Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты
Реферат
Стабилизатор предназначен для включения на низкой стороне главного трансформатора подстанции и содержит два преобразователя частоты ПЧ1, ПЧ2, между которыми включен понижающий высокочастотный трансформатор. Преобразователь ПЧ1 повышает частоту кратно частоте сети и выполнен со звеном постоянного напряжения на базе управляемого реверсивного выпрямителя и инвертора напряжения. Преобразователь ПЧ2 понижает частоту до частоты сети и представляет собой шестифазно-трехфазный нулевой циклоконвертор с естественной коммутацией. Устройство обеспечивает широтно-импульсное регулирование добавочного напряжения в трех поддиапазонах при помощи нулевого циклоконвертора и амплитудное регулирование в каждом поддиапазоне при помощи реверсивного выпрямителя. Стабилизация напряжения на нагрузке производится реверсивным выпрямителем по отклонению напряжения сети и нулевым циклоконвертором по отклонению напряжения нагрузки. Технический результат - улучшение качества выходного напряжения. 1 з.п. ф-лы, 6 ил.
Изобретение относится к электронике, в частности к преобразовательной технике, и может быть использовано для стабилизации трехфазного напряжения на низкой стороне трансформаторной подстанции.
Известен стабилизатор трехфазного напряжения трансформаторной подстанции /Пат. РФ N 1636833, 5 H 02 M 5/45, G 05 F 1/30, 1993/, который включается на низкой стороне главного трансформатора подстанции и содержит управляемый реверсивный выпрямитель и трехфазный инвертор напряжения с синхронизированными с сетью системами управления. Основной недостаток этого устройства - большой вес и габаритные размеры трансформатора. Известен также стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты /Пат. РФ N 2071633, 6 H 02 М 5/45, G 05 F 1/30, 1997/, который взят за прототип. Он по сравнению с предыдущим аналогом имеет улучшенные вес и габариты. Стабилизатор включен в цепь нагрузки главного трансформатора подстанции и содержит два преобразователя частоты, один из которых повышает частоту напряжения и выполнен на основе управляющего реверсивного выпрямителя и инвертора напряжения, а другой понижает частоту до частоты сети и представляет собой нулевой трехфазно-трехфазный циклоконвертор, и включенный между ними понижающий высокочастотный трансформатор. Недостатком прототипа является большой процент высших гармонических составляющих в кривой выходного напряжения. Задачей изобретения является улучшение синусоидальности выходного напряжения при сохранении улучшенных массогабаритных показателей и высокого быстродействия. Эффект от решения поставленной задачи заключается в том, что вместо двухполярной вольтодобавки при изменении угла управления нулевого циклоконвертора достигается трехзонное регулирование с возможностью изменения амплитуды в каждой зоне, что улучшает коэффициент несинусоидальности выходного напряжения в 2,5-3 раза. Задача решается за счет того, что введен датчик отклонения напряжения сети, вход которого через измерительно-синхронизирующий блок подключен к фазным вторичным обмоткам главного трансформатора, а его выход подключен к управляющему входу системы управления выпрямителем, причем понижающий высокочастотный трансформатор выполнен трехфазно-шестифазным, а нулевой циклоконвертор шестифазно-трехфазным, система управления выпрямителем выполнена с возможностью ограничения минимального уровня выпрямленного напряжения, а система управления инвертором напряжения со 180-градусным алгоритмом управления. К недостатку прототипа можно отнести также ограниченные функциональные возможности. В результате применения дополнительных средств устройство обеспечивает симметрирование трехфазного напряжения на нагрузке. Это достигается тем, что в качестве датчика отклонения напряжения нагрузки применен блок датчиков отклонения фазных напряжений нагрузки, фазные выходы которых подключены к управляющим входам соответствующих фазных каналов системы управления нулевым циклоконвертором. Схема стабилизатора до уровня известных функциональных элементов представлена на фиг. 1, а диаграммы режимов работы с характерными поддиапазонами регулирования - на фиг. 2 - 6, где Uн - фазное напряжение нагрузки; Uс - фазное напряжение сети; Uд - фазное напряжение вольтодобавки. Устройство (фиг. 1) содержит главный трансформатор 1 с первичной и вторичной обмотками 2 и 3, понижающий высокочастотный трансформатор 4 с первичной и вторичной обмотками 5 и 6, реверсивный выпрямитель 7 с системой управления 8, фильтр 9, инвертор напряжения 10 с системой управления 11, датчик отклонения напряжения сети 12, нулевой циклоконвертор 13 с системой управления 14, датчик отклонения напряжения нагрузки 15, нагрузку 16, измерительно-синхронизирующий блок 17. В устройстве применен трехфазный инвертор напряжения 10, работающий со 180-градусным алгоритмом управления, при этом вторичная обмотка 6 понижающего высокочастотного трансформатора 4 расщеплена на две встречные полуобмотки и создает шестифазную систему напряжений. Циклоконвертор 14 выполнен по шестифазно-трехфазной нулевой схеме. Элементы устройства соединены следующим образом. Вторичная обмотка 3 главного трансформатора 1 включена между выходом нулевого циклоконвертора 13 и нагрузкой 16. Первичная обмотка 5 понижающего высокочастотного трансформатора 4 соединена в звезду и через последовательно соединенные инвертор напряжения 10, фильтр 9 и реверсивный выпрямитель 7 подключена к нагрузке 16, вторичная обмотка 6 понижающего высокочастотного трансформатора 4 соединена в звезду и подключена к входу нулевого циклоконвертора 13, первичная обмотка 2 главного трансформатора 1 подключена к сети. Управляющие входы системы управления 14 циклоконвертором 13 подключены к выходам блока датчиков отклонения напряжения нагрузки 15, который подключен к вторичной обмотке 3 главного трансформатора 1. Управляющие входы системы управления 8 реверсивным выпрямителем 7, управляющие входы системы управление 11 инвертором напряжения 10, управляющие входы системы управление 14 циклоконвертором 13, а также датчик отклонения напряжения сети 12 подключены к выходам измерительно-синхронизирующего блока 17, входы которого подключены к вторичным фазным обмоткам 3 главного трансформатора 1. Входы нулевого циклоконвертора 13 подключены к вторичной обмотке 6 понижающего высокочастотного трансформатора 4, при этом вторичная обмотка 6 понижающего высокочастотного трансформатора 4 выполнена с изолированной или заземленной нейтралью. Устройство (фиг. 1) работает следующим образом. В режиме вольтодобавки дополнительный поток энергии направлен из сети в нагрузку 16 через главный трансформатор 1, реверсивный выпрямитель 7, фильтр 9, инвертор напряжения 10, понижающий высокочастотный трансформатор 4 и нулевой циклоконвертор 13, а в режиме вольтовычета из нагрузки в сеть в обратном направлении. Пофазный перевод устройства из режима вольтодобавки в режим вольтовычета (см. фиг. 2, фиг. 3, фиг. 4, фиг. 5, фиг. 6.) производится увеличением угла задержки включения тиристоров соответствующих фазных анодных и катодных групп нулевого циклоконвертора 13 на величину, которая больше половины полупериода высокочастотного напряжения. Стабилизация напряжения на нагрузке производится как амплитудным способом посредством реверсивного выпрямителя 7, так и трехзонным широтно-импульсным способом посредством нулевого циклоконвертора 13. В процессе формирования добавочного напряжения участвует понижающий высокочастотный трансформатор 4, который задает требуемый диапазон стабилизации напряжения, а также реверсивный выпрямитель 7, фильтр 9, инвертор напряжения 10 и нулевой циклоконвертор 13. Инвертор напряжения 10 формирует трехфазное напряжение повышенной частоты кратной частоте сети, например 400 Гц. Это напряжение понижается высокочастотным трансформатором 4 и подается на вход нулевого циклоконвертора 13, выполненного на трех анодных и трех катодных группах, каждая из которых содержит по шесть тиристоров. Внутри каждой группы управляемых вентилей нулевого циклоконвертора 13 коммутация происходит естественным путем в выпрямительном и инверторных режимах за счет питания вентильных групп периодически изменяющимся высокочастотным напряжением, снимаемым с вторичной обмотки 6 понижающего высокочастотного трансформатора 4, а формирование синхронизированной с сетью вольтодобавки производится нулевым циклоконвертором 13 в зависимости от рассогласования фазных напряжений нагрузки при помощи фазных каналов системы управления 14. Стабилизация напряжения во всех фазах нагрузки производится действием реверсивного выпрямителя 7, а в каждой фазе отдельно при помощи фазных каналов нулевого циклоконвертора 13. Такое совместное регулирование обеспечивает симметрию напряжения нагрузки. Особенностью устройства является то, что трехфазный инвертор напряжения 10 со 180-градусным управлением формирует двухступенчатое фазное напряжение с длительностью ступени /3 рад, и тиристоры шестифазно-трехфазного нулевого циклоконвертора находятся в проводящем состоянии также /3 рад. Это обеспечивает регулирование вольтодобавки в трех поддиапазонах и улучшение формы выходного напряжения, особенно при синусоидальных управляющих сигналах фазных каналов системы управления 14 нулевым циклоконвертором 13, когда формирование вольтодобавки производится плавным переходом из одного поддиапазона в другой внутри каждого периода сетевого напряжения. Другой положительной особенностью стабилизатора является возможность его применения в электроустановках с удвоенной мощностью без применения параллельного соединения тиристоров с уравнительными цепями для соответствующего двукратного увеличения тока нулевого циклоконвертора 13. Это так же как и улучшение формы напряжения достигается за счет применения собственно трехфазно-шестифазного понижающего высокочастотного трансформатора 4 и шестифазно-трехфазного нулевого циклоконвертора 13. Наиболее целесообразной областью применения быстродействующего электронного стабилизатора напряжения являются промышленные энергоблоки мощностью до 1000 кВА.Формула изобретения
1. Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты, включенный на низкой стороне главного трансформатора подстанции и содержащий датчик отклонения напряжения нагрузки, понижающий высокочастотный трансформатор, а также нулевой циклоконвертор с естественной коммутацией, инвертор напряжения с входным фильтром и реверсивным выпрямителем, системы управления которых синхронизированы с сетью, причем система управления инвертором напряжения выполнена с возможностью повышения частоты кратно частоте сети, а система управления нулевым циклоконвертором выполнена с возможностью понижения частоты до частоты сети, при этом управляющий вход системы управления нулевого циклоконвертора подключен к выходу датчика отклонения напряжения нагрузки, первичная обмотка понижающего высокочастотного трансформатора соединена в звезду и через инвертор напряжения, его фильтр и реверсивный выпрямитель подключена к нагрузке, а вторичная обмотка понижающего высокочастотного трансформатора соединена в звезду с изолированной или заземленной нейтралью и через нулевой циклоконвертор и вторичные фазные обмотки главного трансформатора также подключена к нагрузке, отличающийся тем, что введен датчик отклонения напряжения сети, вход которого через измерительно-синхронизирующий блок подключен к фазным вторичным обмоткам главного трансформатора, а его выход подключен к управляющему входу системы управления реверсивным выпрямителем, причем понижающий высокочастотный трансформатор выполнен трехфазно-шестифазным, а нулевой циклоконвертор - шестифазно-трехфазным, система управления реверсивным выпрямителем выполнена с возможностью ограничения минимального уровня выпрямленного напряжения, а система управления инвертором напряжения со 180-градусным алгоритмом управления. 2. Стабилизатор по п.1, отличающийся тем, что в качестве датчика отклонения напряжения нагрузки применен блок датчиков отклонения фазных напряжений нагрузки, фазные выходы которых подключены к управляющим входам соответствующих фазных каналов системы управления нулевым циклоконвертором.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6