Способ идентификации подлинности спиртосодержащих жидкостей
Реферат
Способ основан на характерной физико-химической особенности совокупности микропримесей, определяющих состав продукта - способности поглощать и переизлучать оптическое излучение (люминесцировать). Согласно изобретению сопоставляются массивы спектрально-люминесцентных характеристик идентифицируемого и эталонного изделий, представленные в виде многомерных спектрально-люминесцентных профилей (МСЛ-профилей). Способ идентификации подлинности путем сопоставления МСЛ-профилей спиртосодержащих жидкостей позволяет отслеживать малейшие изменения в их составе и обладает высокой специфичностью. 1 з.п. ф-лы, 2 ил.
Изобретение относится к способам идентификации и определения подлинности объектов путем прямого сопоставления характеристик идентифицируемого и эталонного изделий, а именно к идентификации подлинности пищевых спиртов, водок, коньяков, вин и других спиртосодержащих жидкостей путем прямого сопоставления полных отображений спектрально - люминесцентных свойств образцов.
Производство спиртов осуществляют по различным технологиям из разного исходного сырья [Боуден Б. С. Спирты. Химическая энциклопедия, т. 4, М., 1995, с. 404-406]. В частности этиловый спирт производят как методом ферментативного брожения растительного и некоторых других видов сырья, так и из нефтегазового сырья методом прямого синтеза. Тип сырья, использованного в производстве, и технология его переработки определяют области применения спирта. Состав спирта-сырца крайне неоднороден. При этом его качественно-количественный состав зависит как от типа исходного сырья, так и технологических стадий его переработки [Смирнов С.К. Этиловый спирт. Химическая энциклопедия, т. 5, М., 1998, с. 501-503]. Известно, что даже в ректификованных спиртах имеется еще очень много микропримесей. К настоящему времени в спиртовых дистиллятах идентифицировано более 240 различных химических соединений [Карагодин Г. М. Книга о водке и виноделии. Челябинск, "Урал LTD", 1998, 468 с.]. Что касается спиртосодержащих изделий (водок, коньяков, вин, парфюмерных изделий и др.), то в их состав, кроме примесей спиртовой основы, дополнительно входят различные технологические добавки. Состав и количественное содержание примесей в конечном продукте целиком и полностью определяется составом исходного сырья и технологией производства. Поэтому в основе практически всех способов идентификации спиртосодержащих жидкостей лежат методы определения и обнаружения следовых количеств органических веществ. Для определения и обнаружения следовых количеств органических веществ наиболее широко применяется: газожидкостная хроматография в сочетании с масс-спектрометрией [ten Noever de Brauw M.C., J.Chromatog., v. 165, 207, (1979); Greenway A. M., Simpson C.F., J.Phys., v. 13, 1131 (1980)]. Наблюдается тенденция к более широкому применению (главным образом в сочетании с высокоэффективной жидкостной хроматографией) флуориметрических методов (ультрафиолетовая спектрофотометрия, флуориметрия и измерение фосфоресценции) [Wehry E.L., Mamantov G., Anal. Chem., v. 51, 643A, (1979); Wehry E.L., Modern Fluorescence Spectroscopy, 4 Vols. Plenum Press, New York (1976, 1981)]. В самое последнее время газожидкостная хроматография в сочетании с масс-спектрометрией стала все чаще применяться для идентификации подлинности спиртосодержащей продукции по содержанию в ней следовых количеств органических веществ. В работе [Савчук С.А, Бродский E.G., Формановский А.А. и др. Идентификация подлинности спиртных напитков хроматографическими методами. Тезисы докладов Первой научно-практической конференции "Идентификация качества и безопасность алкогольной продукции", Пущино, 1-4 марта 1999 г., с. 70] показаны возможности применения методов газовой хроматографии и масс-спектрометрии для идентификации подлинности путем прямого сопоставления характеристик идентифицируемого и эталонного изделий, следующих видов продукции и объектов: спиртов, водок, коньяков, вин и других спиртосодержащих жидкостей; парфюмерно-косметической продукции; фармацевтической продукции; ароматизаторов экстрактов концентраторов и др. В настоящее время не представляется возможным (даже в случае одновременного применения двух специфических способов идентификации, например сочетание газожидкостной хроматографии и масс-спектрометрии) получить полную картину, отражающую природу всех микропримесей, присутствующих в спиртовых дистиллятах. Попытки идентифицировать и определить количественное содержание индивидуальных примесей, входящих в состав спиртосодержащих жидкостей, методами газожидкостной хроматографии - масс-спектрометрии или "мокрой" химии приводят: к ограничению круга объектов, используемых для идентификации; практически не позволяют (при анализе лишь токсичных примесей) определить тип исходного сырья и особенности технологии производства; приводят к большим затратам времени, поскольку часто требуют предварительной химической обработки или обогащения пробы. Микропримеси, входящие в состав спиртосодержащих жидкостей и определяющие их качественные характеристики, обладают характерной особенностью - способностью поглощать и переизлучать оптическое излучение (люминесцировать). Для идентификации подлинности спиртосодержащих жидкостей нет необходимости качественного и количественного определения каждого индивидуального примесного компонента. Можно с успехом применить способ, аналогичный способу диагностирования заболеваний методом профильной газожидкостной хроматографии - масс-спектрометрии. Суть этого способа состоит в определении полного профиля концентраций какой-либо одной группы веществ в составе жидкости организма человека, а затем сравнении профилей "нормальной" и "патологической" проб. Реализация способа связана с определенными экспериментальными трудностями и требует применения методов с высокой разрешающей способностью, например капиллярной газожидкостной хроматографии. Обработка огромного количества получаемой информации может осуществляться только с помощью вычислительной техники и специальных методов сравнения профилей [Schots А. C. , Mikkers F.E.P., Cramers C.A.M.G., J.Chromatog., v. 164, 1, (1979)] . Однако усилия, затраченные на преодоление трудностей, окупаются высокой степенью достоверности способа диагностики заболеваний. Аналогично вышеописанному способу диагностики заболеваний в основу предлагаемого способа идентификации подлинности спиртосодержащих жидкостей положен следующий алгоритм: измеряют полный спектр поглощения (пропускания) жидкости в оптическом диапазоне (ближний ультрафиолетовый и видимый свет: 200 - 750 нм); измеряют полные спектры люминесценции спиртосодержащей жидкости, представляющие собой совокупность зависимостей интенсивности люминесценции как от длины волны возбуждения, так и от длины волны испускания (3-мерный спектр или матрица возбуждение - испускание); составляют многомерный спектрально-люминесцентный профиль (МСЛ-профиль) или матрицу поглощение - возбуждение - испускание (ПВИ-матрица) спиртосодержащей жидкости; сопоставляют МСЛ-профили (ПВИ-матрицы) эталонной и идентифицируемой спиртосодержащих жидкостей. Для составления МСЛ-профиля используют полные спектры пропускания и люминесценции. Поэтому топология профиля определяется следовыми количествами и спектрально-люминесцентными свойствами практически всех входящих в состав спиртосодержащих жидкостей органических примесей, способных поглощать и испускать оптическое излучение (аминокислоты и другие белковые системы, ароматические углеводороды, альдегиды, сивушные масла, входящие в состав ароматизаторов и красителей хромофоры). Каждая спиртосодержащая жидкость изготавливается из определенного сырья, по конкретной технологии и с присущими данному производству технологическими допусками, поэтому каждая такая жидкость характеризуется специфическим, только ей присущим набором органических микропримесей. Поскольку спектрально-люминесцентные методы обладают исключительно высокой чувствительностью к присутствию даже крайне малых (10-5- 10-9 г/л) количеств люминесцирующих веществ, постольку способ идентификации подлинности путем сопоставления МСЛ-профилей спиртосодержащих жидкостей позволяет отслеживать малейшие изменения в их составе и обладает высокой специфичностью. Реализация способа требует применения чувствительной спектрофотометрической аппаратуры высокого разрешения и специальных методов обработки полных спектров люминесценции и пропускания с использованием вычислительной техники. Дополнительным преимуществом сопоставления МСЛ-профилей по сравнению с концентрационным газохроматографическим профилем является повышение специфичности идентификации за счет одновременного использования нескольких методов оценки характера взаимодействия анализируемых жидкостей с оптическим излучением - спектров пропускания, возбуждения и люминесценции [K. Beyermann. Organishe Spurenanalyse. Georg Thieme Verlag, Stuttgart-New York, 1982]. Количественный (концентрационный) вклад микропримесей в каждой из групп этих спектров проявляется по разному. Задача изобретения - создание эффективного безреагентного способа для объективной, автоматизированной, экспрессной идентификации подлинности спиртосодержащих изделий (спиртов, водок, коньяков, вин, парфюмерных изделий и др.). Технический результат, который может быть получен при осуществлении изобретения, состоит в обеспечении возможности создания непрерывно обновляемой компьютерной базы данных, содержащей информацию о МСЛ-профилях (ПВИ-матрицах) спиртосодержащих изделий, выпускаемых промышленностью. Для решения поставленной задачи с достижением указанного технического результата согласно изобретению сопоставляются полные наборы спектрально-люминесцентных характеристик идентифицируемой и эталонной жидкостей, а признаком соответствия идентифицируемой и эталонной спиртосодержащей жидкости служит соблюдение условия: A - B = C, матрицы из m строк и n+1 столбцов, элементами которых являются: i, *i - значения спектрального коэффициента пропускания света на длине волны падающего излучения i для идентифицируемой i и эталонной *i жидкостей, причем длину волны падающего излучения i сканируют от 200 нм до 750 нм; Ii,j, Ii,j* - приведенные к единице значения интенсивности в спектре люминесценции идентифицируемой Ii,j и эталонной Ii,j* жидкостей на длине волны j при возбуждении светом с длиной волны i, причем длину волны возбуждающего света i смещают от 200 нм до 750 нм, а длину волны регистрации j сканируют от j = i, до 750 нм; i, i,j - величины допустимых отклонений значений спектрального коэффициента пропускания и интенсивности люминесценции идентифицируемого изделия от соответствующих значений этих величин для эталонного изделия. Иллюстрация вышеописанного способа представлена на фиг. 1-2, где матрицы A, B и C представлены в графическом виде. По горизонтальным осям откладывают длины волн возбуждения (падающего излучения) и испускания люминесценции, а по вертикальной оси - величину коэффициента пропускания и интенсивность люминесценции. Матрицей В на фиг. 1 является ПВИ-профиль эталонного образца водки марки "N" фирмы "X", а матрицей А - ПВИ-профиль идентифицируемого образца водки той же марки, того же производителя. Разностная матрица C=A-B=0 указывает на полную идентичность сопоставляемых образцов. На фиг. 2 представлен результат сопоставления образцов водки марки "N" разных производителей. Здесь матрицей А является ПВИ-профиль эталонного образца водки марки "N" фирмы "X", а матрицей В - ПВИ-профиль водки марки "N" фирмы "Y". Видно, что в этом случае разностная матрица C=A-B 0, что указывает на несоответствие идентифицируемого образца эталонному. Специфичность предлагаемого способа может быть повышена, если сопоставлять полные наборы спектрально-люминесцентных характеристик эталонной и идентифицируемой спиртосодержащих жидкостей, полученные при температуре 77oК или 4,2oК. При этом полосы в спектрах поглощения и люминесценции примесей, входящих в состав спиртосодержащих жидкостей, сужаются в 1,5-2 раза, и ПВИ-профиль становится более структурным, что позволяет повысить специфичность и достоверность идентификации. Для измерения спектральной зависимости коэффициента пропускания и спектров люминесценции органических соединений, входящих в состав идентифицируемого и эталонного изделий, применяют стандартные методики [C.N.Banwell, Fundamentals, of Molecular Spectroscopy, McGraw-Hill Book Company (UK) Limited, (1983); Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz, Plenum Press, New York, (1983)]. Предложенный в изобретении алгоритм обеспечивает простоту, полноту и надежность сопоставления больших массивов спектрально-люминесцентных характеристик идентифицируемого и эталонного спиртосодержащих изделий. Изобретение иллюстрируется следующими примерами. Пример 1. В качестве эталонного образца выбирают пищевой спирт, изготовленный из зернового сырья (объект N 1). В качестве идентифицируемых образцов выбирают: спирт, изготовленный из того же сырья, что и объект N 1, но на другой (идентичной) аппаратуре (объект N 2); технический (гидролизный) спирт (объект N 3). Интенсивность в спектрах люминесценции и величину спектрального коэффициента пропускания регистрируют в интервале длин волн 200 - 750 нм с шагом 10 нм и спектральным разрешением 2 нм. Величину допустимых отклонений от эталонных значений спектрального коэффициента пропускания и интенсивности люминесценции устанавливают равной 0,05. Компьютерный анализ полных спектров пропускания и люминесценции (ПВИ-матриц или МСЛ-профилей) на соблюдение условия A - B = C показывает, что для объектов N 1 и N 2 все элементы матрицы C лежат в пределах 0 + 0,05, а для объектов N 1 и N 3 это условие не выполняется. Пример 2. В качестве эталонного образца выбирают образец водки, изготовленный фирмой "X" (объект N 1a). В качестве идентифицируемых образцов выбирают: образец водки, изготовленный фирмой "X" в том же технологическом цикле, что и эталон (объект N 2a); образец водки того же наименования, что и эталон, но изготовленный на заводе фирмы "Y" - (объект N 3а). Интенсивность в спектрах люминесценции и величину спектрального коэффициента пропускания регистрируют в интервале длин волн 200 - 750 нм с шагом 10 нм и спектральным разрешением 2 нм. Величину допустимых отклонений от эталонных значений спектрального коэффициента пропускания и интенсивности люминесценции устанавливают равной 0,05. Компьютерный анализ спектральных данных на соблюдение условия A - B = C показывает, что для объектов N 1а и N 2а все элементы матрицы C лежат в пределах 0 + 0,05, а для объектов N 1а и N 3а это условие не выполняется. Пример 3. В качестве эталонного образца выбирают образец белого виноградного вина, произведенный в Краснодарском крае фирмой "X" (объект N 1б). В качестве идентифицируемого образца выбирают образец виноградного вина того же сорта, но изготовленный в Молдавии фирмой "Y" (объект N 2б). Интенсивность в спектрах люминесценции и величину спектрального коэффициента пропускания регистрируют в интервале длин волн 200 - 750 нм с шагом 10 нм и спектральным разрешением 2 нм. Величину допустимых отклонений от эталонных значений спектрального коэффициента пропускания и интенсивности люминесценции устанавливают равной 0,05. Компьютерный анализ спектральных данных на соблюдение условия A - B = C показывает, что для объектов N 1б и N 2б это условие не выполняется. Пример 4. В качестве эталонного образца выбирают пищевой спирт, изготовленный из зернового сырья (объект N 1). В качестве идентифицируемых образцов выбирают: спирт, изготовленный из того же сырья, что и объект N 1, но на другой (идентичной) аппаратуре (объект N 2); технический (гидролизный) спирт (объект N 3). Для проведения измерений образцы помещаются в азотный оптический криостат, где спирты замораживаются до температуры 77oК. Интенсивность в спектрах люминесценции и величину спектрального коэффициента пропускания регистрируют в интервале длин волн 200-750 нм с шагом 5 нм и спектральным разрешением 0,2 нм. Величину допустимых отклонений от эталонных значений спектрального коэффициента пропускания и интенсивности люминесценции устанавливают равной 0,025. Компьютерный анализ полных спектров пропускания и люминесценции (ПВИ-матриц или МСЛ-профилей) на соблюдение условия A - B = C показывает, что для объектов N 1 и N 2 все элементы матрицы С лежат в пределах 0 + 0,025, а для объектов N 1 и N 3 это условие не выполняется. Результаты, полученные для других спиртосодержащих жидкостей, например коньяк, спиртовой раствор салициловой кислоты, настойка календулы и др., аналогичны приведенным в примерах 1 - 4.Формула изобретения
1. Способ идентификации подлинности спиртосодержащих жидкостей, например спиртов, водок, коньяков и вин, путем прямого сопоставления характеристик идентифицируемого изделия с характеристиками эталонного изделия, отличающийся тем, что сопоставляются полные наборы спектрально-люминесцентных характеристик идентифицируемой и эталонной жидкостей, а признаком соответствия идентифицируемой и эталонной спиртосодержащей жидкости служит соблюдение условия A - B = C, матрицы из m строк и n + 1 столбцов, элементами которых являются: i, *i - значения спектрального коэффициента пропускания света на длине волны падающего излучения i для идентифицируемой i и эталонной *i жидкостей, причем длину волны падающего излучения i сканируют от 200 до 750 нм; Iij, I*ij - приведенные к единице значения интенсивности в спектре люминесценции идентифицируемой Iij и эталонной I*ij жидкостей на длине волны i при возбуждении светом с длиной волны i, причем длину волны возбуждающего света i смещают от 200 до 750 нм, а длину волны регистрации i сканируют от i = i до 750 нм; i, i,j - величины допустимых отклонений значений спектрального коэффициента пропускания и интенсивности люминесценции идентифицируемого изделия от соответствующих значений этих величин для эталонного изделия. 2. Способ по п.1, отличающийся тем, что эталонный и идентифицируемый растворы замораживают до температуры 4,2К или 77К.РИСУНКИ
Рисунок 1, Рисунок 2