Способ и композиции, содержащие dna-поражающие агенты и р53

Реферат

 

Изобретение относится к медицине, в частности к использованию генов-супрессоров злокачественных опухолей в сочетании с поражающим DNA агентом или фактором, с целью умерщвления клеток, в частности клеток злокачественных новообразований. Ген-супрессор злокачественной опухоли, р53, был доставлен in vivo переносчиком гена с промежуточным звеном аденовируса-рекомбинанта, в сочетании с химиотерапевтическим агентом. Пролеченные клетки проявляли состояние апоптоза при специфической DNA-фрагментации. Непосредственная подкожная инъекция р53 - аденовирусного состава в злокачественные опухоли с последующим интерперитонеальным введением поражающего DNA агента, цисплатина, вызывало массированное апоптическое разрушение опухолей. Изобретение также предлагает способ, объединяющий перемещение гена, благодаря использованию репликационно-дефектного аденовируса р53 "дикого" типа (природного аденовируса р53) в сочетании с лекарственными средствами, поражающими DNA, для лечения злокачественной опухоли. Техническим результатом изобретения является расширение арсенала средств для борьбы со злокачественными новообразованиями. 4 с. и 111 з.п.ф-лы, 13 ил., 2 табл.

Изобретение относится, в основном, к области новых направлений в усовершенствовании методов химиотерапевтического вмешательства. Кроме того, настоящее изобретение предлагает новые способы и композиции, которые объединяют потенциальные возможности DNA-поражающих агентов с комбинированной доставкой гена-суппрессора новообразований. Объединение DNA-поражающих факторов с ксеногенной экспрессией гена-суппрессора новообразований ведет к ощутимой синергии, подавляющей активность отдельных индивидуальных компонентов.

Описание уровня техники Современные методы лечения рака, включающие радиационную терапию, хирургию и химическую терапию, характеризуются ограниченной эффективностью. Только рак легких убивает в Соединенных Штатах более 140000 человек ежегодно. Недавно для установленной возрастной группы смертность от рака легких превысила смертность от рака груди у женщин. Хотя введение в жизнь программы борьбы с курением снизило уровень распространения заболеваний от курения, уровень смертности от рака легких останется высоким даже в 21-м веке. Развитие новых терапевтических методов лечения рака легких будет зависеть от проникновения в механизм биологии рака легких на молекулярном уровне.

В настоящее время установлено, что разновидности рака вызываются, по крайней мере частично, генетическими отклонениями, которые проявляются или в повышенной экспрессии одного или более генов, или в экспрессии отклоненного от нормы или мутантного гена или генов. Например, во многих случаях, как известно, экспрессия онкогенов вызывает развитие рака. "Онкогены" - это генетически измененные гены, чей мутированный продукт экспрессии каким-то образом нарушает нормальное функционирование клетки или управление этим процессом. (Spendidos et al., 1989).

Большинство из изученных на настоящий момент онкогенов получили определение "активированных" в результате мутации, часто точечной мутации, в кодирующей области нормального клеточного гена, то есть "прото-онкогена", результатом чего является замещение аминокислоты в протеиновом продукте, экспрессия которого претерпела изменение. Этот продукт с видоизмененной экспрессией проявляет отклоненные от нормы биологические функции, которые оказывают влияние на протекание процесса образования опухолей (Travali et al., 1990). Не проявляющие себя мутации могут развиваться при различных обстоятельствах, например в результате химического мутагенеза или ионизирующей радиации. Целый ряд онкогенов или онкогенных семейств, включая ras, myc, neu, raf, erb, src, fims, jun, abl, в настоящее время уже идентифицированы и в различной степени описаны (Travali et al., 1990, Bishop, 1987).

Как установлено, при нормальном росте клетки, прото-онкогены, стимулирующие рост, сбалансированы генами-супрессорами, сдерживающими рост новообразований. Некоторые факторы могут внести дисбаланс во взаимодействие этих двух сил, ведущий к состоянию, предполагающему образование опухолей. Одним из таких факторов является мутация в генах-супрессорах новообразований (Weinberg, 1991).

Одним из важных генов-супрессоров новообразований является ген, кодирующий клеточный протеин, p53, который представляет собой ядерный фосфопротеин kD 53 (замещенный в цикле фосфопротеин kD 53), который управляет клеточной пролифератией (процессом разрастания клеток). Мутации, происходящие с геном p53, и потеря аллельного гена на хромосоме 17p, где этот ген размещен, являются одними из наиболее распространенных видоизменений, идентифицированных в злокачественных новообразованиях человека. Протеин p53 обладает высокой степенью сохранности в процессе эволюции и проявляется в наиболее нормальных тканях. Было продемонстрировано, как природный p53 (в некоторых источниках p53 "дикого типа") должен быть вовлечен в управление клеточным циклом (Mercer, 1992), в процесс транскрипционного регулирования (Fields et al., Mietz et al., 1992), в репликации DNA (Wilcock and Lane, 1991, and Bargonetti et al. , 1991) и в возбуждение апоптоза (Yonish - Rouach et al., 1991, Shaw et al., 1992).

Известны различные мутантные аллельные гены p53, в которых единственное базовое замещение ведет к синтезу протеинов, которые имеют совершенно другие характеристики, определяющие закономерности роста, что, в конечном счете, ведет к злокачественным новообразованиям (Hollstein et al., 1991). Действительно, было установлено, что ген p53 является наиболее часто мутированным геном при раке у человека (Hollstein et al., 1991) и, в частности, ассоциируется с теми разновидностями рака, возникновение которых связано с сигаретным дымом (Hollstein et al., Zakut - Houri et al., 1985). Чрезмерная экспрессия p53 в опухолях груди также была документально подтверждена (Casey et al., 1991).

Одним из аспектов, привлекающих наибольшее внимание генной терапии рака, является использование генов - супрессоров, таких как p53, для лечения опухолей. Было установлено, что трансфекция (заражение клеток чужеродной нуклеиновой кислотой, например вирусной) природного гена p53 в определенного типа опухолевых клетках рака груди и легких может восстановить управление процессом подавления роста в клеточных линиях (Casey et al., 1991, Takahasi et al. , 1992). Хотя трансфекция DNA не является жизнеспособным средством введения DNA в клетки пациентов, эти результаты служат демонстрацией того, что внедрение природного гена p53 в раковые клетки, содержащие мутированный p53, может стать эффективным методом лечения, если будут разработаны усовершенствованные способы внедрения гена p53.

В настоящее время ведется изучение проблемы и создаются системы внедрения гена, которые могут быть применены в генной терапии для подавления роста опухоли. Средства на основе вируса для трансфекции гена вызывают особый интерес, благодаря способности вирусов инфицировать действительно живые клетки. Налицо способ, в котором перемещается сам вирусный генетический материал. В этой связи уже были отмечены некоторые успешные решения, например воспроизведение ретровирусных векторов, разработанных для доставки целого многообразия генов. Однако существуют серьезные проблемы, связанные с использованием ретровирусных векторов в генной терапии. Поскольку их эффективность зависит от наличия ретровирусных рецепторов на клетках-мишенях, их трудно сконцентрировать и обеззаразить, и кроме того, они могут эффективно внедряться только в размножающиеся клетки (репликационные клетки).

Основную проблему клинической онкологии составляет устойчивость клетки злокачественного новообразования к воздействию химиотерапевтического лекарственного средства. Почти 80% случаев рака легких составляет рак легких с вовлечением значительного количества клеток (NSCLC). Однако больные этой формой рака, в основном, невосприимчивы к химиотерапевтическим методам лечения (Doyle, 1993). Одной из задач современных исследований в области лечения злокачественных новообразований является поиск путей улучшения действенности терапевтических методов лечения рака, основанных на перемещении гена, путем изучения механизма взаимодействия между продуктом гена и химиотерапевтическими лекарственными средствами. Ген герпес-симплекс-тимидин-киназы (HS-tk), будучи внедренным в опухоль мозга с помощью ретровирусной векторной системы, успешно вызывал восприимчивость к gancilclovir антивирусного агента (Culver et al. , 1992). Продукт гена HS-tK представляет собой экзогенный вирусный энзим, и поскольку экспрессия протеина wt-p53 проявляется в нормальных тканях, возникает предположение, что модуляция устойчивости к воздействию химиотерапевтических средств, вызванная альтерацией в экспрессии wt-p53, возможно, явится альтернативным подходом, использующим путь, который опосредствованно определен эндогенной генетической программой.

Аденовирусная система имеет потенциальные преимущества при перемещении гена in vivo, например легкость получения высокого значения титра-вируса, высокая степень инфекционной активности и невосприимчивость для многих типов клеток. Однако стабильность и продолжительность существования экспрессии внедренного гена все еще остаются проблематичными. Рост уровней p53 в клетках, которые отличаются чувствительностью к химиотерапевтическим лекарственным средствам, может наблюдаться в пределах 6 часов после воздействия DNA-поражающих стимуляторов (Fritche et al., 1993, Zhan et al., 1993), хотя повышенная активность, вызванная действием DNA, может быть возвращена в первоначальное состояние в течение четырех часов, если стимулятор удаляют (Tishler et al., 1993). Отсюда высокий уровень экспрессии p53 может поддерживаться даже после прекращения воздействия на организм лекарственного средства. Обеспечение экспрессии протеина wt-p53 с помощью Ad-p53 достигает кульминации на третий день после инфицирования (14 - складкой больше, чем эндогенный "дикого типа") и снижается до низкого уровня к девятому дню (Zhang et al. , 1993). Это наводит на мысль, что переменно высокого уровня экспрессии wt-p53 достаточно, чтобы инициировать цитотоксическую программу в раковой клетке.

p53 играет важную роль в определении чувствительности клеток рака легких человека к химиотерапевтическим лекарственным средствам. Многообразие протоколов лечения (историй болезни), включающих хирургическое вмешательство, химиотерапию и радиотерапию, было изучено в связи с лечением разновидности рака легких человека NSCLS, однако коэффициент выживаемости в течение продолжительного срока остается неудовлетворительным. В чем возникает потребность, так это в комбинированном терапевтическом методе, которым мог бы использоваться самостоятельно или в качестве вспомогательного лечения для предотвращения местного рецидива, следующего за предварительной резекцией, или который заключается в методе лечения, состоящем во введении инъекций в поврежденное место, которое первоначально было невосприимчивым к воздействию лекарственного средства и в котором имеются метастазы, или при местном рецидиве рака легких. Композиции и способы требуют дальнейших исследований, разработки и совершенствования способов клинической применимости новых средств для лечения рака. Кроме того, эти способы и композиции должны подтвердить свое право на использование in vivo.

Сущность изобретения Изобретение направлено на решение задачи улучшения терапевтических средств и способов использования их в процессе уничтожения клеток путем объединения воздействий гена-супрессора злокачественных новообразований или протеина и DNA-поражающего агента или фактора. Настоящее изобретение также предлагает композиции и способы, включающие такие, которые используют вирусное перемещение гена-посредника, с целью обеспечения экспрессии природного гена-супрессора злокачественного новообразования, например p53, в клетках-мишенях и направить агент или фактор, который вызывает повреждение DNA. Изобретатели неожиданно обнаружили, что, используя композиции, раскрытые в данном изобретении, они получили возможность вызвать запрограммированное уничтожение клетки, явление, известное под названием "апоптоз", в значительном количестве клеток мишеней.

Используя настоящее изобретение, авторы продемонстрировали замечательный эффект, заключающийся в контроле роста клетки ракового новообразования. Формирование и рост опухолевой клетки также известны под названием "трансфекция", которое описывает образование и пролифератию клеток, которые потеряли способность контролировать процесс клеточного деления, т.е. превратились в раковые клетки. Совершенно очевидно, что целый ряд различных типов трансформированных клеток можно считать потенциальными объектами использования способов и композиций по данному изобретению, например, саркомы, меланомы, лимфомы, широкий спектр твердых опухолей и т.п. Хотя любая ткань, в которой наблюдается рост злокачественной клетки, может служить объектом использования изобретения, предпочтительную область использования составляют ткани легких и груди. Изобретатели обнаружили, что вектор, осуществляющий перенос рекомбинанта, вызывающего экспрессию p53,оказался в состоянии значительно снизить степень роста клеток в том случае, если он используется в сочетании с поражающим DNA агентом.

Изобретение предлагает в определенных примерах осуществления способы и композиции для уничтожения клетки или клеток, например раковых клеток или клетки, путем обеспечения контакта или облучения клетки или популяции клеток протеином p53 или геном и одним или более поражающими DNA агентами, общее количество которых оказывается достаточно эффективным, чтобы убить данную клетку (клетки). Перечень клеток, которые могут быть уничтожены в результате использования настоящего изобретения, включает например, нежелательные, но доброкачественные опухолевые клетки, такие как клетки гиперплазии, доброкачественной опухоли простаты, клетки щитовидной железы, отличающиеся повышенной активностью, клетки, относящиеся к аутоиммунным заболеваниям, например клетки B, которые производят антитела, присутствующие в артритах, волчанке, миастения гравис, плоскоклеточной метаплазии, дисплазии и т.п. Хотя изобретение применимо при уничтожении, в основном, всех нежелательных клеток, специфическая задача, которую оно решает, - это уничтожение злокачественных клеток. Термин "злокачественные клетки "относится к клеткам, которые потеряли способность к управлению циклом деления клетки, что ведет к появлению "трансформированного" или "ракового" фенотипа.

Для того, чтобы убить клетки, такие как злокачественные или метастазные, используя способы и композиции по настоящему изобретению, следует обеспечить контакт клетки-мишени с протеином p53 или геном и, по крайней мере, одним поражающим DNA агентом, общее количество которых достаточно эффективно, чтобы уничтожить данную клетку-мишень. Этот процесс может включать обеспечение контакта с протеином p53 или геном и поражающим(и) DNA агентом(ами) или фактором(ами) одновременно. Это может быть достигнуто путем обеспечения контакта клетки с одной единственной композицией или фармакологической единицей, которая включает оба компонента, или путем обеспечения контакта клетки с двумя отдельными композициями или фармакологическими единицами в одно и то же время, при условии, что одна композиция включает протеин p53 или ген, а другая включает поражающий DNA агент.

Совершенно очевидно, что клетка-мишень может быть первоначально облучена поражающим (и) DNA агентом(ами), а затем приведена в контакт с протеином p53 или геном, или наоборот. Однако, для вариантов осуществления изобретения, где поражающий DNA фактор и p53 используют для воздействия на клетку раздельно, следует четко уяснить, что между каждым из вводов указанных компонентов не должно быть значительного промежутка времени, чтобы поражающий DNA агент и p53 оставались бы в состоянии в полной мере объединенными усилиями оказать положительное воздействие на клетку. Установлено, что в таких случаях контакт с обоими компонентами следует осуществлять с промежутками в пределах 12-24 часов, а более предпочтительно, с промежутками в пределах 6-12 часов, при этом наиболее предпочтительным временем задержки (опаздывания) следует считать около 12 часов.

Термины "приведенные в контакт" или "подверженные воздействию", в применении к клетке, используются в настоящем описании для того, чтобы охарактеризовать процесс, с помощью которого ген-супрессор злокачественной опухоли или протеин, например p53, и поражающий DNA агент или фактор доставляется к клетке-мишени или приводится в непосредственное соприкосновение с данной клеткой-мишенью. Чтобы обеспечить умерщвление клетки, оба компонента доставляются в клетку в общем количестве, достаточном для обеспечения процесса уничтожения этой клетки, т.е. запрограммированной гибели клетки, или апоптоза. Термины "умерщвление", "запрограммированная гибель клетки" и "апоптоз" в настоящем контексте взаимозаменяемы и используются для описания серии внутриклеточных превращений, которые ведут к уничтожению клетки-мишени. Процесс уничтожения клетки-мишени приводит в активное состояние внутриклеточные протеазы и нуклеазы, что обеспечивает ядерную инволюцию клетки и фрагментацию ядерной DNA. Понимание точных механизмов внутриклеточного молекулярного взаимодействия, направленных на осуществление умерщвления клетки, не обязательно при использовании настоящего изобретения.

Поражающие DNA факторы или агенты в настоящем контексте определяются как любые химические соединения или методы лечения, которые вызывают повреждение DNA в применении к клетке. Такие агенты и факторы включают излучение или волны, которые стимулируют повреждение DNA, например - излучение, X-излучение, ультрафиолетовое (UV) излучение, микроволны, электронные эмиссии и т.п. Многообразие химических соединений, присутствующее в описании в виде термина "химиотерапевтические" агенты, действуют как средства, вызывающие поражение DNA, при этом все они могут быть использованы в комбинированных методах лечения, раскрытых в настоящем изобретении. Перечень предназначенных к использованию химиотерапевтических агентов включает, например: адриамицин, 5-флуороурацил (5FU), этопозид (VP-16), камптотецин, актиномицин-D, митомицин C, цисплатин (CDDP) и даже пероксид водорода. Настоящее изобретение также очерчивает круг использования комбинаций из одного или нескольких поражающих DNA агентов, которые основаны на принципе излучения, или представляют собой активные соединения, например использование радиоактивного излучения совместно с цисплатином или использование цисплатина с этопозидом. В отдельных случаях использование цисплатина в сочетании с протеином p53 или геном значительно предпочтительнее, по сравнению с упомянутым соединением.

Может быть использован любой способ обеспечения контакта клетки с протеином p53 в течение периода времени, пока этот способ обеспечивает высокие уровни инфицирования протеина p53 внутри клетки. Он включает как прямую доставку протеина p53, так и доставку гена или DNA-сегмента, который кодирует p53, при этом данный ген должен будет возбудить экспрессию и образование p53 внутри клетки. При таком способе доставки протеина наблюдается недостаток, который заключается в деградации протеина и низкой поглотительной способности клетки. Сделано заключение, что способ использования рекомбинантного вектора, вызывающего экспрессию протеина p53, обладает значительными преимуществами.

Может быть разработано широкое многообразие рекомбинантных плазмидов и векторов, способных вызвать экспрессию протеина p53 и, будучи таким образом использованными, доставить p53 в клетку. Например, известно использование "голой" DNA и плазмидов p53 для непосредственной доставки генетического материала в клетку (Wolfe et al., 1990), соединения p53 - кодирующей DNA, находящиеся в ловушке у липосом (Ledley et al., 1987) или у протолипосом, которые содержат протеины рецептора в вирусной оболочке (Nicolau et al., 1983); и p53-кодирующие DNA, присоединенные к комплексу-переносчику полилизингликопротеина. Изучалось также использование вирусов-рекомбинантов, разработанных для обеспечения проявления экспрессии p53.

Целый набор вирусных векторов, например ретровирусные векторы, вирус простого пузырькового герпеса (герпес-симплекс-вирус) (патент США N 5288641, включенный в перечень ссылок), вирусы цитомегалии и т.п. могут быть использованы, как описано Миллером (Miller, 1992); могут быть использованы рекомбинантные аденоассоциированные вирусы (векторы AAV), описанные в патенте США N 5139941 и включенные в перечень ссылок, а также, в частности, векторы аденовирусов-рекомбинантов. Технологии приготовления репликационно-дефектных инфицирующих вирусов хорошо известны из уровня техники, а их примеры описаны в работах авторами: Ghosh-Choudhury & Graham (1987); McGrory et al., (1988); и Gluzman et al. (1982), каждая из которых приведена в перечне ссылок.

Для того чтобы умертвить клетку в соответствии с настоящим изобретением, следует обеспечить контакт клетки с протеином p53 или геном и с поражающим DNA агентом при их объединенном количестве, достаточно эффективном для того, чтобы умертвить данную клетку. Термин "при объединенном их количестве, достаточно эффективном для того, чтобы умертвить данную клетку" означает, что количества p53 и поражающих DNA агентов должны быть достаточными настолько, что, в том случае, если они будут объединены внутри клетки, это вызовет апоптоз данной клетки. Хотя данного замечания и не требуется для каждого из примеров осуществления изобретения, в качестве объединенного эффективного количества p53 и поражающего DNA агента, предпочтительно может быть принято такое количество, которое инициирует умерщвление значительно большего количества клеток, чем использование каждого элемента в отдельности. Наиболее предпочтительным может считаться такое эффективное объединенное количество, которое будет составлять величину, инициирующую синергическое умерщвление клетки в сравнении с результатами, которые наблюдаются при использовании каждого из элементов в отдельности.

Определенное количество параметров in vitro может быть использовано для определения результата, который достигается в результате применения композиций и способов, предлагаемых настоящим изобретением. Эти параметры включают, например, подсчет результирующего количества клеток до и после воздействия композициями, описанными в настоящем изобретении, а также измерением размеров многоклеточных опухолевых сфероидов, сформированных таким же образом, каким формируются их колонии в культуре ткани. In vitro процесс умерщвления клетки, в частности, показан в примере 7 осуществления способа настоящего описания. Дополнительно можно измерить параметры, которые характерны для клетки, подвергающейся запрограммированному умерщвлению, например фрагментации клеточной геномной DNA на фрагменты с размерами нуклеосомы, которые, в основном, идентифицировались путем выделения фрагментов при электрофорезе геля агарозы, окраски DNA и сравнения DNA с размерной цепочкой DNA. Фрагменты с размером нуклеосомы идентифицируются как возрастающие ступеньки (по типу спущенной петли) или цепочки мономеров или полимеров, имеющих основной блок приблизительно из 200 пар.

По аналогии, термин "терапевтически эффективное количество" означает объединенное количество протеина p53 или гена поражающего DNA агента, которое при введении в организм животного в состоянии умертвить клетки внутри организма животного. Это, в частности, подтверждается умерщвлением раковых клеток, например, клеток рака легких, груди или клеток рака толстой кишки в организме животного или человека, пораженного злокачественной опухолью. Термин "терапевтически эффективные соединения " означает, в основном, таким образом объединенные количества p53 и поражающих DNA агентов, действие которых направлено на умерщвление большего количества клеток, чем каждый из элементов в отдельности, и, предпочтительно, такие объединенные количества, которые обеспечивают синергическое снижение генетического груза в опухолевом новообразовании.

Изучение in vivo и ex vivo определенных параметров умерщвления клетки являются также эффективными средствами, с помощью которых доказывается эффективность композиций и способов по настоящему изобретению. Например, наблюдения воздействуют на подавление онкогенности, измеренной с помощью экспрессии TdT замороженных высечек тканей или путем использования методов окрашивания и антигенов клетки-мишени, что не является новостью для паталогоанатомов. Естественно, другие способы определения массы опухоли, ее роста и жизнеспособности также могут быть использованы для установления факта умерщвления клеток - мишеней. В частности, можно определить такое поведение в живом организме различных моделей раковых систем, включая те, в которых раковые клетки человека локализованы в пределах организма животного. Известно, что модели рака животного, в отличие от модели AIDS, имеют большое сходство (прогнозируемы) с режимами лечения, разрабатываемыми для человеческого организма (Roth et al., редакторы, 1989). Существует один экземпляр образца прогнозируемой модели животного, в которой подкожно выращивали клетки рака легких человека, разновидность которого отличается малым размером клетки (клетки H358). Используя данную систему, изобретатели показали, что аденовирус, несущий p53, введенный в виде капель внутрь пораженной опухолью области совместно с введением химиотерапевтического агента приводит к совершенно неожиданному эффективному уменьшению клеток опухоли.

Одним из предпочтительных способов доставки протеина p53 в клетку является обеспечение контакта клетки с вирионом аденовируса-рекомбинанта или с частицей, которая включает вектор аденовируса-рекомбинанта, состоящий из области экспрессии p53, расположенной под контролем промотора, способного направлять экспрессию p53 в данном типе клетки.

Область экспрессии p53 в векторе может содержать последовательность геномов, но для упрощения можно предположить, что более предпочтительно использование последовательности cDNA p53, так как это легко доступно для анализа уровня техники в данной области и проще в управлении процессом. В дополнение к экспрессии p53 и зоне промотора вектор должен также включать сигнал полиаденилации (polyadenilation), например ранний ген SV40 или ген протамина, или что-либо подобное.

В предпочтительных вариантах изобретения предполагается, что может возникнуть необходимость в расположении зоны экспрессии p53 под контролем сильного, существенного (структурного) промотора, например промотора цитомегаловируса (CMV), вирусного промотора LTR, RSV или SV40 или промотора, ассоциированного с генами, которые проявляют экспрессию на высоких уровнях в клетках млекопитающих (молочной железы), например промоторы фактора-1 элонгации или актина. Все эти варианты имеют право на существование в связи с использованием изобретения. В настоящее время наиболее предпочтительным промотором считается промотор IE вируса цитомегалии (CMV).

Ген p53 или cDNA может быть введен в аденовирус-рекомбинант, в соответствии с настоящим изобретением, простым включением или добавлением кодирующей последовательности p53 в вирусный геном. Однако в качестве предпочтительных аденовирусов следует рассматривать дефектные вирусы репликаций, в которых вирусный ген, существенный для репликаций и/или "упаковки", был удален из аденовирусной векторной структуры, давая возможность зоне экспрессии p53 переместиться на свое место. Любой ген, то ли существенный, например E1A, E2, E4, то ли несущественный, например E3, для репликаций, может быть удален и замещен p53. В частности, предпочтительными являются те векторы и вирионы, в которых области E1A и E1B векторов аденовируса удалены, а зона экспрессии p53 внедрена на их место, что показано в качестве примера на структуре генома на фиг. 1.

Технологические процессы приготовления репликационных дефектных аденовирусов хорошо известны из уровня техники, что подтверждается приведенными в данном описании аналогами Ghoss-Choudhury и Graham (1987); McGrory et al. (1988); и Gluzman et al., (1982), перечисленными в ссылках на использованную литературу. Кроме того, хорошо известно, что могут быть использованы различные клеточные линии, с целью воспроизведения аденовирусов-рекомбинантов, при этом их воспроизведение может продолжаться до тех пор, пока существует возможность дополнения дефекта репликаций, если таковой присутствует. Предпочтительной клеточной линией является клеточная линия 293 человека, но существуют также и другие клеточные линии, приемлемые для репликаций, например, могут быть использованы в предпочтительном случае экспрессии E1A и E1B. Причем клетки могут воспроизводиться как на пластмассовых чашках, так и в культуре суспензии, чтобы получить запасы культуры вирусов.

Изобретение не ограничивается вирусами с недостающим звеном E1 и клетками с экспрессией E1. Действительно, в связи с настоящим изобретением, могут быть использованы другие дополняемые комбинации вирусов и клеток - хозяев. Могут быть использованы клетки с экспрессией E2 и вирус, теряющий функциональное звено E2 точно так же, как и клетки с экспрессией E4 и вирус, теряющий функциональное звено E4 и т.д. В том случае, если несущественный для репликации ген удаляется или замещается, каковым, например, является ген E3, такой дефект нет надобности отдельно укомплектовывать с помощью клетки-хозяина.

Для успешного использования изобретения единственным требованием является создание векторов аденовирусов, которые способны возбуждать экспрессию p53. Природа же исходного аденовируса решающего значения для использования изобретения не имеет. Может быть использован любой аденовирус из 42 известных различных серотипов или подгрупп A-F. Аденовирус типа 5 подгруппы C является предпочтительным стартовым материалом для получения цельного репликационно-дефектного вектора аденовируса для использования в методике, предлагаемой настоящим изобретением. Аденовирус типа 5 выбран потому, что, в связи с этим аденовирусом человека, накоплен значительный объем биохимической и генетической информации, и, кроме того, он традиционно применяется для большинства структур, использующих аденовирус в качестве вектора.

Способы и композиции, в связи с настоящим изобретением, одинаково пригодны для умерщвления клетки или клеток как in vivo, так и in vitro. В том случае, когда клетки, предназначенные для умерщвления, сосредотачиваются внутри организма животного, например раковые клетки рака легкого, груди или прямой кишки, или другие клетки, несущие мутированный p53, в данном случае протеин p53 или ген, а также поражающий DNA агент должны вводиться в организм животного в фармакологически приемлемом виде. Термин "фармакологически приемлемый вид" в настоящем контексте относится как к форме любой из композиций, которая может быть введена в организм животного, так и к методу обеспечения контакта живого организма с радиационным излучением, т.е. к способу, с помощью которого облучается какая-либо зона тела животного, например путем - излучения, X-лучей, ультрафиолетового (UV) излучения, микроволн, электронных эмиссий и т.п. Использование поражающей DNA радиации и волн известно всем, кто имеет опыт работы в области лучевой терапии.

Настоящее изобретение также предлагает способы лечения рака, которые, в основном, включают введение в организм животного или человека, больного раком, терапевтически эффективной комбинации протеина p53 или гена и поражающего DNA агента. Это может быть достигнуто, благодаря использованию рекомбинантного вируса, в частности аденовируса, который несет вектор, способный вызвать экспрессию p53 в клетках опухолевых новообразований. Композиция, несущая ген p53, в основном, должна быть введена в организм животного часто при обеспечении тесного контакта с опухолью, в виде фармацевтически приемлемой композиции. Предпочтительным способом является непосредственное впрыскивание терапевтически эффективного количества гена p53, такого, который размещается в пределах границ рекомбинантного вируса, в то место в организме, которое поражено опухолью. Однако имеют право на существование и другие парентеральные способы введения, например внутривенно, через кожу, эндоскопически или с помощью подкожного впрыскивания.

При лечении рака, в соответствии с настоящим изобретением, можно обеспечить контакт клеток опухоли с поражающим DNA агентом, в дополнение к воздействию протеина p53 или гена. Этот способ может осуществляться путем облучения места сосредоточения опухолевых тканей поражающей DNA радиацией, например рентгеновскими лучами, ультрафиолетовым световым излучением, - лучами или даже микроволнами. Кроме того, опухолевые клетки могут быть приведены в контакт с поражающим DNA агентом путем введения в организм животного фармацевтически эффективного количества фармацевтического средства, содержащего поражающее DNA соединение, например адриамицин, 5-флуороурацил, этопозид, камптотецин, актиномицин-D, митомицин C, а еще лучше - цисплатин. Поражающий DNA агент может быть приготовлен и использован в виде сложной терапевтической композиции или фармакологического набора, полученного объединения поражающего DNA агента с протеином p53, геном или генной системой доставки, как было описано выше.

Поразительный положительный эффект, возникающий при использовании настоящего изобретения, раскрывается в том, что использование вируса Ad5CMV-p53 в сочетании с цисплатином показало замечательные результаты в исследованиях, использующих модель безволосой мыши. Комбинированный режим вирус-поражающей DNA терапии значительно снизил онкогенность клеток H358, клеток, которые нормально производят значительные опухолевые массы. Онкогенность раковых клеток рака легких была подавлена, благодаря лечению с помощью Ad5CMV-p53,но не благодаря лечению контрольным вирусом, вызывающим экспрессию люциферазы. Это указывает на то, что протеин p53 в сочетании с поражающим DNA агентом имеет большую терапевтическую эффективность.

Специалистам, компетентным в данной области знаний, известны методы доставки химиотерапевтических средств, включая структуры экспрессии DNA, в эвкариотические клетки. В свете настоящего изобретения опытный специалист будет в состоянии доставить как поражающие DNA агенты, так и протеины p53 или гены к клеткам, используя для этого многообразие эффективных средств.

Для доставки DNA in vivo изобретатели предполагают использование различных генных систем доставки, например вирусную и с промежуточным звеном липосомы трансфекцию. В контексте описания настоящего изобретения термин "трансфекция" используется для описания адресной доставки DNA в эвкариотические клетки путем использования таких систем доставки, как например, аденовирусные, AAV, ретровирусные или системы доставки гена с помощью плазмидов. Специфичность вирусной доставки может быть выбрана для предпочтительного непосредственного переноса гена в отдельную специфичную клетку-мишень. При этом используются вирусы, которые способны инфицировать эти отдельные специфичные виды клеток. Естественно, различные особенности разновидностей вирусов определяют специфику выбора подходящего вируса для переноса гена по принципу того, как и ген-супрессор злокачественного новообразования должен проявить свою способность к умерщвлению злокачественной клетки указанного типа.

Было обнаружено, что применить поражающий DNA химиотерапевтический агент можно, используя целое многообразие средств, например, с помощью использования парентеральных способов доставки, таких как внутривенные и подкожные инъекции и т.п. Такие способы известны специалистам в области введения в организм лекарственных средств и будут описаны в разделе, относящемуся к фармацевтическим препаратам и способам лечения.

Для доставки гена in vitro могут быть использованы различные способы, например применение фосфата кальция или трансфекция с промежуточным звеном из декстрин-сульфата, электрофорез; позиционирование (целеуказание) с помощью стеклянного микроснаряда и т.п. Эти методы хорошо известны из уровня техники, а точный состав средств и методика их использования дается в описании к данному