Процессор поиска для многостанционной системы связи с расширенным спектром

Реферат

 

Изобретение относится к системам связи с расширенным спектром, более конкретно - к обработке сигнала в системе сотовой телефонной связи. Технический результат - уменьшение времени поиска. Интегральный процессор поиска, который используется в модеме для системы связи с расширенным спектром, буферизирует принятые выборки и применяет процессор квантованного по времени преобразования, который работает на последовательных сдвигах из буфера. Процессор поиска автономно поэтапно осуществляет поиск, конфигурированный множеством параметров поиска, определенным микропроцессором, которое может включать в себя группу подлежащих поиску антенн, начальный сдвиг и ширину подлежащего поиску окна поиска и количество символов Уолша для накопления результатов каждого сдвига. Процессор поиска вычисляет энергию корреляции на каждом сдвиге и представляет свободный отчет о наиболее оптимальных траекториях, обнаруженных в поиске, для использования их для повторного предназначения элемента демодулирования. Это снижает относящуюся к процессу поиска нагрузку на микропроцессор и также снижает издержки на модем тем, что целую схему модема канального элемента можно сформировать на одной интегральной схеме. 2 с. и 33 з.п.ф-лы, 15 ил.

Область техники, к которой относится изобретение Настоящее изобретение относится к системам связи с расширенным спектром и более конкретно - к обработке сигнала в системе сотовой телефонной связи.

Уровень техники В беспроводных системах связи многие пользователи связываются друг с другом по беспроводному каналу, чтобы соединиться с беспроводными телефонными системами. Связь по беспроводному каналу может быть разновидностью многостанционных способов, которые облегчают связь между многими пользователями в ограниченном спектре частот. Эти многостанционные способы включают в себя многостанционный доступ с временным разделением (МДВР), многостанционный доступ с частотным разделением (МДЧР) и многостанционный доступ с кодовым разделением (МДКР). МДКР имеет много преимуществ и один из его примеров описывается в патенте США N 4901307 от 13 февраля 1990 г. К.Джилхаузена и др. "Многостанционная система связи с расширенным спектром с использованием спутника или наземных ретрансляторов".

В упомянутом патенте раскрыт многостанционный способ, в котором большое количество пользователей мобильной телефонной системы, каждый из которых имеет приемопередающее устройство, связываются друг с другом через спутниковые ретрансляторы или наземные базовые станции, используя сигналы связи расширенного спектра МДКР. При использовании связи МДКР частотный спектр можно использовать повторно многократно, тем самым увеличивая производительность системы пользователя.

Методика модулирования МДКР, раскрытая в указанном патенте 4901307, обеспечивает ряд преимуществ по сравнению со способом модулирования узкой полосы, который применяется в системах связи с использованием спутниковых или наземных каналов. С наземным каналом связаны особые проблемы для любой системы связи, особенно в отношении сигналов многолучевого прохождения. Использование методики МДКР позволяет преодолеть особые проблемы наземного канала, снизив отрицательный эффект многолучевого распространения, т.е. замирание, при этом используя его преимущества.

Раскрытый в указанном патенте способ МДКР предполагает использование когерентной модуляции и демодуляции для обоих направлений линии связи в системе мобильное устройство-спутник. Соответственно, в нем раскрыто использование пилота-сигнала на несущей частоте в качестве опорной когерентной фазы для связи между спутником и мобильным устройством и для линии связи между базовой станцией и мобильным устройством. Тем не менее в условиях наземной сотовой связи интенсивность замирания многолучевого прохождения, сопровождаемого разрушением фазы канала, и также мощность, требуемая для передачи пилота-сигнала на несущей частоте от мобильного устройства, препятствуют применению способа когерентной модуляции для линии связи между мобильным устройством и базовой станцией. Патент США N 5103459 под названием "Система и способ генерации формы сигнала в сотовой телефонной системе МДКР" от 25 июня 1990 обеспечивает средство для устранения неблагоприятного воздействия многолучевого распространения между мобильным устройством и базовой станцией при помощи способа некогерентной модуляции и демодуляции.

В сотовой телефонной системе МДКР одна и та же полоса частоты может быть использована для связи во всех базовых станциях. В приемном устройстве базовой станции выделяемое многолучевое распространение, такое как линия траектории станции и другая линия, отражающаяся от здания, может быть суммировано с разнесением для повышения рабочих показателей модема. Свойства формы сигнала МДКР, которые обеспечивают выигрыш в отношении сигнал-шум при обработке сигналов, также используются для проведения различия между сигналами, которые занимают одну и ту же полосу частот. Кроме того, высокочастотная модуляция псевдошума (ПШ) позволяет разделить многие разные траектории прохождения одного и того же сигнала при том условии, что разница задержек траектории превышает длительность элементов ПШ. Если в системе МДКР используется частота следования элементарных посылок ПШ, приблизительно равная 1 МГц, то выигрыш в отношении сигнал-шум при обработке сигналов полного расширенного спектра, равный соотношению расширенной полосы и скорости передачи данных системы, может использоваться по траекториям, задержка которых отличается более чем на одну микросекунду. Разница микросекундной задержки траектории соответствует разнице в расстоянии траектории, приблизительно равной 1000 футам (30,48 м). Обычно в городе разница задержки траектории превышает одну микросекунду.

Сигнал, прошедший по нескольким различным траекториям прохождения, генерируется характеристиками многолучевого распространения наземного канала. Одной из характеристик канала многолучевого распространения является расширение во времени, которое вводится в сигнал, передаваемый по каналу. Например, если идеальный импульс передается по каналу многолучевого распространения, то принимаемый сигнал имеет форму потока импульсов. Другая характеристика канала многолучевого распространения заключается в том, что каждая идущая по каналу траектория может обусловить различный коэффициент затухания. Например, если идеальный импульс передается по каналу многолучевого распространения, то каждый импульс принимаемого потока импульсов обычно имеет такую силу сигнала, которая отличается от других принятых импульсов. Еще одна характеристика канала многолучевого распространения заключается в том, что каждая проходящая по каналу траектория может обусловливать разную фазу на сигнале. Например, если идеальный импульс передается по каналу многолучевого распространения, то каждый импульс принятого потока импульсов обычно имеет фазу, отличающуюся от других принятых импульсов.

В мобильном радиоканале многолучевое распространение создается отражением сигнала от окружающих препятствий - зданий, деревьев, автомобилей и людей. Обычно мобильный радиоканал представляет собой изменяющийся во времени канал многолучевого распространения, обусловленный относительным движением структур, создающих многолучевое распространение. Например, если идеальный импульс передается по изменяющемуся во времени каналу многолучевого распространения, то принимаемый поток импульсов изменяется по времени, месту, затуханию и фазе как функция времени передачи этого идеального импульса.

Характеристика многолучевого распространения канала может быть причиной замирания сигнала. Замирание есть результат характеристик фазирования канала многолучевого распространения. Замирание происходит, когда векторы многолучевого распространения накладываются деструктивно, при этом формируя принимаемый сигнал, который меньше того или иного отдельного вектора. Например, если гармоническая волна передается по каналу многолучевого распространения, который имеет две траектории, в которых первая траектория имеет коэффициент затухания X дБ, задержку во времени со сдвигом фазы в 0 радиан, а вторая траектория имеет коэффициент затухания X дБ, задержку во времени 0 + радиан, то на выходе канала никакого сигнала получено не будет.

В системах модуляции узкой полосы, таких как аналоговая модуляция ЧМ, которая используется в обычных системах радиотелефона, наличие многолучевого прохождения в радиоканале дает интенсивное замирание многолучевого распространения. Как отмечалось выше, тем не менее при МДКР широкой полосы в процессе демодуляции могут быть разные траектории. Это разъединение не только значительно снижает интенсивность замирания многолучевого распространения, но и дает преимущество для системы МДКР.

Одним из решений проблемы уменьшения пагубных эффектов замирания является разнесение. Поэтому желательно, чтобы была обеспечена некоторая форма разнесения, чтобы система могла бы уменьшать замирание. Имеются три основных типа разнесения: во времени, по частоте и в пространстве.

Разнесение по времени наилучшим образом можно достичь повторением, временным перемежением и кодированием исправления ошибок и детектирования для резервирования. Система, содержащая настоящее изобретение, может использовать каждый из этих способов как форму разнесения во времени.

МДКР с присущей ему характерной широкой полосой обеспечивает одну из форм разнесения по частоте путем прохождения энергии сигнала по широкой полосе частот. Поэтому избирательное частотное замирание затрагивает только небольшую часть полосы сигнала МДКР.

Разнесение в пространстве или по траектории достигается обеспечением многих траекторий сигнала по одновременным линиям связи от мобильного устройства через две и более базовые станции с использованием обычно двух и более антенных элементов. Кроме этого, разнесения по траекториям можно добиться применением условий многолучевого распространения посредством обработки расширенного спектра, чтобы поступающие с разными задержками прохождения сигналы принимались и обрабатывались отдельно, как указано выше. Примеры разнесения по траекториям описываются в патенте США N 5101501 "Программная передача дежурства без прерывания работы в сотовой телефонной системе МДКР" от 21 марта 1992 г. и патенте США N 5109390 "Приемное устройство разнесения в сотовой телефонной системе МДКР" от 28 апреля 1992 г.

Пагубные эффекты замирания можно также сдерживать в определенной мере в системе МДКР путем управления мощностью передатчика. Система для управления мощностью базовой станции и мобильного устройства также раскрыта в патенте США N 5056109 "Способ и устройство для управления мощностью передачи в сотовой телефонной системе МДКР" от 8 октября 1991 г.

Раскрытая в патенте 4901307 методика МДКР предусматривает использование относительно длительных последовательностей ПШ, причем каждому мобильному устройству пользователя предназначена отличная от других последовательность ПШ. Взаимная корреляция между различными последовательностями ПШ и автокорреляция последовательности ПШ для всех ненулевых сдвигов во времени имеют приближающееся к нулю среднее значение, что позволяет различать при приеме разные сигналы пользователя. (Для автокорреляции и взаимной корреляции требуется, чтобы логический "0" принимал значение "1", а логическая "1" принимала значение "-1" или аналогичное преобразование для получения нулевого среднего значения).

Однако эти сигналы ПШ не ортогональные. Несмотря на то, что взаимная корреляция существенно усредняет ноль по всему протяжению последовательности, для краткого временного интервала, такого как время разряда информации, взаимная корреляция является произвольно изменяющейся величиной с биномиальным распределением. Как таковые, сигналы создают друг другу помехи почти точно так же, как если бы они были гауссовым шумом широкой полосы с одинаковой спектральной плотностью мощности. Поэтому сигналы другого пользователя или шум взаимных помех в конце концов ограничивают достижимую производительность.

В технике хорошо известно, что можно создать n множество ортогональных двоичных последовательностей каждая длиной n для n любой степени 2 (см. "Применение цифровой связи в космосе", С.В. Голом и др., Прентис Холл Инк., 1964, стр. 45-64). На самом деле множества ортогональных двоичных последовательностей также известны для большинства значений длины, являющихся кратным четырем и меньшим двухсот. Один из легко создаваемых классов таких последовательностей называется функцией Уолша и также известен как матрицы Адамара.

Функцию Уолша порядка n можно рекурсивно определить следующим образом: где W' означает логическое дополнение W, и .

Поэтому и Последовательность или код Уолша является одним из рядов матрицы функции Уолша. Матрица порядка n функции Уолша содержит n последовательностей, длина каждой из которых n битов.

Матрица порядка n функции Уолша (и также прочие ортогональные функции длиной n) имеют такое свойство, что по интервалам в n битов взаимная корреляция между всеми различными последовательностями внутри множества является нулем. Это можно увидеть, заметив, что каждая последовательность отличается от всякой другой последовательности точно на половину битов. Нужно также отметить, что всегда есть одна последовательность, содержащая только нули, и что все прочие последовательности содержат пополам единицы и нули. Символ Уолша, содержащий только логические нули вместо половины единиц и нулей, называется нулевым символом Уолша.

На обратном канале связи от мобильного устройства до базовой станции не имеется пилота-сигнала для обеспечения опорной фазы. Поэтому нужен способ, чтобы обеспечить качественную линию связи на замирающем канале, имеющем низкое отношение Эб/ш (энергия из расчета на бит/плотность мощности шума). Модуляция функции Уолша на обратной линии связи является простым способом для получения 64-чной модуляции с когерентностью по множеству шестикодовых символов, преобразованных в 64 кода Уолша. Характеристики наземного канала таковы, что скорость изменения фазы относительно низкая. Поэтому при выборе длительности кода Уолша, которая будет короче скорости изменения фазы на канале, будет возможной когерентная демодуляция по длине одного кода Уолша.

На канале обратной линии связи код Уолша определяется информацией, передаваемой от мобильного устройства. Например, трехбитовый информационный символ можно преобразовать в восемь указанных выше последовательностей W(8). "Перепреобразование" кодированных символов Уолша в оценку исходных символов информации можно осуществить в приемном устройстве быстрым преобразованием Адамара (БПА). Предпочтительное "перепреобразование" или процесс выбора дает данные программного решения, которые можно направить на дешифратор для декодирования по методике максимального правдоподобия.

БПА используется для осуществления процесса "перепреобразования". БПА коррелирует принятую последовательность с каждой возможной последовательностью Уолша. Для выбора наиболее вероятного значения корреляции, которая масштабируется и передается в виде данных программного решения, применяются схемы выбора.

Широкоспектровое приемное устройство конструкции разнесения или приемник - "гребень" содержит множество приемников данных для уменьшения эффектов замирания. Обычно каждый приемник данных предназначен для демодулирования сигнала, прошедшего по отличной от других траектории: либо пространственно, при помощи множества антенн, либо временно по многолучевому распространению. При демодулировании сигналов, модулированных согласно схеме передачи ортогональных сигналов, каждый приемник данных коррелирует принятый сигнал с каждым возможным значением преобразования при помощи БПА. Каждый из выходов каждого БПА объединяется. Схемы выбора затем выбирают значение наиболее вероятной корреляции, основанное на объединенном выходе БПА, чтобы получить данные программного решения.

В системе, описанной в указанном выше патенте 5103459, сигнал вызова начинается как источник информации с частотой 9600 бит/сек, который затем преобразуется кодирующим устройством прямого исправления ошибок с отношением 1/3 в выходной поток с частотой 28800 символов/сек. Эти символы группируются одновременно по 6 и формируют 4800 символов Уолша в сек, при этом каждый символ Уолша выбирает одну из шестидесяти четырех ортогональных функций Уолша, которые по длительности имеют шестьдесят четыре элемента сигнала Уолша. Элементы сигналов Уолша модулируются конкретной для пользователя последовательностью ПШ. Конкретные для пользователя модулированные данные ПШ затем разбиваются на два сигнала, один из которых модулируется последовательностью ПШ синфазного канала (С) и другой из которых модулируется последовательностью ПШ квадратурного канала (К). Обе канальные модуляции С и К дают четыре элемента сигнала ПШ из расчета на один элемент сигнала Уолша с частотой расширения ПШ 1,2288 МГц. Модулированные по В и К данные являются Манипуляцией Квадратуры Сдвига (МКС), объединенной для передачи.

В сотовой системе МДКР, описанной в указанном выше патенте 4901307, каждая базовая станция охватывает ограниченную географическую территорию и связывает мобильные устройства в районе своего охвата через коммутацию сотовой системы с телефонной сетью общего пользования (ТСОП). Когда мобильное устройство двигается в зону охвата другой базовой станции, то трассировка вызова пользователя передается на эту другую базовую станцию. Траектория передачи сигнала от базовой станции к мобильному устройству называется прямой линией связи, а, как указано выше, траектория передачи сигнала от мобильного устройства к базовой станции называется обратной линией связи.

Как описывается выше, интервал элемента сигнала ПШ определяет минимальное разделение, которое должны иметь две траектории, чтобы объединиться. До того, как две отдельные траектории можно будет демодулировать, нужно сначала определить относительные сроки времени поступления (или сдвиги) траекторий в принятом сигнале. Модем канального элемента выполняет эту функцию "поиском" по всей последовательности потенциальных сдвигов траектории и измерением энергии, принятой на каждом из потенциальных сдвигов траектории. Если энергия, связанная с потенциальным сдвигом, превышает определенный порог, то этому сдвигу может быть предназначен элемент демодуляции сигнала. Сигнал, присутствующий на этом сдвиге траектории, затем можно объединить с "вкладами" других элементов демодуляции на их соответствующих сдвигах. Способ и устройство предназначения элемента демодуляции, основанного на уровнях энергии элемента демодуляции искателя, раскрыт в совместной заявке на патент США N 08/144902 "Элемент демодуляции в системе, способной принимать множество сигналов" от 28 октября 1993 г. Такое разнесение или приемник-гребень обеспечивает надежную цифровую линию связи, поскольку всем траекториям приходится замирать совместно до того, как объединенный сигнал деградирует.

Пример множества сигналов от одного мобильного устройства, поступающих в базовую станцию, показан на фиг. 1. Вертикальная ось представляет мощность, принятую в децибеллах (дБ). Горизонтальная ось представляет задержку во времени поступления сигнала из-за задержек многолучевого распространения. Ось (не показана), идущая в поисковый вызов, представляет сегмент времени. Каждый пик сигнала в общей плоскости поискового вызова поступил в общее время, но передан мобильной станцией в различное время. Каждый пик сигнала 2-7 прошел разную траекторию и поэтому дает разную задержку во времени и разную амплитудно-частотную характеристику. Шесть различных пиков сигнала, представленные пиками 2-7, представляют обстановку интенсивного многолучевого распространения. Обычные городские условия дают меньше пригодных траекторий. Минимальный уровень шума системы представлен пиками и провалами, имеющими более низкие уровни энергии. Задача элемента поиска заключается в распознавании задержки, измеренной по горизонтальной оси пиков 2-7 сигнала для потенциального элемента демодуляции.

Горизонтальная ось также может считаться имеющей единицы сдвига ПШ. В любое заданное время базовая станция принимает разные сигналы от одного мобильного устройства, каждый из которых прошел по разной траектории и может иметь разные задержки во времени, отличные от других. Сигнал мобильного устройства модулируется последовательностью ПШ. Вариант последовательности ПШ также генерируется в базовой станции. В базовой станции каждый сигнал многолучевого распространения отдельно демодулируется кодом последовательности ПШ, упорядоченным по его хронированию. Координаты горизонтальной оси могут считаться соответствующими сдвигу кода последовательности ПШ, который будет использован для демодулирования сигнала в этой координате.

Нужно отметить, что каждый из пиков многолучевого распространения изменяется по амплитуде как функция времени (на фиг. 1 показано неровным гребнем каждого пика многолучевого распространения). В изображенном ограниченном периоде времени в пиках многолучевого распространения крупных изменений нет. В течение более продолжительного периода времени пики многолучевого распространения исчезают и с ходом времени создаются новые траектории. С течением времени пики многолучевого распространения имеют тенденцию к слиянию или "размыванию" в широкий пик. В то время как каждый элемент демодуляции следит за небольшими изменениями в предназначенном ему сигнале, задача поиска заключается в генерировании алгоритма текущей обстановки многолучевого распространения, воспринимаемой базовой станцией.

В обычной системе беспроводной телефонной связи передатчик мобильного устройства может использовать вокодерную систему, которая кодирует речевую информацию в формате переменной скорости. Например, скорость передачи данных может быть снижена из-за пауз в речи. Пониженная скорость передачи данных снижает уровень помех для других пользователей, вызываемых передатчиком мобильного устройства. Вокодерная система в приемном устройстве, или иным образом связанная с приемным устройством, используется для восстановления речевой информации. В дополнение к речевой информации только неречевая информация или сочетание того и другого может передаваться мобильным устройством.

Вокодер, пригодный для применения в данных условиях, описан в заявке на Патент США N 07/713661 "Вокодер переменной скорости" от 11 июня 1991. Этот вокодер производит из цифровых выборок речевой информации кодированные данные с четырьмя различными скоростями, напр. около 8000 битов/сек (б/с), 4000 б/с, 2000 б/с и 1000 б/с на основе речевой активности в течение 20 миллисекундного (мс) фрагмента. Каждый фрагмент вокодерных данных форматируется дополнительными разрядами как следующие фрагменты данных: 9600 б/с, 4800 б/с, 2400 б/с и 1200 б/с. Фрагмент с самой высокой скоростью передачи данных, который соответствует фрагменту 9600 б/с, называется фрагментом "полной скорости", фрагмент данных 4800 б/с называется фрагментом "половинной скорости", фрагмент данных 2400 б/с называется фрагментом "четверти скорости" и фрагмент данных 1200 б/с называется фрагментом "одной восьмой скорости". Ни в процессе кодирования, ни в процессе форматирования фрагмента информации скорости, включенной в данные, не имеется. Когда мобильное устройство передает данные со скоростью, меньшей, чем полная скорость, рабочий цикл переданного сигнала мобильных устройств тот же, что и скорость передачи данных. Например, на четвертной скорости сигнал передается от мобильного устройства только четверть времени. В течение прочих трех четвертей времени никакого сигнала от мобильного устройства не передается. Мобильное устройство включает в себя рандомизатор пакета данных. Когда ему задают скорость данных сигнала, который нужно передать, рандомизатор пакета данных определяет, в течение каких интервалов времени мобильное устройство передает и в течение каких интервалов времени оно не передает. Более подробно рандомизатор пакета данных описывается в заявке на патент США N 07/846312 "Рандомизатор пакета данных" от 5 марта 1992.

В базовой станции каждый отдельный сигнал мобильного устройства должен быть отличен от совокупности принимаемых сигналов вызова, чтобы его демодулировать обратно в исходный сигнал вызова мобильного устройства. Система и способ для демодулирования сигнала мобильного устройства, принятого в базовой станции, описываются, например, в патенте 5103459. Фиг. 2 является блок-схемой оборудования базовой станции, описываемого в патенте 5103459, для демодулирования сигнала обратной линии связи с мобильного устройства.

Обычная базовая станция содержит множество независимых элементов поиска и демодулирования. Элементы поиска и демодулирования управляются устройством управления. В этом варианте воплощения в целях сохранения высокой производительности системы каждая мобильная станция в системе не передает непрерывно пилот-сигнал. Отсутствие пилота-сигнала на обратной линии связи увеличивает время, необходимое для просмотра всех возможных сдвигов времени, с которыми может быть принят сигнал мобильного устройства. Обычно пилот-сигнал передается с более высокой мощностью, чем сигналы нагрузки, тем самым повышая отношение сигнал-шум принимаемого пилота по сравнению с принимаемыми сигналами канала нагрузки. В противоположность этому каждое мобильное устройство в идеале передает сигнал обратной линии связи, который имеет уровень, равный уровню мощности, принятому от каждого другого мобильного устройства, и имеет поэтому низкое отношение сигнал-шум. Также пилот-сигнал передает известную последовательность данных. Без пилота-сигнала процесс поиска должен также определить, какие данные были переданы.

Для системы, показанной на фиг. 2, каждый элемент поиска содержит один процессор БПА, который может выполнять одно преобразование БПА в течение периода времени, равного периоду символа Уолша. Процессор БПА подчинен "реальному времени" в том смысле, что в каждом интервале символа Уолша вводится одна величина и одна величина выводится из БПА. Поэтому для обеспечения быстрого процесса поиска нужно использовать несколько элементов поиска. Элементы поиска непрерывно производят сканирование в поиске информационного, находящегося под управлением контроллера системы, сигнала конкретного мобильного устройства. Элементы поиска сканируют множество временных сдвигов "вокруг" номинального поступления сигнала при поиске произведенных сигналов многолучевого прохождения. Каждый из элементов поиска подает назад к контроллеру результаты производимого им поиска. Контроллер табулирует эти результаты для использования элементов демодулирования поступающим сигналам.

Базовая станция (фиг. 2) имеет одну и более антенн 12, принимающих сигналы 14 мобильного устройства обратной линии связи МДКР. Обычно охватываемый городской базовой станцией район разбивается на три подрайона, называемых секторами. На один сектор приходятся две антенны, и при этом обычная базовая станция имеет всего шесть антенн приема. Принимаемые сигналы преобразовываются с понижением частоты до полосы частот модулирующих сигналов аналоговым приемным устройством 16, которое квантирует принимаемые сигналы С и К каналов и посылает эти цифровые величины по линиям 18 в модемы 20 канального элемента. Каждый модем канального элемента работает для одного пользователя. Модем содержит множество приемных устройств цифровых данных или элементы 22, 24 демодуляции и множество приемных элементов 26 поиска. Микропроцессор 34 управляет работой элементов 22 и 24 демодуляции и элементов 26 поиска. Код ПШ пользователя в каждом элементе демодулирования и искателе придан коду мобильного устройства, предназначенного этому канальному элементу. Микропроцессор 34 поэтапно проводит искатели 26 по всему множеству сдвигов, называемому окном поиска, которое по вероятности может содержать пик сигнала многолучевого распространения, пригодный для элементов демодулирования. Для каждого сдвига элемент 26 поиска сообщает энергию, которую он обнаружил в этом сдвиге. Элементы 22 и 24 демодулирования затем подключаются микропроцессором 34 к траекториям, распознанным элементом 26 поиска (т.е. опорный сигнал их генераторов ПШ перемещается, чтобы упорядочить его относительно опорного сигнала обнаруженной траектории). После того, как элемент демодулирования зафиксируется на сигнале предназначенного ему сдвига, он затем следует этой траектории сам без "руководства" со стороны микропроцессора до тех пор, пока траектория не замрет или элемент демодулирования не будет подключен микропроцессором к более лучшей траектории.

На фиг. 2 показана внутренняя структура только одного приемного устройства 22 для приема цифровых данных, но следует иметь в виду, что это относится также и к приемнику 24 цифровых данных и элементам 26 поиска. Каждый элемент демодулирования 22, 24 или элемент 26 поиска модема канального элемента имеет соответствующие генераторы 36, 38 последовательности ПШ С и К и генератор 40 последовательности ПШ конкретного пользователя, который используется для выбора конкретного мобильного устройства. Выход 40 последовательности ПШ конкретного пользователя имеет исключающие логические элементы 42 и 44 ИЛИ для выхода генераторов 36 и 38 последовательности ПШ С и К для выработки последовательностей ПШ-С' и ПШ-К', которые подаются к блоку 46 сжатия. Опорный сигнал хронирования генераторов ПШ 36, 38, 40 отрегулирован относительно сдвига предназначенного сигнала, благодаря чему блок 46 сжатия коррелирует принятые антенные выборки канала С и К с последовательностью ПШ-С' и ПШ-К', соответствующей предназначенному сигналу сдвига. Четыре вывода блока сжатия, соответствующие четырем элементам сигнала ПШ на элемент сигнала Уолша, суммируются накапливающими сумматорами 48, 50 и образуют единый элементарный сигнал Уолша. Суммированный элемент сигнала Уолша затем вводится в процессор 52 БПА. Процессор 52 БПА коррелирует множество из принятых шестидесяти четырех элементов сигналов Уолша с каждой из шестидесяти четырех возможных переданных функций Уолша и выводит шестьдесят четыре вводные матрицы данных программного решения. Выход БПА процессора 52 БПА для каждого элемента демодулирования затем объединяется с выводами других элементов демодулирования элементом 28. Выход объединителя 28 является демодулированным символом "программного решения". Данные программного решения являются выбранным демодулированным символом, умноженным на весовой коэффициент со степенью достоверности того, что они правильно распознают исходный переданный символ Уолша. Программное решение затем подается к дешифратору 29 прямого исправления ошибок для последующей обработки, чтобы восстановить исходный сигнал вызова. Этот сигнал вызова затем отсылается по цифровой линии 30, которая направляет вызов в телефонную станцию общего пользования (ТСОП) 32.

Аналогично каждому из элементов демодулирования 22, 24 каждый элемент 26 поиска содержит траекторию полных данных демодуляции. Элемент 26 поиска отличается от элемента демодулирования только тем, как используется выход, и тем, что он не обеспечивает слежение по времени. Для каждого обрабатываемого сдвига элемент поиска находит энергию корреляции в этом сдвиге сжатием антенных выборок, накоплением их в элементарные сигналы Уолша, которые вводятся в БПА, где выполняется БПА и суммируется максимальная энергия выхода БПА для каждого символа БПА, для которого искатель находится на сдвиге. Окончательная сумма сообщается обратно в микропроцессор 34. Обычно каждый элемент 26 поиска делает пошаговое выполнение по окну поиска вместе с другими как группа при помощи микропроцессора 34, при этом каждый элемент поиска отделен от соседнего половиной элементарного сигнала ПШ. Таким образом, на каждой максимальной возможной сдвиговой ошибке четверти элементарного сигнала имеется достаточно энергии корреляции, чтобы застраховаться от того, что траектория случайно не пропущена только потому, что элемент поиска не произвел корреляцию с точным сдвигом траектории. После последовательного проведения элементов поиска 26 по окну поиска микропроцессор 34 оценивает результаты обратного сообщения, отыскивая сильные траектории для предназначения элементов демодулирования - как это описывается в заявке на патент США N 08/144902.

Условия многолучевого распространения постоянно меняются при движении мобильного устройства по району охвата базовой станции. Число необходимых поисков устанавливается необходимостью быстрого нахождения многолучевого распространения - достаточно быстрого, чтобы траекторию можно было нормально использовать элементами демодулирования. С другой стороны, число нужных элементов демодулирования является функцией количества траекторий, обнаруживаемых обычно в данный момент для использования. Для удовлетворения этой необходимости система имеет два элемента 26 поиска и один элемент демодулирования 24 для каждой из четырех используемых интегральных схем (ИС) демодулятора для общего числа четырех элементов демодулирования и восьми искателей на один модем канального элемента. Каждый из этих двенадцати элементов обработки содержит траекторию полных данных демодулирования, включая процессор БПА, который занимает относительно большое и дорогое место при его выполнении на интегральной схеме. Кроме четырех ИС демодулятора модем канального элемента имеет также ИС модулятора и ИС дешифратора прямого исправления ошибок для общего числа 6 чипов ИС. Для управления элементами демодулирования и элементами поиска и согласования их работы требуется мощный и дорогой микропроцессор. Эти схемы в том виде, в каком они выполнены в модеме, полностью независимы, и им нужно постоянное "руководство" микропроцессором 34 для последовательного проведения по правильным сдвигам и для оперирования выходами БПА. По каждому символу Уолша микропроцессор принимает перерыв, чтобы обработать выходы БПА. Только эта скорость перерыва обуславливает необходимость микропроцессора большой мощности.

Большим преимуществом была бы замена шести ИС, нужных для модема, на одну ИС, для которой потребовался бы меньший объем микропроцессорного обеспечения, тем самым были бы снижены непосредственные издержки на ИС и производственные издержки на модем и благодаря чему можно было бы использовать более дешевые микропроцессоры (либо, как вариант, один более мощный процессор для обеспечения нескольких модемов канального элемента сразу). Недостаточно исходить только из миниатюризации компонентов при изготовлении ИС и совмещения шести кристаллов в одном - нужно переконструировать фундаментальную структуру демодулятора для действительно рентабельного модема на одном кристалле. Из вышеизложенного очевидно, что необходимы такой прием сигналов и такое устройство обработки сигналов, которые могли бы демодулировать сигнал вызова расширенного спектра с меньшими затратами, и это более рентабельно с точки зрения структуры.

Данное изобретение заключается в едином интегральном процессоре поиска, который может быстро оценивать большое число сдвигов, потенциально содержащих многолучевое распространение принимаемого сигнала вызова. Для системы, показанной на фиг. 2, каждый искатель содержит один процессор БПА, который может выполнять одно БПА из расчета одного символа Уолша. Для того, чтобы получить дополнительную производительность обработки в системе, нужно ее дополнить элементами дискретного поиска, каждый из которых имеет свой собственный процессор БПА.

Основной особенностью данного изобретения является разъедине