Способ кучного биоокисления руды

Реферат

 

Изобретение относится к способу повышения скорости кучного биоокисления частиц труднообогатимой сульфидной руды, являющихся, по крайней мере частично, биологически окисленными с использованием раствора, полученного после стадии биовыщелачивания и возвращенного на повторный цикл. Этот способ включает стадии биологического окисления кучи, состоящей из частиц труднообогатимой сульфидной руды, с использованием биовыщелачивающего раствора; сбора раствора, вытекающего из кучи в процессе биовыщелачивания и содержащего множество растворенных в нем ингибирующих материалов, где концентрация каждого отдельного ингибирующего материала в указанном растворе является ниже его отдельной ингибирующей концентрации, а суммарная концентрация, по крайней мере двух ингибирующих материалов, является достаточной для ингибирования скорости биологического окисления частиц труднообогатимой сульфидной руды; кондиционирование раствора, собранного в результате биовыщелачивания, в целях уменьшения ингибирующего действия раствора, вызванного суммарной концентрацией по крайней мере двух ингибирующих материалов; возвращение указанного кондиционированного раствора в кучу на повторный цикл; и биологическое окисление частиц труднообогатимой сульфидной руды в куче с использованием рециклового биовыщелачивающего раствора. Способ позволяет уменьшить время процесса, капиталовложения и упростить конструирование специальных площадок для размещения куч руды. 7 с. и 39 з.п.ф-лы, 13 ил., 9 табл.

Настоящая заявка является частичным продолжением одновременно рассматриваемой заявки рег. N 08/329002, поданной 25 октября 1994. Заявка 08/329002 вводится в настоящее описание посредством ссылки.

Предпосылки создания изобретения Область изобретения Настоящие изобретение относится к извлечению ценных металлов из труднообогатимых сульфидных и труднообогатимых углеродсодержащих сульфидных руд. Более конкретно, настоящее изобретение относится к биологическому окислению труднообогатимых сульфидных руд в кучках с использованием раствора, полученного в процессе биологического выщелачивания, и возвращенного в повторный цикл.

2. Описание предшествующего уровня техники Золото является одним из наиболее редких металлов на земле. Золотые руды могут быть разделены на два типа: легкообогащаемые и труднообогащаемые руды. При этом, легкообогатимые руды не поддаются стандартной обработке путем цианирования. Золотоносные отложения считаются труднообогатимыми, если их обработка стандартным методом выщелачивания цианидом является экономически невыгодной из-за недостаточной солюбилизации золота. Извлечение металла из таких руд часто требует слишком больших затрат для их обработки вследствие чрезмерного содержания в них сульфидов металлов (например, пирита и арсенопирита) и/или органических углеродсодержащих веществ.

Большинство из таких труднообогатимых руд содержат драгоценные металлы, такие как золото, включенные в частицы из сернистого железа. Частицы сернистого железа состоят, в основном, из пирита и арсенопирита. Если золото или другие драгоценные металлы остаются включенными в сульфидном минерале-хозяине даже после его дробления, то для того, чтобы извлечь эти инкапсулированные ценные металлы и сделать их доступными для обработки выщелачивающим агентом (или выщелачивателем), эти сульфиды должны быть подвергнуты окислению, в результате которого руда становится, по своей природе, менее упорной для извлечения полезных компонентов.

Существует несколько известных способов окисления сульфидных минералов в целях высвобождения драгоценных металлов. Эти способы могут быть, в основном, разделены на два типа: метод обогащения на фабрике и "кучный" метод. Метод обогащения на фабрике является дорогостоящим процессом, имеющим высокую производительность и требующим значительных затрат. Поэтому, несмотря на то, что степень извлечения полезных компонентов, достигается с помощью метода обогащения на фабрике является более высокой, этот метод не может быть применим для бедных руд, то есть для руд, имеющих концентрацию золота приблизительно менее чем 0,07 унций/т (2,06 см3/т), и даже менее, чем приблизительно 0,02 унций/т (0,59 см3/т).

В операциях обогащения на фабрике используют два хорошо известных метода окисления сульфидов, а именно, окисление под давлением в автоклаве и обжиг.

Окисление сульфидов в рудах с трудноизвлекаемым золотом может быть также осуществлено путем предварительной обработки микробами с использованием ацидофильных, автотрофных микроорганизмов, таких как Thiobacillus ferrooxidans, Sulfolobus, Acidianus sp., и факультативно-термофильных бактерий. Эти микроорганизмы могут использовать окисление сульфидных минералов в качестве энергетического источника в реакциях метаболизма. В процессе окисления, указанные микроорганизмы окисляют частицы сульфида железа, способствуя тем самым солюбилизации железа как трехвалентного железа, и сульфида как сульфатного иона.

Окисление труднообогатимых сульфидных руд с использованием микроорганизмов, или, как его часто называют, биологическое окисление, может быть осуществлено методом обогащения путем измельчения или "кучным" методом. По сравнению с окислением под давлением с обжигом, метод биологического окисления является более простым, а также требует меньше капиталовложений и эксплуатационных затрат. Действительно, для окисления сульфидных минералов в труднообогатимой сульфидной руде часто используют метод биологического окисления, так как, по сравнению с другими способами окисления руды, он является экономически более выгодным. Однако, поскольку скорость окисления под действием микроорганизмов меньше, чем скорость окисления химическими и механическими методами, то процесс биологического окисления часто является ограничивающей стадией в разработке месторождений.

Один из способов биологического окисления типа обогащения предусматривает тонкое измельчение руды с последующей обработкой рудной пульпы в биологическом реакторе, где микроорганизмы могут использовать тонкоизмельченные сульфиды в качестве энергетического источника. Такой способ обогащения был использован в промышленных масштабах на руднике Tonkin Springs.

Однако с точки зрения специалистов по горнодобывающей промышленности такой способ биологического окисления, проведенный в руднике Tonkin Sprinqs, был признан неэффективным. Второй способ биологического окисления типа обогащения предусматривает отделение золотосодержащих сульфидов от руды с использованием стандартной техники обогащения сульфидов, такой как флотация, с последующим окислением сульфидов в размешиваемом биореакторе для снижения их труднообогащаемой природы. Промышленные операции такого типа используются в Африке, Южной Америке и Австралии.

В "кучном" способе биологическое окисление обычно приводит к образованию кучи частиц труднообогатимой сульфидной руды и последующей инокуляции этой кучи микроорганизмом, способным к биологическому окислению сульфидных минералов в руде. После того, как процесс биологического окисления достигнет нужной конечной стадии, кучу руды подвергают дренажу и отмывке путем многократного промывания. Высвобожденный в результате этого драгоценный металл может быть подвергнут выщелачиванию с использованием подходящего выщелачивающего агента. Руду, содержащую драгоценные металлы, обычно выщелачивают цианидом, поскольку он является наиболее эффективным выщелачивающим агентом, обычно используемым для извлечения драгоценных металлов из руды. Однако, если в качестве выщелачивателя используется цианид, то куча руды должна быть сначала нейтрализована.

Поскольку биологическое окисление происходит при низком кислотном pH, а обработка цианидом должна проводиться при высоком основном pH, то биологическое окисление в кучах с последующей обработкой цианидом осуществляется, в сущности, в две стадии. В результате этого процесс обработки с использованием биологического окисления в кучах должен быть разделен на две стадии. Обычно эти стадии отделены друг от друга временным интервалом. Так, например, при биологическом окислении в кучах, кучи сначала подвергают биологическому окислению, а затем промывают, нейтрализуют и обрабатывают цианидом. Для экономически эффективного и практического осуществления процедур биологического окисления в кучах, в большинстве случаев используют непрерывную кучную подушку в одной из нескольких конфигурациях руды от прямой до наклонной конфигурации.

Из существующих различных способов биологического окисления кучное биоокисление требует наименьших эксплуатационных затрат и капиталовложений. Поэтому способы кучного биоокисления являются особенно подходящими для обработки низкосортных руд или отвалов, то есть руд, имеющих концентрацию золота (или эквивалентных ценных металлов) приблизительно менее, чем 0,07 унций/т (2,06 см3/т). Однако кучное биоокисление, по сравнению с биоокислением с применением измельчения, является очень медленным процессом. Для того, чтобы добиться достаточного уровня окисления сульфидных минералов в руде способом кучного биоокисления в целях извлечения золота или других ценных металлов в достаточных количествах с последующим выщелачиванием цианидом может потребоваться много месяцев, а поэтому способ кучного биоокисления считается экономически невыгодным. Следовательно, основным недостатком способа кучного биоокисления, не позволяющим осуществлять экономически выгодное извлечение золота, является его продолжительность, необходимая для достаточного биологического окисления руды. Чем больше времени требуется для биологического окисления, тем больше должно быть оборудование для перманентной породной подушки, и, соответственно, тем больше должны быть капиталовложения. На рудничных площадках, где количество земли, подходящее для создания перманентной подушки, является ограниченным, размер перманентной подушки может стать ограничивающим фактором в отношении количества обработанной руды на руднике, и, соответственно, в отношении рентабельности этого процесса. В таких случаях условия, ограничивающие скорость процесса биологического окисления, становятся даже более важным фактором.

Условиями, ограничивающими скорость процесса кучного биоокисления, являются доступ инокулянта, питательных веществ, воздуха или кислорода и двуокиси углерода, которые необходимы для того, чтобы процесс протекал более эффективно, и которые позволяют выбрать более предпочтительный вариант обработки. Кроме того, для осуществления биологического окисления очень важно учитывать время индукции биооксидантов, цикл их роста, биоцидную активность, жизнеспособность бактерий и т.п., поскольку такие параметры, как возможность доступа, размер частиц, осаждение, уплотнение кучи и т.п. являются, после создания кучи, необратимыми с экономической точки зрения. В результате этого уже созданные кучи не могут быть подвергнуты какому-либо исправлению, за исключением лишь каких-нибудь ограниченных участков.

Методы, описанные в патенте США N 5246486, выданном 21 сентября 1993, и в патенте США N 5431717, выданном 11 июля 1995, одним из вышеназванных авторов изобретения (оба эти патента вводятся в настоящее изобретение посредством ссылки), направлены на повышение эффективности процесса кучного биоокисления путем обеспечения хорошего прохождения потока текучей среды (газа и жидкости) через кучу.

Однако количество используемого раствора и его расход также являются важными факторами, ограничивающими скорость процесса кучного биоокисления. Раствор, выходящий из подвергаемой биоокислению кучи, является кислотным и содержит бактерии и ионы железа. Поэтому этот раствор может быть использован преимущественно при агломерации новой руды, или этот раствор может быть подан на повторный цикл в верхнюю часть кучи. Однако в этом выходящем растворе могут накапливаться токсические или ингибирующие материалы. Так, например, ионы трехвалентного железа, которые обычно используются для стимуляции выщелачивания пиритов, способны, при концентрации, превышающей примерно 30 г/л, ингибировать рост бактерий. Кроме того, в этом растворе могут также накапливаться биологически активные металлы, замедляющие процесс биоокисления. Такими биологически активными металлами, которые часто встречаются в труднообогатимых сульфидных рудах, являются мышьяк, сурьма, кадмий, свинец, ртуть и молибден. Скорость биологического окисления могут также ингибировать и другие токсичные металлы, побочные продукты биоокисления, растворенные соли и материалы, продуцируемые бактериями. Если эти ингибирующие материалы накапливаются в выходящем растворе в достаточном количестве, то возвращение этого раствора на повторный цикл может неблагоприятным образом отразиться на скорости процесса биологического окисления. Действительно, возвращение раствора, содержащего достаточное количество накапливаемых ингибирующих материалов, может привести в конце концов к полному прекращению процесса биологического окисления.

Ранее, для предупреждения накапливания ингибиругющих материалов в биовыщелачивающем растворе, выходящем из кучи, специалисты по обогащению руд просто заменяли или разбавляли выходящий из кучи раствор свежим инокулирующим раствором. Эта процедура является довольно дорогостоящей, поскольку она увеличивает потребление свежей воды, а также увеличивает потребность в обработке отработанной воды.

В патенте США N 5246486 раскрывается способ удаления из вытекающего из кучи раствора ингибирующих концентраций мышьяка или железа, которые в данном патенте определяются как концентрации, превышающие около 14 г/л и 30 г/л, соответственно. Способ, раскрываемый в этом патенте, предусматривает повышение pH выходящего биовыщелачивающего раствора до значения выше 3 для того, чтобы ионы мышьяка, присутствующие в растворе, осаждались вместе с ионами железа. Однако в способе, описываемом в указанном патенте, имеются некоторые несоответствия. Во-первых, как описано выше, имеется множество потенциально ингибирующих материалов, которые могут выщелачиваться из руды, и которые могут образовываться в результате процесса биологического выщелачивания; а поэтому простое слежение за накоплением ионов мышьяка или железа в растворе, выходящем после биовыщелачивания, не в состоянии решить проблему удаления ингибирующих концентраций других металлов или материалов, накапливающихся в выходящем растворе. Кроме того, в большинстве случаев выходящий раствор может не содержать ингибирующих концентраций любого из конкретно указанных ингибирующих материалов. Тем не менее, способ биологического окисления может быть использован для замедления накопления комбинации ряда ингибирующих материалов в выходящем растворе, подаваемом в повторный цикл. Поэтому суммарная концентрация, по крайней мере двух ингибирующих материалов, может оказаться достаточной для ингибирования скорости биологического окисления частиц труднообогатимой сульфидной руды в кучах, даже если концентрация одного из этих материалов не превышает его ингибирующей концентрации.

В соответствии с этим необходимо разработать такой метод, который позволял бы в процессе кучного биоокисления удалять ингибирующие концентрации группы ингибирующих материалов из раствора, вытекающего из кучи. Этот метод позволил бы уменьшить количество времени, необходимое для осуществления процесса кучного биоокисления, и тем самым уменьшить капиталовложения, требующиеся для сооружения технических приспособлений в целях осуществления кучного биоокисления. Кроме того, этот метод позволил бы упростить конструирование специальных площадок для размещения куч руды, которые обычно используют для проведения кучного биоокисления на рудниках.

Краткое описание изобретения Целью настоящего изобретения является разработка способа кучного биоокисления описанного выше типа, в котором раствор, выходящий после цикла биовыщелачивания, может быть подан на повторный цикл без снижения или с небольшим снижением скорости биологического окисления частиц труднообогатимой сульфидной руды в кучах, обусловленным накоплением ингибирующей концентрации группы ингибирующих материалов в растворе, вытекающем из кучи в процессе биоокисления. Способ кучного биоокисления, разработанный с этой целью, представляет собой процесс, в котором кучу частиц сульфидной руды с трудноизвлекаемыми полезными компонентами, подвергают биологическому окислению биовыщелачивающим раствором. Раствор биовыщелачивателя, вытекающий из кучи руды после ее обработки, собирают. Если этот раствор оказывает ингибирующее действие на процесс биологического окисления вследствие возрастания в нем суммарной концентрации группы ингибирующих материалов, то этот, выходящий после биовыщелачивания раствор, подвергают кондиционированию в целях снижения его ингибирующего действия, продуцируемого содержащимися в нем указанными материалами. Кондиционированный биовыщелачивающий раствор затем подают на верхнюю часть кучи в повторный цикл без снижения или с небольшим снижением скорости биологического окисления. Альтернативно кондиционированный после биовыщелачивания раствор может быть подан на вторую кучу сульфидной руды с трудноизвлекаемыми полезными компонентами, либо он может быть использован для агломерации частиц труднообогатимых сульфидных минералов до создания кучи.

В соответствии с настоящим изобретением, предпочтительный способ кондиционирования выходящего после биовыщелачивания раствора предусматривает повышение pH, по крайней мере части выходящего раствора, до величины в пределах от около 5,0 до 6,0, а предпочтительно от около 5,5 до 6,0. Это повышение pH может быть осуществлено в непрерывном режиме в качестве профилактической меры, либо оно может быть осуществлено только после того, как будет конкретно установлено, что данный раствор является ингибирующим. Такое повышение pH выходящего раствора обычно приводит к осаждению ингибирующих материалов, вызывающих снижение скорости биоокисления. Затем твердый осадок выделяют из раствора, выходящего после биовыщелачивания, и pH этого раствора снижают до значения, являющегося оптимальным для проведения процесса биологического окисления. Затем кондиционированный таким образом раствор подают в кучу на повторный цикл, или используют для агломерации новой руды.

Эти и другие цели настоящего изобретения, а также его отличительные признаки и преимущества будут очевидны из нижеследующего подробного описания изобретения.

Краткое описание чертежей Фиг. 1 - схематическая иллюстрация способа биологического окисления с использованием системы рационального применения раствора в соответствии с одним из вариантов осуществления настоящего изобретения.

Фиг. 2 - схематическая иллюстрация известного способа биологического окисления типа "гоночного трека", в котором может быть использована система рационального применения раствора в соответствии с настоящим изобретением.

Фиг. 3 - график зависимости процента содержания железа, извлеченного из руды, от времени.

Фиг. 4 - график зависимости от времени Eh раствора, выходящего в процессе биовыщелачивания из труднообогатимой сульфидной руды, и Eh соответствующего концентрата сульфидов руды.

Фиг. 5 - график, иллюстрирующий процент выщелоченного Fe в зависимости от времени в случае использования раствора, который был возвращен на повторный цикл биовыщелачивания без обработки; Фиг. 6 - график, иллюстрирующий процент выщелоченного из руды Fe в зависимости от времени в случае использования лишь свежего раствора; Фиг. 7 - график, иллюстрирующий Eh различных растворов при биовыщелачивании в момент времени 0 и через 24 часа.

Фиг. 8 - график, иллюстрирующий сравнение Eh исходного потока, вытекающего из руды, с вытекающим потоком, pH которого был доведен до 6,0, а затем снижен до 1,8 без удаления осадков, образовавшихся в результате первой корректировки pH; Фиг. 9 - график, иллюстрирующий степень пиритного биоокисления в зависимости от времени в процессе экспериментального кучного биоокисления.

Фиг. 10 - график, иллюстрирующий количество ионов двухвалентного железа, превращенного в ионы трехвалентного железа для различных образцов; Фиг. 11 - график, иллюстрирующий количество (мг) ионов трехвалентного железа в различных растворах в зависимости от времени; Фиг. 12 - график, иллюстрирующий количество ионов двухвалентного железа, превращенных в ионы трехвалентного железа для различных образцов; и Фиг. 13 - блок-схема системы рационального использования раствора в соответствии с другим вариантом осуществления настоящего изобретения.

Подробное описание изобретения В соответствии с первым вариантом своего осуществления, настоящее изобретение относится к способу повышения скорости кучного биоокисления частиц сульфидной руды с трудноизвлекаемыми полезными компонентами, являющихся по крайней мере частично биологически окисленным; причем указанный способ предусматривает использование полученного после стадии биовыщелачивания продукционного раствора, подаваемого на повторный цикл. Этот способ включает стадии биологического окисления кучи частиц сульфидной руды, содержащей трудноизвлекаемые ценные металлы, с использованием биовыщелачивающего раствора; сбор раствора, полученного после стадии биовыщелачивания, и содержащего множество ингибирующих веществ, растворенных в нем, в результате выщелачивания кучи руды, причем концентрация каждого отдельного ингибирующего вещества в продукционном растворе является ниже его отдельной ингибирующей концентрации, тогда как суммарная концентрация по крайней мере двух ингибирующих материалов является достаточной для ингибирования скорости биологического окисления частиц в труднообогатимой сульфидной руде; кондиционирование раствора, являющегося продуктом биовыщелачивания, в целях снижения ингибирующего действия этого раствора, вызванного суммарной концентрацией по крайней мере двух ингибирующих материалов; возвращение кондиционированного биовыщелачивающего раствора на повторный цикл в ту же самую кучу или во вторую кучу руды; и биологическое окисление частиц труднообогатимой сульфидной руды в той же самой куче или во второй куче с использованием кондиционированного биовыщелачивающего раствора.

В качестве исходного материала, который может быть использован в целях настоящего изобретения, служат сульфидные и углеродсодержащие сульфидные руды с трудноизвлекаемыми ценными металлами. Поэтому следует отметить, что используемый в настоящем описании термин "труднообогатимая сульфидная руда" может также означать "труднообогатимая углеродсодержащая сульфидная руда".

На фиг. 1 представлена схематическая иллюстрация одного из способов осуществления настоящего изобретения.

На фиг. 1 - куча 10, образованная из частиц труднообогатимой сульфидной руды на повторно используемой площадке со щелоком. После биологического окисления кучи 10 до нужного количества, куча 10 становится кучей 12, из которой отводят жидкость. Осушенная куча 12 затем становится промытой кучей 14. После промывки кучи 14, частицы труднообогатимой сульфидной породы в куче 14 обычно удаляют из перманентной щелочной подушки, а золото извлекают способом кучного цианирования, хорошо известным специалистам.

Если обрабатываемой рудой с трудноизвлекаемыми ценным металлом является углеродсодержащая сульфидная руда, то может потребоваться проведение дополнительных стадий после предварительной бактериальной обработки для того, чтобы предупредить преждевременную выборку ауроцианидного комплекса или других ценных комплексов "металл-выщелачиватель", образуемых природными углеродными соединениями после обработки выщелачивателем.

Один из известных методов кучного биовыщелачивания углеродсодержащих сульфидных руд описан в патенте США N 5127942, выданном 7 июля 1992 г., который вводится в настоящее описание посредством ссылки. В этом методе руду подвергают окислительному биовыщелачиванию в целях окисления сульфидного компонента руды и высвобождения ценных металлов, а затем, эту руду инокулируют консорцией бактерий в присутствии питательных веществ, стимулирующих рост консорции бактерий; причем указанная консорция бактерий отличается способностью дезактивировать свойство углеродсодержащих соединений образовывать металлокомплексы в руде. Другими словами, указанная консорция бактерий действует как биологический блокирующий агент. После обработки руды консорцией бактерий, которые дезактивируют углерод, адсорбирующий ценные металлы, эту руду подвергают выщелачиванию соответствующим выщелачивателем для растворения драгоценного металла, присутствующего в руде.

Первая стадия процесса биовыщелачивания заключается в получении частиц труднообогатимой сульфидной руды соответствующего размера для осуществления кучного выщелачивания. Для этого руду размалывают до получения частиц нужного размера. Предпочтительный минимальный размер частиц труднообогатимой сульфидной руды составляет приблизительно от 1/4 до 1 дюйма (6 - 25,4 мм). Максимальный размер таких частиц составляет 1/4, 3/8, 1/2, 3/4 и 1 дюйм (6; 9,5; 12,7; и 25,4 мм). Если частицы руды соответствуют этим размерам, то она должна быть пригодна для кучного выщелачивания. Разумеется, чем меньше размер частиц, тем больше поверхностная площадь сульфидных частиц в руде, и тем быстрее будет проходить процесс биологического окисления, в результате этого должно возрасти количество извлеченного драгоценного металла. Однако получение небольшого дополнительного количества драгоценного металла должно быть соизмеримо с дополнительными затратами на более тонкое измельчение руды. Небольшой прирост извлеченного драгоценного металла может не оправдать дополнительных расходов.

При кучном выщелачивании золота, в большинстве случаев, руду измельчают до получения частиц размером -3/4 (т.е. менее 3/4) дюймов, что является хорошим компромиссом между слишком крупными частицами и слишком мелкими частицами, поскольку указанный размер частиц позволяет минимизировать время, требуемое для выщелачивания, и избежать слишком низкой проницаемости руды в кучах и затруднений в прохождении потока биовыщелачивающего раствора, а затем потока цианидного раствора при перколяции руды в кучах, обусловленных слишком мелким помолом руды. Размер частиц должен быть выбран таким образом, чтобы при наименьших материальных затратах на измельчение руды была достигнута наибольшая скорость биологического окисления. Так, например, для легко размалываемой руды, размер частиц должен составлять от менее, чем 1/2 дюйма до менее чем 10 меш, а для трудноразмалываемой руды более приемлемым является размер частиц от 1 до 1/4 дюймов.

Правильное дробление руды и получение частиц нужного размера можно достичь хорошо известными способами.

Если сульфидное рудное тело с трудноизвлекаемыми ценными металлами, уже подвергнутое биологическому окислению, имеет размер частиц, подходящий для кучного биовышелачивания, то, само собой разумеется, что в данном в случае не требуется дополнительного дробления руды.

В случае, когда концентрация кислоты, поглощаемой компонентами руды (что хорошо известно специалистам) является значительной, или когда руда содержит чрезмерные концентрации ингибирующих материалов, может потребоваться предварительная кислотная обработка для создания условий, необходимых для биологического окисления. Кондиционирование руды обычно предусматривает коррекцию pH руды, вымывание растворимых ингибирующих компонентов и добавление питательных веществ для микробного роста после старения руды.

Кондиционирование должно быть начато как можно скорее. Если это возможно, то кондиционирование нужно начинать с руды in situ в рудном теле. Последующее кондиционирование может быть проведено во время транспортировки, дробления, агломерации и/или штабелирования.

Биологическое окисление сульфидной руды с трудноизвлекаемыми ценными компонентами является особенно чувствительным к блокированию каналов перколяции рыхлой глиной и тонкоизмельченным материалом, поскольку бактерии, для своего роста и биологического окисления частиц сернокислого железа в руде, нуждаются в большом количестве воздуха или кислорода. Поток воздуха также необходим для рассеяния тепла, генерируемого экзотермической реакцией биологического окисления, поскольку избыточное количество тепла может привести к гибели растущих бактерий в большой плохо вентилируемой куче руды. Поэтому, если в руде имеется большое количество тонкоизмельченного материала и рыхлой глины, то для предупреждения забивания каналов, по которым проходит поток воздуха) может потребоваться агломерация руды.

Альтернативно, хороший поток жидкости и газа внутри кучи может быть обеспечен путем удаления тонкоизмельченных материалов и/или глины из сульфидной руды до формирования кучи, как описано в патенте США N 5431717 (Kohr), который вводится в настоящее описание посредством ссылки.

Первоначальную инокуляцию частиц труднообогатимой сульфидной руды биоокисляющими бактериями осуществляют предпочтительно во время стадии агломерации, как описано в патенте США N 5246486 (который вводится в настоящее описание посредством ссылки), или сразу после складирования руды в кучи.

Хотя имеются другие способы, которые могут быть использованы для создания куч, однако предпочтительным является метод конвейерной укладки. Конвейерная укладка минимизирует спрессовывание руды внутри кучи. Другие способы формирования куч, такие как выгрузка через днище с помощью дозирующего устройства, или сброс руды путем опрокидывания, могут привести к образованию участков внутри кучи с пониженной проходимостью потока жидкости.

После образования кучи 10, эту кучу инокулируют добавочным биовыщелачивающим раствором, подаваемым из резервуара 18 через трубопровод 16, если это необходимо. Биовыщелачивающий раствор, подаваемый по трубопроводу 16, содержит по крайней мере один микроорганизм, способный к биологическому окислению частиц труднообогатимой сульфидной руды в куче 10.

Если необходимо, то в кучу 10 также подают раствор микробных питательных веществ. Количество питательных добавок контролируется в течение всего процесса биологического окисления и пополняется, исходя из выбранных индикаторов производительности процесса, таких как скорость солюбилизации мышьяка или железа в пиритах или скорость окисления сульфидов, которая может быть вычислена, исходя из этих показателей. При этом могут быть использованы и другие показатели эффективности биологического окисления, например, значение pH, титруемая кислотность, и Eh раствора.

Для осуществления настоящего изобретения могут быть использованы следующие бактерии: Группа A: Thiobacillus ferrooxidans Thiobacillus thiooxidans; Thiobacillus organoparus; Thiobacillus acidophiilus; Группа B: Leptospirillum ferrooxidans; Группа C: Sulfobacillus thermosulfidooxidans: Группа I: Sulfolobus acidocaldarius: Sulfolobus BC: Sulfolobus solfataricus и Acicdianus brierleyi и т.п.

Эти бактерии депонированы в Американской коллекции типовых культур или в подобных коллекциях культур, либо они были доступными в этих коллекциях культур и/или они будут доступными публике до выдачи патента на это изобретение.

Бактериями Группы A и Группы B являются мезофилы, т.е. бактерии, которые способны к росту при температурах среднего диапазона (например, около 30oC). Группа C состоит из факультативных термофилов, т.е., бактерий, которые способны к росту при температурах в диапазоне от около 50oC до 55oC. И наконец, бактерии Группы D являются облигатными термофилами, которые могут расти только при высоких (термофильных) температурах (например, при температурах более чем около 50oC).

При этом следует отметить, что для того, чтобы бактерии Группы A и Группы B сохраняли свою эффективность, температура кучи не должна превышать около 35oC, для бактерий Группы C температура кучи не должна превышать около 55oC; а для бактерий Группы D, температура кучи не должна превышать около 80oC.

Как хорошо известно специалистам, температура кучи, подвергаемой биологическому выщелачиванию, является неоднородной, и часто, если температура в куче не регулируется соответствующим образом и если используются бактерии, не соответствующие данной температуре, эти бактерии погибают. Следовательно, на основании температурного профиля кучи, можно сказать, что, если реакция окисления частиц труднообогатимой сульфидной руды находится на своей наиболее продвинутой стадии, и степень экзотермичности реакции является наиболее высокой, то эта куча может быть обработана холодным биовыщелачивателем, охлажденным рецикловым раствором-продуктом биовыщелачивания, или охлажденным поддерживающим раствором, т.е., питательным раствором. Кроме того, куча может быть сформирована таким образом, чтобы она имела систему охлаждения (и/или нагревания). Кроме того, куча может быть инокулирована соответствующими бактериями, удовлетворяющими температурным ограничениям для данной руды. Таким образом, если данная руда имеет высокое содержание сульфидов, то предпочтительно использовать термофильные бактерии.

После того, как реакция биологического окисления достигнет конечной точки с экономической точки зрения, куча может быть затем дренирована с последующим многократным промыванием водой. Число необходимых циклов промывки обычно определяют по соответствующему маркерному фактору, такому как содержание железа и pH вытекающего промывочного раствора. После соответствующей промывки кучи 14, эту кучу разрушают, нейтрализуют и обрабатывают в соответствии с традиционным способом кучного выщелачивания путем цианирования, который хорошо известен специалистам.

Запасы раствора и его применение являются важными факторами процесса биологического окисления. На фиг. 1 проиллюстрирована система регулируемого применения раствора в соответствии с одним из вариантов осуществления настоящего изобретения для всего процесса биологического окисления, дренирования и промывки. Как видно из фиг. 1, в соответствии с этим вариантом осуществления изобретения, весь раствор был использован повторно. Это позволило минимизировать количество свежей воды, требуемое для осуществления процесса биологического окисления.

В соответствии с фиг. 1, биовыщелачивающий раствор, который был перколирован через кучу 10, собирали и возвращали в верхнюю часть кучи 10. Этот раствор является кислотным и содержит ионы трехвалентного железа, а поэтому он может быть с успехом использован для повторного цикла путем его возвращения в верхнюю часть кучи, либо он может быть использован для агломерации новой руды. Однако вытекающий раствор, генерированный ранее в процессе биологического окисления, также содержит значительные концентрации основания и тяжелых металлов, включая компоненты, ингибирующие жизнедеятельность бактерий. В результате такого накопления ингибирующих материалов в выходящем растворе, процесс биологического окисления замедляется.

Так, например, ионы трехвалентного железа, которые обычно используются для стимуляции выщелачивания пиритов, оказывают ингибирующее действие на рост бактерий при концентрациях, превышающих около 30 г/л. В этом растворе могут также накапливаться биологически активные металлы, что приводит к замедлению процесса биологического окисления. Такими биологически активными металлами, которые часто встречаются в сульфидных рудах с трудноизвлекаемыми ценными металлами, являются мышьяк, сурьма, кадмий, свинец, ртуть, молибден и серебро. Скорость биологического окисления могут также замедлять и другие ингибирующие металлы (включая меди и алюминий), а также побочные продукты биологического окисления, растворенные соли и продукты, продуцированные бактериями. Перед возвращением раствора обратно в кучу на повторный цикл необходимо также уменьшить содержание в нем таких анионов, как Cl-, NO3- и [SO4] 2-. Когда возрастающее количество ингибирующих материалов в выходящем растворе достигнет достаточного уровня, возвращение этого