Способ непрерывного получения 3-(метилтио)-пропаналя (варианты)

Реферат

 

Описывается способ непрерывного получения 3-(метилтио)пропаналя, отличающийся тем, что включает контактирование газообразного потока акролеинсодержащего сырья с жидкой реакционной средой в зоне газожидкостного контактирования, причем эта реакционная среда содержит 3-(метилтио)пропаналь, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином, а газообразный поток акролеинсодержащего сырья содержит акролеиновые пары и неконденсируемый газ, при этом относительные количества акролеина и метилмеркаптана, входящих в зону контактирования, являются по существу стехиометрически эквивалентными, вследствие чего акролеин переходит из потока сырья в реакционную среду и вступает в этой среде в прямое взаимодействие с метилмеркаптаном без существенного образования промежуточного геми(метилтио)ацеталя 3-(метилтио)пропаналя, в результате чего образуется жидкий реакционный продукт, содержащий 3-(метилтио)пропаналь; отделение неконденсируемого газа от жидкого реакционного продукта; разделение этого реакционного продукта на фракцию продукта и циркулирующую фракцию и возврат циркулирующей фракции в зону газожидкостного контактирования, причем акролеин и метилмеркаптан взаимодействуют в жидкой среде в реакционной зоне, которая включает зону газожидкостного контактирования и циркуляционную зону, в которую жидкий реакционный продукт поступает из зоны газожидкостного контактирования и через которую циркулирующую фракцию возвращают в зону газожидкостного контактирования, причем метилмеркаптан вводят в такую реакционную зону на таком участке или участках, чтобы ни в одном секторе реакционной зоны избыток метилмеркаптана не способствовал в течение достаточно длительного промежутка времени существенному образованию промежуточного геми(метилтио)ацеталя. Технический результат - упрощение процесса и получение высококачественного целевого продукта для прямого использования при получении метионина без необходимости последующей очистки. 4 с. и 9 з.п. ф-лы, 8 ил., 5 табл.

Изобретение относится к получению 3-(метилтио)пропаналя, в частности к способу непрерывного прямого получения 3-(метилтио)пропаналя в газожидкостной реакционной среде.

3-(метил)тиопропаналь (называемый далее в описании "ММП") представляет собой промежуточный продукт для получения как d,1-метионина, так и 2-гидрокси-4-(метилтио)масляной кислоты ("ГММК"). Метионин является незаменимой аминокислотой, дефицит которой обычно наблюдается в компонентах комбикормов для животных. ГММК служит источником метионина и ее широко используют в качестве метиониновой добавки к кормовым смесям для животных. Для получения ГММК или метионина, как правило, необходим ММП, относительно свободный от примесей.

ММП получают взаимодействием акролеина с метилмеркаптаном. При проведении обычного процесса получения ММП жидкий акролеин и метилмеркаптан вводят в реактор, содержащий жидкофазный ММП-продукт. Реакция протекает в жидкой фазе. Для получения ММП требуемого качества во время такого процесса используют очищенный акролеин и/или ММП-продукт перед использованием при получении либо ГММК, либо метионина перегоняют.

Акролеин представляет собой высокотоксичный и горючий материал. Его обычно получают парофазным окислением пропилена над твердофазным катализатором, обеспечивающим образование сырого газообразного реакционного продукта, который содержит водяной пар, акриловую кислоту, ацетальдегид и другие органические побочные продукты. Этот газ, как правило, обрабатывают для удаления акриловой кислоты, а затем вводят в контакт с охлажденной водой для абсорбции акролеина. Конечный водный раствор перегоняют с выделением абсорбированного акролеина и других органических компонентов. Далее сырой акролеин очищают, удаляя низкокипящие примеси, такие как ацетальдегид, получая очищенный жидкий акролеиновый продукт. Этот очищенный жидкий акролеин оставляют на хранение для использования при получении ММП.

Хранение жидкого акролеина осложнено значительной токсичностью, пожаро- и взрывоопасностью. Следовательно, создание условий безопасного обращения с этим материалом сопряжено с большими капитальными и технологическими затратами. Затраты, связанные с работой с акролеином, можно было бы существенно снизить, если акролеин в газовой фазе из процесса получения акролеина непрерывно направлять непосредственно в ММП-реактор без хранения или конденсации. Однако, поскольку в обычных промышленных процессах получения ММП предусмотрены жидкофазные реакции, необходимость конденсации газообразного акролеинового продукта считается неизбежной. Более того, так как в обычном процессе, как правило, применяют реакционную систему периодического действия, конденсация и хранение жидкого акролеина по ходу процесса во временном накопителе между процессом получения акролеина и ММП-реактором являются необходимыми.

В патенте Нидерландов 6809647 описан способ, в котором акролеин получают каталитическим окислением пропилена, а акролеинсодержащую реакционную газовую смесь направляют в вертикальную реакционную колонну, в которой образуется ММП. ММП циркулирует по реакционной колонне и в ее нижнюю часть вводят как акролеинсодержащий газ, так и метилмеркаптан. Выходящий из колонны ММП содержит отдельную водную фазу, которую удаляют в сепараторе. ММП, отводимый из сепаратора, частично возвращают в реакционную колонну. В циркулирующий ММП добавляют раствор бикарбоната натрия. ММП-продукт, удаляемый из циркуляционной реакционной системы, перегоняют под давлением 100 мм рт.ст.

В патенте США 4225516 описан способ непрерывного получения ММП из акролеинового газообразного продукта каталитического окисления пропилена. При осуществлении такого способа газ вначале обрабатывают для удаления акриловой кислоты, а затем охлаждают для конденсации водяного пара. Для снижения содержания водяного пара до уровня, приемлемого для ММП-реакции, конечную температуру конденсации поддерживают на уровне от 0 до -5oC. Обработанный и охлажденный поток газообразного акролеина вводят в контакт с потоком жидкого ММП в противоточной абсорбционной башне, результатом чего является абсорбция акролеина ММП. Поток жидкого ММП, содержащего растворенный акролеин, направляют в ММП-реактор, в который добавляют метилмеркаптан. При осуществлении такого способа протекает взаимодействие метилмеркаптана с ММП с образованием гемимеркапталя ММП, а этот гемимеркапталь в свою очередь взаимодействует с акролеином в жидкой фазе с образованием дополнительного количества ММП. Таким образом, для реализации этого способа требуется присутствие в реакционной смеси до 1 вес. % гемимеркапталя. ММП-продукт отводят из системы со скоростью, эквивалентной скорости получения ММП в реакторе, в то время как основную массу ММП-потока возвращают в акролеиновый абсорбер.

Для того, чтобы обеспечить количественную абсорбцию акролеина с использованием ММП по патенту '516, необходимо охлаждение циркулирующего ММП до температуры от 0 до -15oC до его вхождения в абсорбер. Охлаждение, необходимое для конденсации водяного пара при температуре от 0 до -5oC, и охлаждение ММП до -15oC составляют немалую долю капитальных и эксплуатационных затрат при осуществлении способа по патенту '516. Более того, поскольку такая реакция протекает через стадию образования гемимеркапталя, кинетика этой реакции конверсии относительно низка, что обусловливает более низкую, чем это необходимо, производительность и, таким образом, усугубляет эксплуатационные затраты при практической реализации такого способа.

Хотя абсорбция при температуре ниже нуля увеличивает рекуперацию акролеина в равновесном состоянии, в этих условиях увеличивается также абсорбция ММП-продуктом примесей, таких как уксусный альдегид. Более того, поскольку скруббер отделен от реактора, акролеин, абсорбированный в скруббере, сразу же в абсорбционной зоне не расходуется. Следствием этого является тенденция акролеина к накоплению в жидкой фазе, что ослабляет движущую силу массопереноса. Высокая концентрация акролеина в ММП-жидкости также повышает возможность образования побочных продуктов взаимодействий между акролеином и ММП.

Задачей настоящего изобретения является создание усовершенствованного способа получения ММП, который можно осуществлять при проведении непрерывного процесса и который можно осуществлять с высокой производительностью. Другой задачей является разработка способа, который можно осуществлять с использованием относительно неочищенного акролеина в качестве сырого материала; а также разработка способа, в котором не требуется охлаждение для абсорбции или конденсации акролеина и в котором устранена необходимость хранения жидкого акролеина, в частности, создание такого способа, который можно осуществлять с использованием газообразного акролеинового сырья, полученного непосредственно в процессе непрерывного окисления пропилена или другого пригодного для этой цели углеводорода. Задача также состоит в создании такого способа, который можно осуществлять без образования отдельной водной фазы в реакционной ММП-смеси, а также в создании способа, в котором можно получать высококачественный ММП для прямого использования при получении метионина или ГММК без необходимости последующей очистки.

Поставленная задача решается способом непрерывного получения 3-(метилтио)пропаналя, включающим контактирование газообразного потока акролеинсодержащего сырья с жидкой реакционной средой в зоне газожидкостного контактирования, причем эта реакционная среда содержит 3-(метилтио)пропаналь, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином, а газообразный поток акролеинсодержащего сырья содержит акролеиновые пары и неконденсируемый газ, при этом относительные количества акролеина и метилмеркаптана, входящих в зону контактирования, являются по существу стехиометрически эквивалентными, вследствие чего акролеин переходит из потока сырья в реакционную среду и вступает в этой среде в прямое взаимодействие с метилмеркаптаном без существенного образования промежуточного геми(метилтио)ацеталя 3-(метилтио)пропаналя, в результате чего образуется жидкий реакционный продукт, содержащий 3-(метилтио)пропаналь; отделение неконденсируемого газа от жидкого реакционного продукта; разделение этого реакционного продукта на фракцию продукта и циркулирующую фракцию; и возврат циркулирующей фракции в зону газожидкостного контактирования, причем акролеин и метилмеркаптан взаимодействуют в жидкой среде в реакционной зоне, которая включает зону газожидкостного контактирования и циркуляционную зону, в которую жидкий реакционный продукт поступает из зоны газожидкостного контактирования и через которую циркулирующую фракцию возвращают в зону газожидкостного контактирования, причем метилмеркаптан вводят в такую реакционную зону на таком участке или участках, чтобы ни в одном секторе реакционной зоны избыток метилмеркаптана не способствовал в течение достаточно длительного промежутка времени существенному образованию промежуточного геми(метилтио)ацеталя.

Поставленная задача решается также способом непрерывного получения 3-(метилтио)пропаналя, включающим контактирование газообразного потока акролеинсодержащего сырья с жидкой реакционной средой в зоне газожидкостного контактирования, причем эта реакционная среда содержит 3-(метилтио)пропаналь, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином, а газообразный поток акролеинсодержащего сырья содержит акролеиновые пары и неконденсируемый газ, вследствие чего акролеин переходит из потока сырья в реакционную среду; взаимодействие в этой жидкой реакционной среде акролеина с метилмеркаптаном в первой реакционной зоне, включающей зону газожидкостного контактирования, с образованием промежуточного жидкого реакционного продукта; отделение неконденсируемого газа от промежуточного жидкого реакционного продукта; разделение этого промежуточного жидкого реакционного продукта на фракцию промежуточного продукта и циркулирующую фракцию; возврат циркулирующей фракции в зону газожидкостного контактирования, причем первая реакционная зона включает зону газожидкостного контактирования и циркуляционную зону, в которую жидкий реакционный продукт поступает из зоны газожидкостного контактирования и через которую циркулирующую фракцию возвращают в зону газожидкостного контактирования; и пропускание фракции промежуточного продукта по реактору с поршневым потоком для конверсии остаточных акролеина и метилмеркаптана в 3-(метилтио)пропаналь.

В этом способе предпочтительная продолжительность пребывания в первой реакционной зоне, основанная на соотношении между реакционным объемом и суммарной скоростью получения, находится в пределах от примерно 0,2 до примерно 1 ч.

Поток сырья и жидкую реакционную среду предпочтительно пропускают противотоком через зону газожидкостного контактирования, причем время задержки жидкости в зоне газожидкостного контактирования является достаточным для того, чтобы продолжительность пребывания жидкости в зоне газожидкостного контактирования, основанная на соотношении между объемом задерживаемой жидкости и суммарной скоростью получения, находилась в пределах от примерно 0,5 до примерно 0,75 ч.

Поставленная задача решается также способом непрерывного получения 3-(метилтио)пропаналя, включающим охлаждение потока сырого газообразного реакционного продукта, полученного в результате каталитического окисления углеводорода, с получением таким образом охлажденного газообразного потока, включающего акролеин, и конденсата, содержащего воду, акриловую кислоту и остаточную долю акролеина; отделение конденсата от охлажденного газообразного потока; фракционную перегонку конденсата с получением головной фракции, включающей акролеин, и фракции кубовых остатков, которая практически не содержит акролеина; смешение головной фракции с охлажденным газообразным потоком с получением объединенного газообразного акролеинового потока; контактирование газообразного потока акролеинсодержащего сырья с жидкой реакционной средой в зоне газожидкостного контактирования, причем эта реакционная среда содержит 3-(метилтио)пропаналь, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином, а газообразный поток акролеинсодержащего сырья включает объединенный поток газообразного акролеина и содержит акролеиновые пары, неконденсируемый газ и водяной пар, вследствие чего акролеин переходит из потока сырья в реакционную среду и вступает в этой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего 3-(метилтио)пропаналь; отделение неконденсируемого газа от жидкого реакционного продукта; разделение этого реакционного продукта на фракцию продукта и циркулирующую фракцию; и возврат циркулирующей фракции в зону газожидкостного контактирования.

В предпочтительном варианте фракция кубовых остатков содержит менее приблизительно 1 вес. % акролеина, более предпочтительно менее приблизительно 0,1 вес.% акролеина.

Исходный газ может содержать менее приблизительно 0,1 об.% акриловой кислоты.

Фракционное разделение можно проводить в дистилляционной колонне, включающей по меньшей мере приблизительно две теоретические тарелки и работающей под абсолютным давлением в головке не более приблизительно 30 фунтов/кв.дюйм и при коэффициенте орошения по крайней мере приблизительно 0,5.

Предпочтительное абсолютное давление в головке не превышает приблизительно 20 фунтов/кв.дюйм, а содержание акролеина во фракции кубовых остатков составляет менее приблизительно 0,1 вес.%.

Сырой газообразный акролеиновый реакционный продукт предпочтительно охлаждают за счет теплообмена с охлаждающей текучей средой в рекуперативном теплообменнике, вызывая тем самым конденсацию воды и акриловой кислоты и получая двухфазный газожидкостной поток сырого акролеинового продукта, причем этот двухфазный газожидкостной поток акролеинового продукта пропускают через установку мгновенного испарения и парожидкостной сепаратор, в которых такой двухфазный поток дополнительно охлаждают с целью обеспечить дополнительную конденсацию и выделение конденсата из охлажденного потока газообразного акролеина и этот конденсат направляют из установки мгновенного испарения и парожидкостного сепаратора в ректификационную колонну для фракционирования.

Поставленная задача решается также способом непрерывного получения 3-(метилтио)пропаналя, включающим контактирование газообразного потока акролеинсодержащего сырья с жидкой реакционной средой в зоне газожидкостного контактирования реакционной зоны, причем эта реакционная среда содержит 3-(метилтио)пропаналь, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином, а газообразный поток акролеинового сырья содержит акролеиновые пары и неконденсируемый газ; пропускание параллельными потоками сырья и реакционной среды через зону контактирования, вследствие чего акролеин переходит из потока сырья в реакционную среду и вступает в этой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего 3-(метилтио)пропаналь; отделение неконденсируемого газа от жидкого реакционного продукта; разделение этого реакционного продукта на фракцию продукта и циркулирующую фракцию; возврат циркулирующей фракции в зону газожидкостного контактирования; и отвод тепла реакции из реакционной зоны рекуперативным теплообменом жидкой реакционной среды с другой текучей средой, причем расход потока циркулирующей жидкой среды и участок, на котором из реакционной зоны отводят тепло, таковы, что температура жидкой реакционной среды во всей реакционной зоне колеблется в пределах не более чем приблизительно 5oC.

Реакционная зона предпочтительно включает зону газожидкостного контактирования и циркуляционную зону, в которую жидкий реакционный продукт поступает из зоны газожидкостного контактирования и через которую циркулирующую фракцию возвращают в зону газожидкостного контактирования, причем температура жидкой реакционной среды в этой циркуляционной зоне колеблется в пределах не более чем 2oC.

В целом, в способе непрерывного получения ММП жидкую реакционную среду вводят в контакт с газообразным потоком акролеинового сырья в зоне контактирования газа с жидкостью. Эта реакционная среда включает ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья включает пары акролеина и неконденсируемый газ. Относительные количества акролеина и метилмеркаптана, поступающие в зону контактирования, по существу стехиометрически эквивалентны. Акролеин переходит из исходного потока в реакционную смесь и вступает во взаимодействие в этой смеси непосредственно с метилмеркаптаном без существенного образования промежуточного геми(метилтио)ацеталя ММП, в результате чего получают жидкий реакционный продукт, содержащий ММП. Неконденсируемый газ отделяют от жидкого реакционного продукта, этот реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию и циркулирующую фракцию возвращают в зону контактирования газа с жидкостью. Акролеин и метилмеркаптан взаимодействуют в жидкой среде в реакционной зоне, которая включает зону газожидкостного контактирования и циркуляционную зону, в которую из зоны газожидкостного контактирования выпускают жидкий реакционный продукт и по которой циркулирующую фракцию возвращают в зону газожидкостного контактирования. Метилмеркаптан вводят в реакционную зону в точке или нескольких точках с таким расчетом, чтобы избыток метилмеркаптана не мог превалировать на каком-либо участке реакционной зоны в течение промежутка времени, достаточно долгого для образования заметного количества промежуточного геми(метилтио)ацеталя.

Вариантом способа непрерывного получения ММП является такой способ, в котором жидкую реакционную среду вводят в контакт с газообразным потоком акролеинового сырья в зоне газожидкостного контактирования. Такая реакционная среда содержит ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья включает пары акролеина, неконденсируемый газ и водяной пар. Акролеин переходит из сырьевого потока в реакционную среду и вступает во взаимодействие с метилмеркаптаном в этой среде с образованием жидкого реакционного продукта, содержащего ММП. Соотношение между водяным паром и акролеином в потоке акролеинового сырья таково, что в жидком реакционном продукте, вследствие конденсации воды в сырьевом потоке, не содержится сколько-нибудь существенного количества второй жидкой фазы. От жидкого реакционного продукта отделяют неконденсируемый газ, этот реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию и эту циркулирующую фракцию возвращают в зону газожидкостного контактирования.

Согласно изобретению предлагается также способ непрерывного получения ММП, в котором жидкую реакционную среду вводят в контакт с газообразным потоком акролеинового сырья в зоне газожидкостного контактирования, причем такая реакционная среда включает ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья включает пары акролеина, неконденсируемый газ и водяной пар. Акролеин переходит из сырьевого потока в реакционную среду и вступает в этой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего ММП. Величина молярного соотношения между водяным паром и акролеином в потоке акролеинового сырья не превышает приблизительно 0,3. От жидкого реакционного продукта отделяют неконденсируемый газ, этот реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию и эту циркулирующую фракцию возвращают в зону газожидкостного контактирования.

Согласно изобретению предлагается также способ непрерывного получения ММП, в котором жидкую реакционную среду вводят в контакт с газообразным потоком акролеинового сырья в зоне газожидкостного контактирования, по которой противотоком пропускают этот сырьевой поток и реакционную среду. Реакционная среда включает ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья включает пары акролеина и неконденсируемый газ, вследствие чего акролеин переходит из сырьевого потока в реакционную среду и вступает в этой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего ММП. Задержка такой жидкости в зоне противоточного газожидкостного контактирования оказывается достаточной для конверсии в этой зоне газожидкостного контактирования по меньшей мере 90% акролеина, содержащегося в газообразном сырье. От жидкого реакционного продукта отделяют неконденсируемый газ, этот реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию и эту циркулирующую фракцию возвращают в зону газожидкостного контактирования.

Кроме того, согласно изобретению предлагается способ непрерывного получения ММП, в котором жидкую реакционную среду вводят в контакт с газообразным потоком акролеинового сырья в зоне газожидкостного контактирования, причем эта реакционная смесь включает ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья включает пары акролеина и неконденсируемый газ. Акролеин переходит из сырьевого потока в реакционную среду и этот акролеин вступает в такой среде во взаимодействие с метилмеркаптаном в первой реакционной зоне, включающей зону газожидкостного контактирования, с образованием промежуточного жидкого реакционного продукта. От промежуточного жидкого реакционного продукта отделяют неконденсируемый газ, этот промежуточный жидкий реакционный продукт разделяют на фракцию промежуточного продукта и циркулирующую фракцию и эту циркулирующую фракцию возвращают в зону газожидкостного контактирования. Первая реакционная зона включает зону газожидкостного контактирования и циркулирующую зону, в которую из зоны газожидкостного контактирования выпускают жидкий реакционный продукт и по которой циркуляционную фракцию возвращают в зону газожидкостного контактирования. Фракцию промежуточного продукта пропускают через реактор с поршневым потоком для конверсии остаточного акролеина и метилмеркаптана в ММП.

Согласно изобретению предлагается также способ непрерывного получения ММП, в котором жидкую реакционную среду в зоне газожидкостного контактирования вводят в контакт с газообразным потоком акролеинового сырья. Такая реакционная среда содержит ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья включает пары акролеина, неконденсируемый газ и пары акриловой кислоты. Акролеин переходит из сырьевого потока в жидкую реакционную среду и вступает в этой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего ММП. Величина молярного соотношения между парами акриловой кислоты и акролеином в потоке акролеинового сырья не превышает приблизительно 0,1. От жидкого реакционного продукта отделяют неконденсируемый газ, этот реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию и эту циркулирующую фракцию возвращают в зону газожидкостного контактирования.

Согласно настоящему изобретению предлагается также способ непрерывного получения ММП, в котором пары акролеина получают парофазным каталитическим окислением углеводорода с образованием потока сырого акролеинового реакционного продукта. Этот поток сырого акролеинового реакционного продукта охлаждают для конденсации из него водяного пара и акриловой кислоты и получения охлажденного акролеинового газообразного потока для конверсии в ММП, причем такой сырьевой поток включает акролеин и неконденсируемый газ. Жидкую реакционную среду вводят в контакт с газообразным потоком акролеинового сырья, представляющим собой упомянутый охлажденный акролеиновый газообразный поток, в зоне газожидкостного контактирования, в которой общее давление не превышает приблизительно 3 атм. Реакционная среда содержит ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Акролеин переходит из сырьевого потока в реакционную среду и вступает в этой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего ММП. От жидкого реакционного продукта отделяют неконденсируемый газ, этот реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию и эту циркулирующую фракцию возвращают в зону газожидкостного контактирования.

Кроме того, согласно изобретению предлагается способ непрерывного получения ММП, в котором газообразный поток сырого реакционного продукта, полученного каталитическим окислением углеводорода, охлаждают, в результате чего получают охлажденный газообразный поток, включающий акролеин, и конденсат, включающий воду, акриловую кислоту и остаточную часть акролеина. Конденсат отделяют от охлажденного газового потока и конденсат подвергают фракционной перегонке с получением головной фракции, включающей акролеин, и фракции кубовых остатков, которые практически свободны от акролеина. Головную фракцию смешивают с охлажденным газообразным потоком с получением объединенного акролеинового потока. Жидкую реакционную среду в зоне газожидкостного контактирования вводят в контакт с газообразным потоком акролеинового сырья. Реакционная среда включает ММП, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья представляет собой объединенный акролеиновый газообразный поток и включает акролеин, неконденсируемый газ и водяной пар. Акролеин переходит из сырьевого потока в реакционную среду и вступает в такой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего ММП. От этого жидкого реакционного продукта отделяют неконденсируемый газ, реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию и эту циркулирующую фракцию возвращают в зону газожидкостного контактирования.

В настоящем изобретении предлагается также способ непрерывного получения 3-(метилтио)пропаналя. Этот способ включает введение жидкой реакционной среды в контакт с газообразным потоком акролеинового сырья в зоне газожидкостного контактирования реакционной зоны. Такая реакционная среда содержит 3-(метилтио)пропаналь, метилмеркаптан и катализатор взаимодействия между метилмеркаптаном и акролеином. Газообразный поток акролеинового сырья включает пары акролеина и неконденсируемый газ. Газообразный поток акролеинового сырья и реакционную среду пропускают через зону газожидкостного контактирования противотоком. Акролеин переходит из сырьевого потока в реакционную среду и вступает в такой среде во взаимодействие с метилмеркаптаном с образованием жидкого реакционного продукта, содержащего ММП. От этого жидкого реакционного продукта отделяют неконденсируемый газ, а реакционный продукт разделяют на фракцию продукта и циркулирующую фракцию.

Другие предметы и отличительные признаки изобретения частично очевидны и частично более подробно описаны ниже.

На фиг. 1 представлена технологическая схема осуществления способа по изобретению, иллюстрирующая непрерывное получение ММП из сырого газообразного акролеинового продукта, образующегося при непрерывном каталитическом окислении пропилена.

На фиг. 2 схематически проиллюстрирован предпочтительный способ по изобретению, в котором ММП получают из метилмеркаптана и акролеина в турбулентном газ-лифтном реакторе.

На фиг. 3 схематически проиллюстрирован газ-лифтный реактор, адаптированный для работы при низком перепаде давления.

На фиг. 4 схематически проиллюстрирован газ-лифтный реактор типа вытяжной трубы, адаптированный для работы при низком перепаде давления.

На фиг. 5 представлено схематическое изображение тарельчатого реактора колонного типа для конверсии метилмеркаптана и акролеина в ММП.

На фиг. 6 представлено схематическое изображение способа по изобретению, в котором используют тарельчатый реактор колонного типа, за которым установлен реактор с поршневым потоком.

На фиг. 7 схематически проиллюстрирован способ по изобретению, в котором сырой газообразный акролеиновый реакционный продукт обрабатывают для удаления значительного количества акриловой кислоты перед вводом этого газа в противоточный газ-лифтный реактор для взаимодействия акролеина с метилмеркаптаном.

На фиг. 8 схематически проиллюстрирован способ по изобретению, в котором сырой газообразный акролеиновый реакционный продукт обрабатывают для удаления значительного количества акриловой кислоты перед вводом этого газа в противоточный тарельчатый реактор колонного типа для взаимодействия акролеина с метилмеркаптаном.

В соответствии с настоящим изобретением ММП получают из метилмеркаптана и газообразного потока акролеинового сырья в газожидкостной реакционной системе, включающей жидкий ММП. В зоне газожидкостного контактирования жидкую фазу, включающую ММП и катализатор, вводят в контакт с метилмеркаптаном и газом, содержащим акролеин и неконденсируемый газ. Акролеин переходит из газовой фазы в жидкую фазу и взаимодействует в жидкой фазе непосредственно с метилмеркаптаном с образованием дополнительного количества ММП. Теплоту экзотермической реакции снимают с помощью теплоносителя, протекающего через устройство теплопереноса, такое, как рубашка или змеевик, находящееся в контакте с зоной газожидкостного контактирования, или в контуре циркуляции ММП между выпуском и впуском жидкости этой зоны контактирования.

В зоне газожидкостного контактирования высокие коэффициенты массопереноса обеспечиваются гомогенным газожидкостным контактированием, а движущую силу для массопереноса предпочтительно максимизируют поддержанием по существу поршневого потока в газовой фазе. Однородное газожидкостное контактирование может быть достигнуто путем проведения процесса в турбулентном режиме потока, который может быть охарактеризован, например, относительно высокими приведенными скоростями газа и жидкости в пузырьковом режиме течения, в котором пузырьки активно коалесцируют и разрушаются вследствие турбулентности. Такие турбулентные условия ускоряют также теплоперенос из зоны газожидкостного контактирования к рубашке или змеевику, которые для обеспечения теплопереноса сообщаются с зоной контактирования. По другому варианту газожидкостное контактирование можно осуществлять пропусканием газа и жидкости противотоком в зоне контактирования. В этом последнем варианте выполнения изобретения теплоту реакции целесообразно передавать охлаждающей текучей среде во внешнем теплообменнике, по которому циркулирует реакционная ММП-среда.

За счет поддержания практически эквимолярных количеств добавляемых в реакционную среду метилмеркаптана и акролеина в существенной мере предотвращается образование гемитиоацеталя ММП. В результате метилмеркаптан и акролеин непосредственно взаимодействуют с образованием ММП. Поскольку такая реакционная схема намного короче, чем осуществляемая через образование гемитиоацеталя, скорость реакции в 3-10 раз выше скорости, достигаемой в способе, описанном в патенте '516. При достигаемых по новому способу скоростях реакции скорость конверсии ограничивается скоростью массопереноса акролеина из газовой фазы в жидкую фазу. Однако было установлено, что когда в соответствии с предпочтительными вариантами выполнения изобретения поддерживают турбулентные условия, достигают высоких коэффициентов массопереноса. Более того, благодаря прямому быстрому взаимодействию между акролеином и метилмеркаптаном в жидкой фазе, акролеин, поступающий в жидкую фазу, расходуется немедленно, увеличивая тем самым движущую силу массопереноса. Таким образом, общие скорости массопереноса высоки. Объединенный эффект прямой реакции и высоких скоростей массопереноса обусловливает высокую производительность реакционной системы по изобретению.

Как показано на фиг. 1, акролеин непрерывно получают в акролеиновом реакторе 1 каталитическим окислением пропилена, пропана или другого пригодного для этой цели углеводородного сырья в присутствии водяного пара и неконденсируемого газа. Когда сырьем служит пропилен, сырой газообразный акролеиновый продукт, выходящий из этого реактора, содержит от примерно 4 до примерно 10 об.% акролеина, от примерно 0,3 до примерно 1,0 об.% акриловой кислоты, до приблизительно 1,0 об.% пропилена, до приблизительно 1,0 об.% пропана, до примерно 0,5 об.% пропионового альдегида, от примерно 0,1 до примерно 0,4 об.% уксусного альдегида и от примерно 30 до примерно 50 об.% водяного пара, а также от примерно 40 до примерно 55 об.% неконденсируемых газов, включая кислород, азот, монооксид углерода и диоксид углерода. Затем сырой газообразный продукт обрабатывают для существенного снижения содержания в нем водяного пара и акриловой кислоты. В предпочтительном варианте этот сырой продукт обрабатывают, охлаждая его в рекуперативном теплообменнике 3, вызывая конденсацию акриловой кислоты и воды из сырого газообразного продукта. Хотя в качестве охлаждающей текучей среды в теплообменнике 3 можно использовать воду, охлажденную холодильником, экономически целесообразно применять воду комнатной температуры, например водопроводную воду, артезианскую вод