Оптически анизотропный раствор для изготовления целлюлозных экструдатов, способ его получения, способ получения целлюлозных экструдатов, целлюлозное волокно, резиновое изделие и шина транспортного средства

Реферат

 

Описывается оптически анизотропный раствор для изготовления целлюлозных экструдатов, содержащий целлюлозу и неорганические кислоты фосфора. Раствор содержит 94-100 вес. % следующих компонентов: целлюлоза, фосфорная кислота и/или ее ангидриды, вода и 0-6 вес.% других компонентов. Описывается также способ его получения, способ получения целлюлозных экструдатов, целлюлозное волокно, резиновое изделие и шины транспорного средства. Технический результат - создание анизотропного раствора целлюлозы с улучшенными характеристиками. 7 с. и 32 з.п ф-лы, 15 табл.

Изобретение относится к оптически анизотропному раствору, содержащему целлюлозу и неорганические кислоты фосфора, способу получения таких растворов, получению продуктов из них и полученным продуктам.

Патентная публикация Японии JP 4258648 предлагает растворы целлюлозы, в которых используют по меньшей мере целлюлозу, воду и смесь двух кислот. В описании говорится, что для того, чтобы вызвать надлежащее растворение целлюлозы, растворитель может не содержать в избытке 85 мас.% орто-, мета-, пиро-, или полифосфорную кислоту. Растворы целлюлозы, проявляющие оптическую анизотропию, получают смешиванием серной кислоты, орто- или полифосфорной кислоты и воды в массовом отношении 10-20/70-80/10-20 с растворением в них по меньшей мере 15 мас.% целлюлозы.

Такие оптически анизотропные растворы, содержащие целлюлозу и неорганическую кислоту фосфора, также описаны в статье K. Kamide и др. из Асахи Кемикел Индастри Ко. "Образование и свойства лиотропной мезофазы в системе целлюлоза/смешанная неорганическая кислота", Polymer Journal, 1993, Vol, 25, no. 5, p. 453-461. Эта статья ясно указывает, что анизотропные растворы могут быть получены только из смеси серная кислота/полифосфорная кислота/вода в качестве растворителя и по меньшей мере 16 мас.% целлюлозы.

Серная кислота обладает большим окислительным воздействием на целлюлозу, вызывая ее разложение. В дополнение, использование серной кислоты способствует коррозии и поэтому не вполне подходит для промышленных применений. Другой недостаток состоит в том, что использование смеси различных кислот, таких как серная кислота и фосфорная кислота, невыгодно для промышленных применений, поскольку найдено, что регенерация растворителя из системы растворителей, содержащих несколько кислот, после получения продукта также невыгодна. Система, упомянутая в указанной статье, не позволяет в значительной степени регулировать основные параметры процесса, поскольку при наличии только одной анизотропной системы, считающейся осуществимой, вязкость и надлежащая температура не могут поддерживаться на фиксированном уровне.

Настоящее изобретение относится к анизотропному раствору целлюлозы, лишенному указанных недостатков. Изобретение относится к анизотропному раствору согласно ограничительной части пунктов формулы изобретения и отличается тем, что раствор содержит 94-100 мас.% следующих компонентов: - целлюлоза, - фосфорная кислота и/или ее ангидриды, и - вода.

В настоящем описании растворитель содержит, по определению, добавленную фосфорную кислоту и/или ее ангидрид, причем вся вода, присутствующая в растворе не является химически связанной. По этой причине вода, образующаяся из целлюлозы, которую обычно добавляют позже, всегда считается частью растворителя в настоящем описании, как и вода из веществ других компонентов, которые могут быть добавлены в любое время при получении раствора.

Термин фосфорная кислота согласно терминологии, принятой в настоящем описании, означает все неорганические кислоты фосфора, включая их смеси. Ортофосфорная кислота является кислотой пятивалентного фосфора, т.е. H3PO4. Ее безводный эквивалент, т.е. ангидрид, также известен как пентоксид фосфора (P2O5). В зависимости от количества воды в системе имеется, в дополнение к ортофосфорной кислоте и пентоксиду фосфора, ряд кислот пятивалентного фосфора со связывающей воду способностью между пентоксидом и ортокислотой. Альтернативно, можно использовать растворители из, скажем, ортофосфорной кислоты с концентрацией ортофосфорной кислоты меньше 100%.

Вследствие некоторых реакций фосфорной кислоты с целлюлозой раствор может содержать фосфорные производные целлюлозы. Эти производные целлюлозы также считаются принадлежащими к компонентам, составляющим 94-100 мас.% раствора. Когда массовые процентные составы целлюлозы в растворе, перечисленные в этом описании, относятся к фосфорным производным целлюлозы, они относятся к количествам, пересчитанным снова по целлюлозе. То же самое относится к количествам фосфора, указанным в настоящем описании.

Анизотропный раствор Анизотропия наблюдается уже при концентрации целлюлозы 8% в растворе фосфорной кислоты согласно изобретению, и анизотропные растворы все еще можно получать при концентрации целлюлозы 40% или выше. Такие высококонцентрированные растворы получают преимущественно при повышенных температурах. Выбор концентрации целлюлозы выше 8% обеспечивает более экономичный способ получения продуктов из растворов. Такие анизотропные растворы целлюлозы могут быть получены при концентрации целлюлозы в интервале 8-40%. Найдено, что оптимальная переработка этих растворов в волокна достигается при концентрации 10-30%, предпочтительно 12,5-25%, более предпочтительно 15-23%. Различные области применения растворов могут иметь другие оптимальные интервалы концентраций.

Для получения системы растворителя, с помощью которой можно получать анизотропные растворы согласно изобретению, содержание фосфора определяют пересчетом массовых количеств фосфорной кислоты в растворителе в эквивалентные массовые количества соответствующего ангидрида. Пересчитанная таким образом ортофосфорная кислота состоит из 72,4% пентоксида фосфора и воды (остаток), в то время как полифосфорная кислота H6P4P13 состоит из 84% пентоксида фосфора и воды (остаток).

Концентрацию P2O5 в растворителе рассчитывают сначала из общего массового количества неорганических кислот фосфора и их ангидридов и общего количества воды в растворителе, пересчитывая кислоты на воду и P2O5 и рассчитывая из этого общего массового количества процентный состав P2O5. Если применяют другие фосфорные кислоты, пересчет в соответствующие ангидриды проводят аналогично.

Согласно предложению патентной публикации Японии JP 4258648 анизотропные растворы можно получать произвольной заменой одной фосфорной кислоты на другую, учитывая, что массовый процентный состав заменяющей кислоты в растворе такой же, как при заменяемой кислоте.

Напротив, сейчас найдено, что анизотропные растворы согласно изобретению не могут быть получены произвольной заменой одной фосфорной кислоты на другую с учетом того, что массовый процентный состав раствора остается тем же, но вопрос произвольной замены одной кислоты на другую заключается в поддерживании процентного состава в пересчете обратно на ангидрид внутри определенных границ. Особое участие в образовании анизотропных растворов согласно изобретению играет содержание воды в растворителе, включая количество воды в целлюлозе и кислоте.

Если фосфорная система содержит кислоты пятивалентного фосфора, растворитель для получения раствора согласно изобретению будет содержать 65-80 мас.% пентоксида фосфора, предпочтительно 70-80 мас.%. В наиболее предпочтительном варианте осуществления изобретения для получения анизотропных растворов, содержащих 8-15 мас.% целлюлозы, используют растворитель, содержащий 71-75 мас. % пентоксида фосфора, а для получения анизотропных растворов, содержащих 15-40 мас.% целлюлозы, растворитель, содержащий 15-40 мас.% целлюлозы.

В дополнение к воде, фосфорной кислоте и/или ее ангидридам, целлюлозе, и/или продуктам реакции фосфорной кислоты с целлюлозой в растворе могут присутствовать другие вещества.

Например, растворы могут быть получены смешиванием компонентов, классифицируемых на четыре группы: целлюлоза, вода, неорганические кислоты фосфора и их ангидриды и другие компоненты. Другие компоненты могут быть веществами, способствующими перерабатываемости раствора целлюлозы, растворителями, отличными от фосфорной кислоты, или добавками, например, чтобы противостоять как можно более полно разложению целлюлозы, или красителями и т.д.

Раствор согласно настоящему изобретению состоит из 94-100 мас.% целлюлозы, фосфорной кислоты и/или ее ангидрида и воды. Предпочтительно раствор состоит из 96-100 мас.% целлюлозы, фосфорной кислоты и/или ее ангидрида и воды. Предпочтительно вспомогательные вещества или добавки присутствуют лишь в количестве 0-4 мас.%, в расчете на полную массу раствора. Еще более полезен раствор, содержащий наименьшее возможное количество веществ, отличных от целлюлозы, фосфорной кислоты и/или ее ангидрида и воды, т.е. 0-1 мас.% добавок.

Приготовление анизотропного раствора В авт. св. СССР N SU 1348396 и SU 1397456 раскрыты несколько примеров приготовления растворов целлюлозы в фосфорной кислоте. Полный период времени, требуемый для получения гомогенного раствора, составляет 2-400 часов. Кроме того, найдено, что существует сильное и неконтролируемое снижение степени полимеризации при получении раствора. При приготовлении растворов согласно настоящему изобретению в промышленном масштабе нежелательно иметь потребность в длительных периодах растворения ввиду требуемого далее размера емкостей хранения/растворения. Кроме того, длительные периоды растворения мешают непрерывному приготовлению таких растворов. Также, резкое, неконтролируемое снижение степени полимеризации (СП) может быть неблагоприятным в отношении дальнейшего использования раствора, например, если раствор используют для изготовления целлюлозных волокон. Неконтролируемое снижение СП во время процесса приготовления будет также вносить большие трудности в приготовление раствора постоянного качества, в частности, если для приготовления раствора используют разные типы целлюлозы.

Из указанных документов ясно, что растворение целлюлозы в растворителе, содержащем, главным образом, фосфорную кислоту, будет занимать длительное время.

Патент США 5368385 показывает, что растворение в воде полимеров, которые имеют очень хорошую растворимость в воде, затруднено из-за образования непроницаемой пленки на смоченной поверхности образующихся комков полимера. Не обращаясь к какой-либо теории, заявитель полагает, что во время растворения частиц целлюлозы в фосфорной кислоте внешний слой используемой целлюлозы растворяется сравнительно быстро с образованием непроницаемого слоя аналогично тому, что обнаружено в патенте США 5 368 385. Это и есть непроницаемый слой, который затрудняет/снижает дальнейшее растворение целлюлозы, заключенной в этот слой. Предложено несколько процессов, которые обеспечивают решение этой проблемы.

Можно видеть, что одно решение заключается в очень быстром и тщательном смешивании целлюлозы и растворителя, содержащего фосфорную кислоту, причем смешивание предпочтительно является таким, чтобы получить измельченную целлюлозу в растворителе до образования слишком толстого непроницаемого слоя вокруг кусков целлюлозы, который может замедлять слишком сильно дальнейшее растворение. Скорость образования непроницаемого слоя, т.е. скорость растворения целлюлозы в растворителе, содержащем фосфорную кислоту, может быть снижена понижением температуры контактирования целлюлозы с растворителем. Если в растворителе имеется измельченная целлюлоза, то она находится в микроформе, например, в форме фибрилл целлюлозы и растворение этих маленьких частиц за короткое время даст раствор, содержащий целлюлозу и неорганические кислоты фосфора. Альтернативно, можно видеть, что решение лежит в такой переработке целлюлозы при ее смешивании с растворителем, содержащим фосфорную кислоту, при которой непроницаемый внешний слой, образующийся на целлюлозе, удаляется с него регулярно, с большой частотой удаления.

Смешивание целлюлозы и растворителя, содержащего фосфорную кислоту, будет протекать более быстро, если целлюлоза в растворителе присутствует в более мелких кусочках. С этой целью целлюлоза может быть измельчена предварительно, например, распылением перед смешиванием с растворителем. Альтернативно, целлюлоза и растворитель могут быть смешаны в таком устройстве, которое не только обеспечивает взаимное смешивание целлюлозы и растворителя, но и уменьшение размера кусочков целлюлозы, присутствующих в смеси.

При получении раствора, содержащего целлюлозу, с использованием целлюлозы и растворителя, содержащего фосфорную кислоту, можно указать на три стадии в дополнение к смешиванию целлюлозы и растворителя, а именно: 1) уменьшение размеров целлюлозы, 2) смешивание целлюлозы и растворителя, содержащего фосфорную кислоту, и 3) растворение целлюлозы в растворителе.

При заданной скорости растворения целлюлозы в растворителе, содержащем фосфорную кислоту, стадии 2 и 3 не могут считаться независимым. При смешивании целлюлозы с растворителем целлюлоза также будет растворяться в растворителе. Как указано выше, растворение целлюлозы может быть замедлено понижением температуры.

Стадия 1 может быть отделена от стадий 2 и 3. Примером этого служит получение раствора из порошка целлюлозы и растворителя, содержащего фосфорную кислоту.

Как указано выше, также возможно объединить все три стадии, например, соединяя уменьшение размера, смешивание и растворение целлюлозы в единственном устройстве, оборудованном таким образом, что размер частиц целлюлозы уменьшают и смешивают их в присутствии растворителя.

Существенно, что если растворы целлюлозы готовят в экономически приемлемом масштабе, то полезно объединить все три стадии в одном устройстве, особенно если оказывается возможным приготовить раствор целлюлозы в таком устройстве в непрерывном процессе, т.е. в процессе, в котором исходные материалы подают в устройстве как более или менее постоянный поток, в то время как раствор целлюлозы выгружают из устройства также как более или менее постоянный поток.

Найдено, что растворы согласно настоящему изобретению могут быть получены, если целлюлозу и растворитель, содержащий фосфорную кислоту, соединяют в устройстве, в котором сдвиговые усилия, производимые мешалками, смесителями обеспечивают интенсивное перемешивание одного или нескольких добавленных компонентов. В подходящем варианте осуществления изобретения устройство перемешивания или смешивания, используемое для осуществления способа согласно изобретению, является мешалкой с высоким сдвиговым усилием. Примеры мешалок с высоким сдвиговым усилием включают известные специалистам в данной области техники смесители Linden-Z, сдвоенный IKA, Conterna или двухшнековый экструдер.

Весьма приемлемый вариант осуществления изобретения включает использование устройства, позволяющего также уменьшать размер частиц. Предпочтительно, в качестве смесителя с высоким сдвиговым усилием, позволяющего также уменьшать размер частиц, применяют двухшнековый экструдер. Посредством подходящего выбора перемешивающих, смешивающих и размалывающих приспособлений и их расположения на валах двухшнекового экструдера многие разные формы целлюлозы, такие как листы, полосы, обрезки, стружки и порошки, могут быть уменьшены в размере, при необходимости, и тщательно смешаны с растворителем, содержащим фосфорную кислоту, до того как растворение целлюлозы в растворителе замедлится слишком сильно из-за образования непроницаемого слоя.

После соединения растворителя, содержащего фосфорную кислоту, и целлюлозы в устройстве перемешивания или смешивания целлюлоза смешивается с растворителем и происходит растворение целлюлозы. Уровень смешивания должен быть таким, чтобы предотвратить слишком сильное замедление растворения целлюлозы из-за образования непроницаемого слоя на целлюлозе. Растворение целлюлозы можно замедлить понижением температуры. Один из предпочтительных способов включает соединение целлюлозы и растворителя в устройстве при температуре в секции устройства, где целлюлоза и растворитель соединяются и смешиваются, меньше 30oC, предпочтительно 0-20oC. В другом полезном варианте осуществления изобретения растворитель перед соединением с целлюлозой охлаждают так, что его температура становится ниже 25oC. В этом случае растворитель может быть либо в твердом, либо в жидком состоянии. Можно охладить растворитель перед соединением с целлюлозой так, что он примет форму маленьких твердых комочков.

Согласно следующему предпочтительному варианту осуществления изобретения сначала часть растворителя смешивают с целлюлозой, после чего остаток растворителя добавляют к образовавшемуся смеси/раствору за один или несколько приемов.

В предпочтительном варианте осуществления способа используют устройство, сконструированное так, что при перемешивании и смешивании исходные продукты и образующийся раствор перемещаются от входного отверстия устройства, где растворитель и целлюлоза соединяются, к выходному отверстию, из которого вытекает раствор. Примеры таких устройств включают смесители Conterna, Linden-Z, Bush экструдер и двухшнековый экструдер.

В предпочтительном варианте способа используют двухшнековый экструдер в качестве перемешивающего и смешивающего устройства с системой перемещения. В таком устройстве может быть несколько различных зон, через которые проходят продукты. В первой зоне будет происходить, главным образом, смешивание подаваемой целлюлозы с растворителем и уменьшение размеров кусков. В следующей зоне растворение целлюлозы также будет играть основную роль. Следующая зона, главным образом, будет содержать образующийся раствор, который подвергают дальнейшей гомогенизации и смешивают с еще нерастворенной целлюлозой.

В таком устройстве на растворение целлюлозы и свойства образующего раствора может влиять температура, выбранная для разных зон. При температуре в первой зоне ниже 30oC, предпочтительно 0-20oC, растворение целлюлозы может замедляться. При повышении температуры, например, в следующей зоне, растворение целлюлозы ускоряется. В этой связи следует отметить, что как при растворении целлюлозы, так и при соединении целлюлозы и растворителя может выделяться тепло.

Подбором температуры и времени пребывания в зоне перемешивания и смешивания устройства, которая содержит, главным образом, раствор целлюлозы, можно регулировать степень полимеризации (СП). Вообще говоря, это значит, что чем выше температура и чем больше время пребывания при этой температуре, тем больше будет снижение (СП). Дополнительно, СП исходного материала может влиять на снижение СП при определенных температуре и времени пребывания.

Поскольку теплообмен между продуктами в устройстве и самим устройством, как правило, не бывает идеальным, то может быть разница в температуре продуктов в устройстве и самим устройством.

Устройство дополнительно может содержать зону деаэрации полученного раствора, например, пропусканием раствора через зону пониженного давления. В этой или в отдельной зоне также могут быть извлечены или добавлены из/в полученный раствор вода или другие компоненты.

Для удаления любых оставшихся маленьких нерастворенных частиц раствор фильтруют в устройстве или после него.

Образующийся раствор является высоковязким. Он может быть использован немедленно, а также сохранен некоторое время при низкой температуре, например от -20 до 10oC. Вообще говоря, чем дольше желательно сохранить раствор, тем ниже должна быть выбранная температура.

Следует заметить, что полученный раствор может стать твердым, например, путем кристаллизации, если его хранят некоторое время при низкой температуре. Нагревание образовавшейся твердой массы снова даст высоковязкий раствор.

Приведенный способ дает возможность приготовить растворы целлюлозы за короткое время и с регулированным снижением степени полимеризации целлюлозы. Например, найдено, что из порошковой целлюлозы и растворителя, содержащего фосфорную кислоту, раствор целлюлозы можно приготовить за 15 минут или меньше. Этот временной период может быть еще более снижен, если применять более высокую температуру для приготовления раствора.

Раствор согласно изобретению может быть приготовлен из доступных типов целлюлозы, таких как Arbocell BER 600/30, Arbocell L 600/30, Buckeye v. 5, Buckeye v. 60, Buckeye v. 65, Viscocraft, пенька, лен, рами и целлюлоза эвкалипта, которые все известны специалистам в данной области техники. Целлюлозу можно добавлять в разных формах, например, в форме листов, лент, обрезков, стружек или порошков. Форма введения используемой целлюлозы в устройство смешивания и перемешивания ограничивается типом устройства. Если целлюлозу используют в форме, которая не может быть загружена в устройство, то ее размеры следует уменьшить вне устройства известным способом, например молотковой дробилкой или разрывателем целлюлозы.

Целлюлоза, которая должна использоваться, должна являться -целлюлозой с консистенцией более 90%, предпочтительно более 95%. Для прядения хороших волокон из растворов рекомендуется использовать так называемую растворяющуюся целлюлозную массу с высоким содержанием -целлюлозы, например такую, которую обычно применяют в промышленности и изготовлении тканей. Примеры подходящих типов целлюлозы включают Arcobel BER 600/30, Buckeye v. 60, Buckey v. 65, и Viscocraft. Степень полимеризации целлюлозы, определенная по методу, приведенному далее, составляет 250-1500, более предпочтительно 350-1350. Степень полимеризации целлюлозы в растворе предпочтительно составляет 215-1300, более предпочтительно 325-1200.

Целлюлоза, производимая промышленностью, обычно содержит некоторое количество воды и может быть использована как таковая без каких-либо препятствий. Конечно, можно использовать сухую целлюлозу, но это несущественно.

Если используют смесь различных неорганических кислот фосфора для получения растворителя, содержащего желаемое количество кислоты, превращенной в ангидрид, кислоты после смешивания предпочтительно нагревают до температуры 30-80oC и растворитель выдерживают в нагретом состоянии в течение 1/2-12 часов. В некоторых случаях, в зависимости от используемых кислот, могут быть выбраны другие времена и/или температуры. Например, очень гомогенный раствор без поверхностных неоднородностей может быть получен при использовании растворителя, образующегося при плавлении ортофосфорной кислоты при температуре примерно 40-60oC, добавлении нужного количества полифосфорной кислоты, смешивании их и охлаждении смеси до примерно 20oC.

В приемлемом способе растворитель оставляют стоять некоторое время, например от 30 минут до нескольких часов, перед соединением с целлюлозой.

Другие компоненты могут быть добавлены в растворитель до его соединения с целлюлозой. Другие компоненты могут быть веществами, способствующими перерабатываемости раствора целлюлозы, растворителями, отличными от фосфорной кислоты, или добавками, например, чтобы противостоять как можно более полно разложению целлюлозы, или красителями и т.д. Альтернативно, другие компоненты могут быть добавлены к целлюлозе до ее соединения с растворителем. А также другие компоненты могут быть добавлены при соединении растворителя с целлюлозой. Конечно, другие компоненты могут быть добавлены и после соединения растворителя с целлюлозой.

Найдено, что время и температура, при которой сохраняется раствор, и концентрация кислоты существенно влияют на содержание фосфора, связанного с целлюлозой в растворе.

Полагают, что фосфор связан с целлюлозой, если, после тщательной промывки и, необязательно, нейтрализации, коагулированный раствор еще содержит фосфор.

Найдено, что раствор согласно настоящему изобретению, содержащий 18 мас. % целлюлозы и полученный растворением целлюлозы в растворителе, содержащем 80 мас. % ортофосфорной кислоты и 20 мас.% полифосфорной кислоты, будет содержать приблизительно 0,25 мас.% связанного фосфора после хранения в течение 1 часа при 30oC. Однако, если такой раствор хранят при 50oC, то он будет содержать приблизительно 0,8 мас.% связанного фосфора спустя 1 час.

Найдено, что в любом случае раствор согласно изобретению будет содержать по меньшей мере 0,02 мас.% фосфора, связанного с целлюлозой. Найдено, что раствор с низким содержанием фосфора, связанного с целлюлозой, может быть получен добавлением небольшого количества воды к растворителю непосредственно перед добавлением целлюлозы, одновременно с добавлением целлюлозы или сразу после добавления целлюлозы.

Полученный раствор может быть использован для различных целей. Например, раствор может быть использован для получения волокон для промышленного и текстильного использования, для получения полых волокон, мембран, нетканых материалов, пленок и в других хорошо известных применениях растворов, содержащих целлюлозу. А также раствор можно использовать для получения производных целлюлозы.

Прядение анизотропного раствора Полученный раствор можно прясть или экструдировать через фильеру, имеющую нужное количество отверстий, или формовать для получения пленки. Прядильные растворы с концентрацией целлюлозы 15-25 мас.% предпочтительно экструдируют при температуре 0-75oC, причем времена пребывания при более высоких температурах должны быть возможно более короткими. Предпочтительно, такие растворы экструдируют при температуре 20-70oC, более предпочтительно при температуре 40-65oC. Для других концентраций считается, что чем выше концентрация, тем температура прядения предпочтительно будет также выше, чем интервалы, приведенные здесь, чтобы компенсировать более высокую вязкость раствора и наоборот. Однако, следует заметить, что более высокая температура прядения может приводить к более высокому содержанию фосфора, связанного с целлюлозой.

Желаемое число отверстий в фильере зависит от последующего использования получаемых волокон. Следовательно, одна фильера может быть использована не только для экструдирования мононитей, но также для экструдирования многонитевых пучков, требующихся в практике и содержащих 30-10000, предпочтительно 100-2000, нитей. Такие многонитевые пучки предпочтительно получают на кластерной установке формования пучков, содержащей ряд отверстий, формующих пучки, как описано в европейском патенте ЕР 168876, или используя фильеру, описанную в публикации международной заявки WO 95/20696.

После экструзии экструдаты пропускают через воздушную щель, длину которой выбирают в зависимости от условий способа, например, температуры прядения, концентрации целлюлозы и желаемой степени вытягивания экструдатов. В общем, воздушная щель будет иметь длину 4-200 мм, предпочтительно 10-100 мм. Затем полученные экструдаты пропускают через коагуляционную ванну известным способом. В качестве подходящих коагулянтов могут быть выбраны низкокипящие органические жидкости, которые не приводят к набуханию целлюлозы, например вода и смеси целлюлозы с водой. Примеры таких подходящих коагулянтов включают спирты, кетоны, сложные эфиры и воду или их смеси. Предпочтение отдается использованию изопропанола, н-пропанола, ацетона или бутанона в качестве коагулянтов, поскольку они показывают очень хорошее коагулирующее действие и в большинстве случае имеют хорошие свойства в отношении безопасности и легкости обращения. По этой причине смеси воды и этих коагулянтов являются также весьма полезными.

Коагуляционная ванна предпочтительно имеет температуру от -40 до 30oC (при условии, что выбранный коагулянт позволяет это) и очень хорошие результаты получают при температурах коагуляционной ванны ниже 20oC.

После коагуляции может следовать промывка, возможно в комбинации с нейтрализующей обработкой. Промывка может происходить в форме помещения бобины коагулированной пряжи в сосуд, содержащий промывочное средство, или еще посредством пропускания волокон через ванну, содержащую соответствующую жидкость, в непрерывном способе и затем намоткой их на валик. В способе весьма пригодном для реальной практики промывку осуществляют струйным промывным устройством, таким как описанный в патенте Великобритании GB 762959. В качестве промывочного средства используют низкокипящие органические жидкости, которые не вызывают набухания целлюлозы, например, спирты, кетоны и сложные эфиры, и воду или их смеси. Предпочтение отдается изопропанолу, н-пропанолу, бутанону, воде или их смесям в качестве промывочного средства. Весьма пригодны для использования вода или смеси воды и коагулирующего средства. Промывка может быть проведена при любой температуре ниже температуры кипения промывочного средства, в любом интервале, предпочтительно ниже 100oC.

Найдено, что когда раствор согласно изобретению хранится длительный период времени или при повышенной температуре, то он не может быть выпряден в волокна способом прядения с воздушной щелью, если раствор коагулируют в водной ванне или если, после коагуляции, волокна промывают водой, поскольку волокна будут набухать в значительной степени при контактировании с водой.

Также найдено, что количество воды, поглощенное волокном при коагуляции в водной ванне или когда волокно промывают в водной ванне, составляет больше 560% относительно массы сухого волокна, после чего индивидуальные волокна в пучке больше не различаются. Поглощение воды в количестве больше 1300% даст гель. Для приготовления волокон с полезными механическими свойствами предпочтительно поглощение влаги волокном должно быть меньше 570%. Найдено, что пониженное содержание фосфора, связанного с целлюлозой, приводит к пониженному поглощению влаги. Найдено, что если раствор согласно изобретению содержит менее 3 мас.% связанного фосфора и раствор коагулируют в ванне, содержащей меньше 10 мас.% воды, например, в ацетоновой коагуляционной ванне, а промывают волокно в водной ванне, то индивидуальные волокна в пучке еще ясно различаются. Далее найдено, что если раствор содержит менее 1,3 мас.% связанного фосфора и раствор коагулируют в воде, то отдельные волокна в пучке еще ясно различаются при водной промывке.

При получении волокон с полезными механическими свойствами раствор предпочтительно содержит менее 0,8 мас.%, более предпочтительно менее 0,5 мас.% связанного фосфора.

Нейтрализация может быть проведена либо сразу после стадии промывки, либо между стадиями коагуляции и промывки. Альтернативно, нейтрализацию можно проводить после стадии промывки и за ней может следовать очередная стадия промывки. В качестве средства нейтрализации можно использовать NaOH, LiOH, NaHCO3, NH4OH, этанолят натрия или метанолят натрия, например, в периодическом способе, таком как погружение, или в непрерывном способе, таком как пропускание через ванну, распыление, использование вальцов или ванны, оборудованной струйным промывателями.

Найдено, что чувствительность волокон к термической обработке может быть значительно уменьшена посредством последующей обработки экструдатов. Такой способ предложен в заявке настоящего заявителя, находящейся одновременно на рассмотрении, на основе патента Нидерландов HL 9401351.

Раствор согласно изобретению особенно полезен, поскольку его приготовление и прядение могут быть проведены как непрерывный способ в одной линии. Дополнительно, раствор имеет то преимущество, что если из него получают продукты, особенно в отсутствие компонентов, отличных от фосфорной кислоты, воды и целлюлозы, целлюлоза и фосфорная кислота почти не реагируют и, следовательно, нет необходимости в регенерации целлюлозы или такая необходимость незначительна.

Таким предпочтительным способом получают целлюлозные волокна особенно пригодные для использования в резиновых изделиях, подвергающихся механической нагрузке, таких как автомобильные шины, конвейерные ленты, резиновые шланги и подобные им изделия. Волокна особенно пригодны для использования в качестве армирующего материала автомобильных шин, например, шин легковых и грузовых автомобилей. Найдено, что волокна, полученные прядением раствора согласно изобретению обладают хорошей стойкостью к динамической сжимающей нагрузке. Найдено, что эта стойкость возрастает с уменьшением содержания фосфора, связанного с целлюлозой в растворе. Эта стойкость может быть измерена, например, используя так называемый тест GBF (Goodrich Block Fatigue, блочная усталость по методу фирмы "Гудрич").

Вообще говоря, предложенные волокна составляют полезную альтернативу промышленным волокнам, таким как найлон, вискозное и полиэфирное волокна и арамид.

Далее, волокна могут быть превращены в пульпу. Такая пульпа, которая может быть смешана, или нет, с другими материалами, такими как сажевая пульпа, стеклянная пульпа, арамидная пульпа или полиакрилонитрильная пульпа, хорошо подходит для применения в качестве армирующего материала, например, в асфальте, цементе и/или трущихся материалах.

Свойства волокон, полученных прядением анизотропного раствора. Изобретение также относится к образующимся целлюлозным волокнам, которые имеют очень хорошие механические свойства, такие как прочность, модуль и полезное растяжение. Поскольку найдено, что растворитель слабо реагирует с целлюлозой, то свойства, вносимые структурой целлюлозы, такие как модуль цепи, сохраняются, в то время как анизотропия раствора делает возможным достижение свойств, желательных для многих механических применений.

Свойства волокон делают их особенно пригодными для технических применений.

Используя раствор согласно настоящему изобретению, можно получить волокна с гораздо лучшими свойствами, чем целлюлозные волокна, известные в данной области техники, например, Cordenka 660R и Cordenka 700R, которые получают так называемым вискозным способом.

Используя раствор согласно настоящему изобретению, можно изготовить целлюлозные нити, которые имеют предел прочности на разрыв выше 700 мH/текс, более предпочтительно выше 850 мH/текс, максимальный модуль при растяжении на меньше, чем 2%, составляет по меньшей мере 14 H/текс, растяжение при разрыве - по меньшей мере 4%, более предпочтительно - выше 6%.

Вследствие природы прядильного раствора и коагулянта волокна содержат 0,02-1,3 мас.% фосфора, связанного с целлюлозой, если волокна коагулируют в воде, или 0,02-3,0 мас. % фосфора, связанного с целлюлозой, если волокна коагулируют в коагулянте, который не содержит воды, и промывают водой. Предпочтительно, волокна содержат 0,02-0,5 мас. % фосфора, связанного с целлюлозой.

Нити в пучке волокон обладают гораздо большей прочностью на сжатие, чем нити известных в данной области техники волокон, а именно: 0,30-0,35 ГПа для нитей, полученных с использованием раствора согласно настоящему изобретению, по сравнению с 0,15-0,20 ГПа для нитей известных волокон.

Кроме того, при исследовании волокон Конфокальной Лазерной Сканирующей Микроскопией (КЛСМ, CLSM) в нитях с трудом можно обнаружить какие-либо поры, в то время как нити известных в этой области техники волокон показывают большое количество таких пор. Такие же свойства обнаружены при использовании малоуглового рассеяния рентгеновских лучей.

В публикации WO 85/05115 международной заявки сообщается о прядении многонитевых волокон целлюлозформиата и регенерированной целлюлозы из анизотропных растворов, содержащих фосфорную кислоту. Волокна показывают морфологию, которая оказывается построенной из слоев, встроенных один в другой, которые окружают ось волокна и которые, кроме того, изменяются псевдопериодически вдоль оси волокон. В публикации WO 94/17136 международной заявки полагают, что морфология связана с анизотропным раствором, из которого получают нити.

Хотя волокна согласно настоящему изобретению получают из анизотропного раствора, содержащего фосфорную кислоту, волокна не показывают морфологии, описанной в публикации WO 85/05115.

При использовании широкоугольной дифракции найдена кристаллическая структура, которая подобна кристаллической структуре известных целлюлозных волокон. Полуширина некоторых отражений в дифра