Износостойкая сталь ист эл-200
Реферат
Изобретение относится к металлургии, в частности к высокомарганцовистым литейным сталям, используемым для изготовления конструкций горнодобывающей техники, работающей в условиях Крайнего Севера при воздействии сильных ударно-абразивных нагрузок. Предложенная износостойкая сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,95 - 1,10; кремний 0,10 - 0,49; марганец 13,0 - 14,5; хром 0,30 - 0,80; никель 0,20 - 0,50; титан 0,01 -0,05; алюминий 0,020 - 0,050; кальций 0,005 - 0,040; церий 0,010 - 0,040; фосфор 0,01 - 0,06; железо остальное. Техническим результатом изобретения является получение стали, обладающей большой наклепываемостью без образования трещин и высокой циклической стойкостью при сильном ударно-абразивном нагружении. 1 табл.
Изобретение относится к металлургии сталей, а именно к высокомарганцовистым литейным сталям, применяемым для изготовления конструкций горнодобывающей техники, работающей в условиях Крайнего Севера при воздействии сильных ударно-абразивных нагрузок.
Известна износостойкая стали марки 110Г13Л (ГОСТ 2176), содержащая следующие компоненты, мас.%: углерод - 0,9 - 1,40 кремний - 0,80 - 1,00 марганец - 11,50 - 15,0 хрома - не более 1,00 никель - не более 1,70 медь - не более 0,30 сера - не более 0,05 фосфор - не более 0,12 железо - остальное Недостатком этой стали является то, что данная сталь обладает недостаточно высоким уровнем эксплуатационных свойств в условиях сильных ударно-абразивных нагрузок. Широко известна применяемая в экскаваторостроении сталь (SU N 1659519 A1), содержащая следующие компоненты, мас.%: углерод - 0,90 - 1,4 кремний - 0,50 - 1,0 марганец - 11,5 - 14,0 никель - 0,10 - 2,00 медь - 0,70 - 2,0 кальций - 0,05 - 1,0 вольфрам - 0,4 - 0,8 титан - 0,03 - 0,04 железо - остальное Данная сталь в сечении до 250 мм обладает неоднозначной наклепываемостью при сильных ударно-абразивных нагрузках и как следствие этого недостаточной износостойкостью, а наличие в стали высокого содержания кальция делает ее нетехнологичной при заливке форм из-за затягивания стаканчика при разливке. Прототипом является сталь (SU 1317033 A1), содержащая следующие компоненты, мас.%: углерод - 1,0 - 1,4 кремний - 0,50 - 1,0 марганец - 11,0 - 14,0 титан - 0,2 - 0,8 цирконий - 0,1 - 0,4 азот - 0,1 -0,4 редкоземельные металлы - 0,05 - 0,20 кальций - 0,08 - 0,35 железо - остальное Данная сталь обладает повышенными механическими свойствами при постоянных по величине нагрузках и повышенной трещиностойкостью при литье. Однако при сильном ударно-абразивном нагружении она имеет пониженную наклепываемость без образования трещин и пониженную циклическую стойкость, что является следствием излишнего легирования редкоземельными металлами, а также высоким содержанием карбонитридов титана, обладающих высоким коэффициентом концентрации напряжений вокруг них. В основу настоящего изобретения была положена задача разработать состав износостойкой стали с большой наклепываемостью без образования трещин и высокой циклической стойкостью при сильном ударно-абразивном нагружении. Поставленная задача решается тем, что в износостойкой стали, содержащей углерод, кремний, марганец, титан, кальций и редкоземельные металлы, новым является то, что в качестве редкоземельного металла она содержит церий, а также дополнительно содержит никель, хром, алюминий и фосфор при следующем соотношении компонентов, мас.%: углерод - 0,95 - 1,10 кремний - 0,10 - 0,49 марганец - 13,0 - 14,5 хром - 0,30 - 0,80 никель - 0,20 - 0,50 титан - 0,01 - 0,05 алюминий - 0,020 - 0,050 кальций - 0,005 - 0,040 церий - 0,010 - 0,040 фосфор - 0,01 - 0,06 железо - остальное Введение углерода в количестве 0,95% выбрано из необходимости обеспечения аустенитности стали. Верхний предел углерода 1,10% принят для обеспечения отсутствия выделения карбидов по границам аустенитного зерна. Нижний предел содержания кремния 0,10% принят для обеспечения раскисленности. Увеличение содержания кремния до 0,49% обеспечивает довольно высокий уровень прочностных свойств, способствует смягчению зональной и зерноограниченной сегрегации (в том числе углерода), вследствие чего повышается устойчивость аустенита. Марганец в количествен 13,0% выбран из необходимости обеспечения требуемой аустенитности стали и получения необходимого уровня наклепываемости. Максимальное содержание марганца 14,5% выбрано из экологических условий. Хром в сочетании с марганцем увеличивает стабильность аустенита, этим ограничено максимальное его содержание в стали 0,80%. Минимальное содержание хрома 0,30% выбрано для обеспечения необходимых структурных составляющих, обеспечивающих высокий уровень наклепываемости стали. Никель как легирующий элемент повышает сопротивление хрупкому разрушению, повышает пластичность и вязкость, уменьшает чувствительность к концентраторам напряжений и понижает температуру порога хладноломкости, а также повышает устойчивость аустенита, которая усиливается в присутствии хрома. Минимальное количество никеля 0,20% обеспечивает стали снижение порога хладноломкости, а максимальное количество 0,50% - повышает предел выносливости. Введение алюминия в количестве 0,020% улучшает раскисленность стали. Содержание в стали алюминия в количестве 0,050% обеспечивает достаточную стойкость стали против роста аустенитного зерна. Церий в сочетании с кальцием обеспечивает образование в стали глобулярных неметаллических включений, поэтому их содержание ограничено пределами 0,01 - 0,04% и 0,005 - 0,040% соответственно. Такое содержание церия и кальция не делают сталь нетехнологичной при разливке и увеличивают жидкотекучесть стали. Максимальное содержание фосфора 0,06% выбрано из условия повышения жидкотекучести стали и отсутствия образования карбо-фосфидной эвтектики, уменьшающей трещиностойкость стали. Титан в количестве 0,01 - 0,05% введен в сталь как модификатор с целью получения мелкозернистой структуры. Для получения стали предлагаемого состава были проведены опытные плавки по шести указанным в таблице химическим составам, включая сталь - прототип. Сталь выплавлялась в индукционной электропечи. При выплавке применялись ферросплавы следующих марок: ферросилиций марки ФС-45, марганец металлический, феррохром марким ФХ050А, никель, ферротитан марки ФТ и 40А, кальций, алюминий и церий. Ферросплавы кремния, марганца применялись в дробленом виде с фракцией 5-50 мм. Сталь разливалась в песчаные формы по 50 кг. Способность стали к деформационному упрочнению (наклепываемости) определялась на специальных образцах, прошедших термическую обработку - аустенитизацию при 1050oC с охлаждением в воде путем многократного вдавливания твердосплавного шарика до появления первой трещины. Химический состав и свойства предлагаемой и известной сталей приведены в таблице. Как следует из таблицы, предлагаемая сталь превосходит известную по наклепываемости при интенсивном ударном нагружении. Плавка, содержащая легирующие элементы ниже нижнего предела легирования, имеет достаточно высокую наклепываемость из-за недораскисленности и низкой стабильности аустенита. Плавка, выплавленная по химическому составу с превышением верхнего предела легирования, обладает идентичной наклепываемостью, как и известная, вследствие выделения карбо-фосфидов по границам зерен. Технико-экономический эффект от использования заявляемой стали выражается в повышении долговечности оборудования, работающего в условиях интенсивного ударно-абразивного износа.Формула изобретения
Износостойкая сталь, содержащая углерод, кремний, марганец, титан, кальций и редкоземельные металлы, отличающаяся тем, что в качестве редкоземельного металла она содержит церий, а также дополнительно содержит никель, хром, алюминий и фосфор при следующем соотношении компонентов, мас.%: Углерод - 0,95 - 1,10 Кремний - 0,10 - 0,49 Марганец - 13,0 - 14,5 Хром - 0,30 - 0,80 Никель - 0,20 - 0,50 Титан - 0,01 - 0,05 Алюминий - 0,020 - 0,050 Кальций - 0,005 - 0,040 Церий - 0,010 - 0,040 Фосфор - 0,01 - 0,06 Железо - ОстальноеРИСУНКИ
Рисунок 1