию, которая сообщается либо второму поршню для сжатия тела газа во второй камере, либо тому же самому поршню для сжатия газа на его обратном ходе в камеру сжатия. Газ сжимается адиабатически, так что его температура возрастает до рабочей температуры турбины, например, около 300oC для воздушной турбины.

На фиг. 5 представлена схема накопления энергии более подробно, в которой накопленная энергия извлекается за счет эксплуатации изотермического компрессора, работающего в режиме реверса как расширитель или экспандер. Согласно фиг. 5 установка для накопления энергии содержит изотермический компрессор 31, приводимый в действие ротационным компрессором 32, который в свою очередь приводится в действие мотором 33. Компрессор 31 содержит верхнюю камеру 34, расположенную вертикально над нижней камерой 35, и твердый поршень 36, который свободно колеблется вертикально вверх и вниз, в и из каждой камеры. Нижняя камера 35 вмещает герметизированный объем газа и служит в качестве камеры адиабатического отскакивания для приведения в движение поршня обратно в камеру 34 сжатия. В верхней камере 34 выполнено впускное отверстие 37 для горячего сжатия воздуха, регулируемое клапаном 38, для впуска горячего сжатого воздуха в камеру из ротационного компрессора 32. Воздушное впускное отверстие 39, регулируемое клапаном 40, предусмотрено для впуска дополнительной массы воздуха низкого давления в верхнюю камеру 34 во время движения поршня 38 наружу. Выпускное отверстие 41 для сжатого воздуха, регулируемое клапаном 42, предусмотрено для обеспечения выпуска сжатого газа из камеры. Выпускное отверстие 41 для сжатого воздуха соединено через влагоотделитель 43 с большой полостью, например неиспользуемой шахтой, для накопления и хранения охлажденного сжатого газа (воздуха). Верхняя камера 34 соединена со средством образования струи распыленной жидкости, выполненным в виде отверстия 44 для инжектирования жидкости распылением, через которое жидкость из инжекционного насоса 45 распыляется в камеру 34. Жидкость подается инжекционным распылительным насосом 45 из соответствующего источника, например резервуара, реки, и т.п. или накопительной емкости 46, и потом возвращается из средства для удаления жидкости в виде влагоотделителя 43 в емкость для хранения воды или резервуар 46. Распылительная жидкость, вытесняемая из камеры сжатия после сжатия, обычно находится при температуре, выше температуры окружающей среды, и тепло этой жидкости может накапливаться и храниться для последующего использования во время утилизации энергии. В этом случае предпочтительнее теплоизолировать хранилище воды для предотвращения утечки тепла из хранилища воды в окружающую среду.

На фиг. 6 представлена еще одна возможная схема для извлечения энергии из накопленного сжатого воздуха, включающая изотермический экспандер, обозначенный позицией 47.

Изотермический экспандер имеет верхнюю камеру 48, расположенную вертикально над нижней камерой 49, и твердый поршень 50, свободно колеблющийся в вертикальной плоскости в и из каждой камеры. В верхней камере 48 выполнено впускное отверстие 51 для охлажденного сжатого газа, расположенное наверху камеры, регулируемое клапаном 52, которое соединено с хранилищем сжатого газа 53. В верхней камере 48 также выполнено отверстие 54 для инжектирования жидкости распылением, соединенное с хранилищем воды 55 через распылительный инжекционный насос 56. В стенке верхней камеры 43 на некотором расстоянии от верха выполнено газовое выпускное отверстие 57, соединенное с влагоотделителем 58. В нижней камере 49 выполнено газовое впускное отверстие 59, регулируемое клапаном 60, для обеспечения всасывания воздуха в камеру и выпускное отверстие 61 для сжатого газа, регулируемое клапаном 62, соединенное со входом воздушной турбины 63. Газовые впускное и выпускное отверстия расположены в стенках камеры на некотором расстоянии от основания нижней камеры. Газовая турбина 63 приводит в действие генератор 64.

Типичный рабочий цикл установки для извлечения энергии, показанной на фиг. 6, осуществляется следующим образом, начинаясь, когда поршень 50 находится в максимально поднятом положении в верхней камере 48. В этот момент нижняя камера 49 вмещает свежий объем воздуха, подлежащего сжатию, и оба клапана, впускной 60 и выпускной 62, заперты. Когда поршень 50 кратковременно останавливается в верхней точке его хода, впускной клапан 52 для сжатого газа открывается для впуска свежей порции охлажденного сжатого воздуха из воздушного хранилища 53 в верхнюю камеру 48 через газовое впускное отверстие 51. Затем сжатый воздух расширяется, заставляя поршень 50 двигаться в нисходящем направлении. В то же самое время теплая вода из хранилища воды 55 инжектируется в верхнюю камеру 48 в виде водяной пыли. Водяная пыль передает тепло сжатому воздуху при его расширении для предотвращения охлаждения воздуха, так что это расширение может быть близким к изотермическому. Когда поршень 50 входит в нижнюю камеру 49, воздух в нижней камере адиабатически сжимается, и когда давление воздуха достигает желаемого значения, открывается газовый выпускной клапан 62 и горячий сжатый воздух вытекает из нижней камеры 49 и расширяется в воздушной турбине 63. Когда поршень 50 проходит газовые впускное и выпускное отверстия 59 и 61, остаточный воздух, захваченный в камере ниже газовых впускного и выпускного отверстий, адиабатически сжимается и служит для временного хранения оставшейся энергии поршня с тем, чтобы вернуть поршень в верхнюю точку его хода в верхней камере. Поршень кратковременно останавливается над основанием нижней камеры и затем двигается вверх, когда захваченный горячий сжатый воздух расширяется. Когда поршень реверсирует направление, газовый выпускной клапан 65 в верхней камере 48 открывается и расширившийся воздух вместе с водяной пылью вытесняется из камеры через влагоотделитель 58. Водяная пыль отделяется от воздуха и возвращается в хранилище воды 55, а воздух из влагоотделителя вытесняется в атмосферу. Когда поршень 50 перемещается в восходящем направлении и проходит воздушное впускное отверстие 59 в нижней камере, воздушный впускной клапан 60 открывается, и свежая порция воздуха всасывается в камеру 49 для сжатия в течение следующего цикла. Восходящее движение поршня 50 останавливается воздушной подушкой остаточного воздуха, захваченного в верхней камере 48, когда поршень проходит газовое выпускное отверстие 57. Наконец, поршень 50 достигает верхней точки его хода в верхней камере для осуществления цикла.

Хотя на каждой из фиг. 5 и 6 показано одно хранилище воды, для оптимального способа накопления необходимо иметь одну и более теплоизолированных накопительных емкостей, вмещающих холодную воду для изотермического экспандера, и одну и более теплоизолированных емкостей для теплой воды, которая предназначена для изотермического компрессора. В следующем цикле накопления и извлечения холодная вода будет использоваться для изотермического сжатия и теплая вода будет использоваться для изотермического расширения.

Описанная выше и представленная на фиг. 5 и 6 схема накопления и извлечения энергии не требует никакого топлива или внешних источников тепла в процессе извлечения энергии. Изотермический компрессор и изотермический экспандер могут одним и тем же блоком, модифицируемым, когда это необходимо для одной из его функций (либо как компрессор, либо как экспандер), или могут быть выполнены в виде двух раздельных блоков или установок, одна - специально для сжатия газа изотермически для накопления энергии, а другая - для расширения газа изотермически для извлечения энергии. Хотя изотермическое расширение для извлечения энергии требует подвода тепла для предотвращения охлаждения воздуха при его расширении, это тепло может быть обеспечено за счет источника воды при окружающей температуре. Если доступен или имеется в наличии источник тепла с температурой выше окружающей среды (например, от промышленных или производственных процессов или от систем охлаждения существующих силовых станций или электростанций), то предоставляется возможность вернуть больше электроэнергии, чем первоначально накоплено.

Альтернативной попыткой накопления энергии является применение цикла, подобного описанным ранее и изображенным на фиг. 1-3, но с оборудованием для накопления и хранения холодного сжатого воздуха. При низкой потребности в энергии, избыток энергии используется для герметизации полости. При высокой потребности в энергии холодный воздух высасывается из полости, и потребителю распределяется максимальная мощность.

На фиг. 7 представлена одна из возможных схем накопления и извлечения энергии, оборудованная изотермическим компрессором и газовой турбиной, описанных со ссылкой на фиг. 1. Компоненты газотурбинной установки, изображенной на фиг. 7 являются точно такими же, как компоненты на фиг. 1. На фиг. 7 изображены две альтернативные схемы накопления энергии, одна из которых включает накопление тепловой энергии, например, в форме льда, и другая, включающая накопление энергии в форме холодного cжатого воздуха, как описано выше. В последней схеме выход изотермического компрессора соединен с большой полостью, в которой накапливается и хранится сжатый воздух. В периоды низкой потребности энергии производится больше изотермического воздуха, чем это необходимо для приведения в действие газотурбинной установки, и этот воздух накапливается. В периоды высокой потребности в энергии количество изотермического воздуха, производимого установкой, уменьшается, и воздух забирается из накопительной полости. Привлекательность системы накопления энергии с изотермическим компрессором в сравнении с обычными системами накопления сжатого воздуха заключается в том, что поскольку воздух сжимается при той же самой температуре, что и хранится, не расходуется энергия для производства избыточного тепла, которое иначе было бы утеряно.

Изображенная на фиг. 7 вторая схема накопления энергии включает рефрижераторную (или холодильную) систему 66, соединенную с накопительной емкостью для хранения льда/воды. Вода из накопительной емкости 67 может подаваться в изотермический компрессор 68 для использования в распылении в процессе сжатия. Выбор термической системы накопления льда/воды привлекателен тогда, когда имеется большая разница между дневными и ночными температурами. Обычно ночью, когда окружающая температура ниже, но потребность в энергии также низкая, установка может эксплуатироваться на полную мощность, при этом избыток энергии используется для приведения в действие рефрижераторной (холодильной) системы 66 для замораживания воды и хранения ее в виде льда. В течение этого времени должна полностью утилизироваться внешняя система охлаждения распыляемой воды 67.

В дневное время, когда потребность в энергии высокая, система охлаждения распыляемой воды 67 должна быть заменена или пополнена за счет охлаждения при таянии льда.

Известно множество различных производственных процессов, которые включают сжатие газов, включая воздух, в больших масштабах. Примерами этих процессов являются замораживание и сжижение. Они часто используются как способ разделения и очистки газов. Процессы сжатия являются энергонапряженными. Изотермический компрессор снижает потребление энергии и может быть использован для замораживания и/или сжижения большого числа газов.

Термокомпрессоры Компрессор, приводимый в действие сгоранием На фиг. 8 изображен вариант питаемого тепловой энергией газового компрессора, выполненного как компонент силовой энергетической установки. Согласно фиг. 8 компрессор, обозначенный позицией 68, содержит газовый компрессор 69, приводимый в действие горячим сжатым газом, и топочный компрессор 70, приводимый в действие посредством сжигания топлива. Изотермический компрессор 69 выполнен с газовым приводом.

Топочный компрессор 70 содержит верхнюю камеру или отделение 71, расположенное над нижним отделением 72, при этом каждое отделение является цилиндрически симметричным. Диаметр верхнего отделения 71 меньше, чем диаметр нижнего отделения, и отделения расположены на одной прямой коаксиально друг другу. Камера сгорания 73 образована в верхнем отделении 71 и имеет впускное отверстие 74 для горячего сжатого газа, регулируемое клапаном 75, впускное отверстие для топлива 76 и выпускное отверстие для дымового газа 77, регулируемое клапаном 78. Впускное отверстие 74 для горячего сжатого газа соединено с выпускным отверстием 79 для сжатого газа изотермического компрессора 69 с газовым приводом через теплообменник 80 газ-воздух, который подогревает охлажденный сжатый газ или воздух из изотермического компрессора 69 дымовыми газами из камеры сгорания 73. Топочный компрессор 70 дополнительно содержит камеру адиабатического сжатия 81, образованную в верхней части нижнего отделения 72, в камере сжатия выполнены газовое впускное отверстие 82, регулируемое клапаном 83, и выпускное отверстие 84 для сжатого газа, регулируемое клапаном 85 и соединенное с газовой турбиной 86, которая приводит в движение генератор 87. Камера 88 адиабатического сжатия/расширения или отскакивания образована в нижней части нижнего отделения 72. Топочный компрессор 70 имеет массивный твердый поршень 89, включающий верхнюю часть 90, размер которой соответствует диаметру верхнего отделения 71, и нижнюю часть 91, размер которой соответствует диаметру нижнего отделения 72. Камера 88 адиабатического отскакивания вмещает герметизированный объем воздуха или другого газа для обеспечения средства преобразования направленной вниз кинетической энергии поршня в направленную вверх кинетическую энергию, посредством чего обеспечивается обратный ход поршня.

Вокруг стенок камеры сгорания 73 выполнен охлаждающий кожух 93. Охлаждающий кожух 93 также выполнен вокруг головной части камеры сгорания, в которой расположены газовый впускной и выпускной клапаны, для обеспечения циркулирования охлаждающей среды для охлаждения стенок камеры сгорания. Обычно часть охлажденного сжатого воздуха из изотермического компрессора 69 используется в качестве охлаждающей среды, направляемой в охлаждающий кожух 93 после удаления влаги из сжатого газа во влагоотделителе 94. Охлаждающий кожух имеет выходное отверстие 95, которое соединено с питающим трубопроводом, соединяющим выпускное отверстие 84 для сжатого газа в камере адиабатического сжатия 81 с газовой турбиной 86. Таким образом, охлажденный сжатый газ, направляемый в охлаждающий кожух, отбирает тепло от стенок камеры сгорания, а эта энергия полезно преобразуется в механическую энергию за счет расширения горячего сжатого газа, выходящего из охлаждающего кожуха в воздушную турбину 86.

Изотермический газовый компрессор 69 приводится в действие частью горячего сжатого газа, производимого топочным компрессором 70 в камере адиабатического сжатия 81. Функцией газового компрессора 69 является получение большого количества охлажденного сжатого воздуха или другого окислителя с температурой, например, порядка 40oС. Компрессор 69 производит значительно большую массу сжатого воздуха, чем требуется для приведения его в действие. Охлажденный сжатый воздух из изотермического компрессора 69 нагревается и используется для приведения в действие топочного компрессора 70. Функцией топочного компрессора 70 является производство больших количеств горячего сжатого газа, который затем может быть использован для приведения в действие турбины с целью генерирования электричества. Как упомянуто выше, часть горячего сжатого воздуха, производимого топочным компрессором, используется для приведения в действие изотермического компрессора 69. Выпускное отверстие 79 для холодного сжатого воздуха изотермического компрессора соединено с впускным отверстием 74 для горячего сжатого воздуха топочного компрессора 70 через влагоотделитель 94 и теплообменник газ-воздух 80. Выпускное отверстие 77 для дымовых газов топочного компрессора соединено с теплообменником газ-воздух 80 таким образом, что тепло от горячего дымового газа, выходящего из камеры сгорания 79, передается охлажденному сжатому воздуху из изотермического компрессора 69. Выпускное отверстие для горячего сжатого воздуха 84 топочного компрессора соединено с входным отверстием 96 для горячего сжатого воздуха изотермического компрессора 69.

Типичный рабочий цикл компрессора, изображенного на фиг. 8, как будет описано далее, начинается в момент времени, когда поршень 97 находится в верхней точке его хода в камере 98 изотермического сжатия изотермического компрессора 69. Все газовые впускные и выпускные клапаны камеры изотермического сжатия заперты.

Когда поршень 97 на мгновение останавливается, впускной клапан 99 горячего сжатого воздуха открывается для впуска горячего сжатого воздуха из топочного компрессора 70 в камеру 98 через впускное отверстие 96 горячего сжатого газа. Он двигает поршень 97 вниз из его самой верхней позиции из камеры 98. Когда поршень достигает заранее заданного положения, впускной клапан 99 сжатого газа запирается, и воздух адиабатиче