Многокамерный согласованный вихревой аппарат

Реферат

 

Изобретение относится к вихревой акустической технике и может быть использовано в угольной, пищевой и других областях промышленности в процессах диспергирования. Многократное (при постепенном уменьшении по ходу течения рабочей жидкости) поступенчатое преобразование кинетической энергии рабочей жидкости в энергию колебаний при условии согласованной работы вихревых камер достигается за счет того, что многокамерный согласованный вихревой аппарат, содержащий входной и выходной патрубки и вихревую цилиндрическую камеру между ними, снабжен дополнительными вихревыми камерами и дополнительными патрубками между ними. Причем все камеры выполнены одинаковыми и размещены одна от другой на расстояниях, равных d=(12,8 - 13,3)Rn, где R - радиус каждой из камер, n - целое число, n = 1, 2, 3,... 1 ил.

Изобретение относится к вихревой акустической технике и может быть использовано в угольной, пищевой и других отраслях промышленности в процессах диспергирования.

Известен вихревой аппарат - свисток с тангенциальным вводом рабочей жидкости в вихревую камеру [1]. Генерируемое излучение в таком аппарате не обладает достаточной эффективностью.

Прототипом заявляемого технического решения является вихревой генератор, содержащий входной патрубок и две одинаковые вихревые цилиндрические камеры по обе стороны от него [1]. Недостатком данного генератора является то, что в нем не в полной мере используется кинетическая энергия рабочей жидкости при ее преобразовании в энергию колебаний.

В заявляемом многокамерном согласованном вихревом аппарате решается задача многократного (при постепенном уменьшении по ходу течения рабочей жидкости) поступенчатого преобразования кинетической энергии рабочей жидкости в энергию колебаний при условии согласованной работы вихревых камер.

Частота колебаний в цилиндрической вихревой камере радиусом R определяется выражением (1): где c - скорость звука в рабочей жидкости; k - коэффициент, равный 0,7 - 0,75.

Длина волны генерируемого излучения, так как это следует из (1), есть или, с учетом k = 0,7 - 0,75 = (12,813,3)R. Согласованная (синхронизированная) работа вихревых камер, отстоящих на расстояниях d друг от друга, обеспечивается равенством величины d целому числу длин волн: d = n = (12,813,3)nR, n=1,2,3,...

На фиг. 1 схематично показан продольный разрез многокамерного согласованного вихревого аппарата.

Аппарат содержит входной патрубок 1; вихревые камеры 2, отстоящие друг от друга на расстоянии d; дополнительные патрубки 3 между вихревыми камерами; выходкой патрубок 4.

Многокамерный согласованный вихревой аппарат работает следующим образом. Рабочая среда (жидкость или газ) через входной патрубок 1 поступает в первую вихревую камеру 2 на пути потока, в которой генерируются колебания с частотой, определяемой радиусом камеры, далее поток распространяется по дополнительным патрубкам 3, в дело вступают остальные вихревые камеры. Так как между камерами расстояние равно целому числу длин волн, то излучение всех камер складывается синхронно, и кинетическая энергия потока, уменьшаясь по ходу потока, преобразуется в энергию колебаний. Количество N камер выбирается из условия: P > NPг.п. где P - перепад давления на входе; Pг.п. - гидравлические потери на каждой камере.

Источник информации: 1. Борисов Ю.Я. Газоструйные излучатели звука и их применение для интенсификации технологических процессов. -Л.: ЦНИИ "РУМБ", 1980, с.12.

Формула изобретения

Многокамерный согласованный вихревой аппарат, содержащий входной и выходной патрубки и вихревую цилиндрическую камеру между ними, отличающийся тем, что он снабжен дополнительными вихревыми камерами и дополнительными патрубками между ними, причем все камеры выполнены одинаковыми и размещены одна от другой на расстояниях, равных d = (12,8 - 13,3) R n, где R - радиус каждой из камер; n - целое число, n = 1, 2, 3, ...

РИСУНКИ

Рисунок 1