Система управления средствами разнесенной передачи сигналов через спутниковые ретрансляторы

Реферат

 

Изобретение относится к спутниковым системам связи. Достигаемый технический результат - улучшение в оптимизации разнесения трасс в системе связи со спутниковыми ретрансляторами при экономии как каналов частотного уплотнения, так и мощности спутника. Система связи содержит множество ретрансляторов сигнала связи, передатчик и приемник сигналов связи, средства управления, реагирующие на информацию, определяющую местоположение упомянутого приемника, и дополнительную информацию, описывающую хранимую карту окружающей среды для определения числа ретрансляторов сигнала связи. Согласно способу работы спутниковой системы связи инициируют связь между абонентским терминалом и наземной станцией через спутниковый ретранслятор, определяют местоположение абонентского терминала, выбирают число спутниковых ретрансляторов, которое определяется местоположением и информацией, описывающей хранимую карту окружающей среды. 6 с. и 33 з.п. ф-лы, 12 ил.

Данное изобретение относится к спутниковым системам связи и касается, в частности спутниковых систем связи, в которых спутники используются в качестве ретрансляторов сигналов связи.

Обзор известных технических решений Экранирование и замирания сигнала в системах связи с подвижными объектами хорошо известны. Как правило, вследствие значительно более длинных трасс распространения, к спутниковым системам предъявляют более жесткие требования, чем к наземным системам. В спутниковых системах связи с подвижными объектами экранирование и замирания на абонентских станциях из-за зданий, деревьев и рельефа местности могут быть уменьшены путем использования нескольких передатчиков орбитальных спутниковых ретрансляторов для передачи нескольких копий сигнала через некоторые или все из передатчиков спутниковых ретрансляторов, находящихся в зоне видимости абонента, который потенциально испытывает экранирование и замирания сигнала. Эти методы, особенно при использовании систем с расширенным спектром, включают применение разнесения трасс нескольких сигналов (ниже называемого просто "разнесением трасс") как средство поддержания связи в таких условиях, когда отдельные подвижные абоненты испытывают экранирование и замирания сигналов. В частности, системы связи через спутники на низких околоземных орбитах могут использовать разнесение трасс, так как в них имеется несколько спутников и, следовательно, несколько различных трасс для передачи сигнала к абоненту и от него.

В большинстве известных или предложенных систем этого типа в дополнение к использованию многостанционного доступа с кодовым разделением каналов обычно организуют несколько каналов с частотным уплотнением. Кроме того, разнесение трасс оказывает и неблагоприятное воздействие, так как система требует использования нескольких спутников. Это увеличивает суммарную потребность в мощности для каждого спутника и требует также, чтобы каждый спутник делал одни и те же радиочастотные каналы доступными для передачи с разнесением трасс для каждого пользователя. Результатом этого может быть уменьшение суммарной пропускной способности системы из-за неэффективности назначения радиочастотных каналов.

Один из подходов к разнесению трасс заключается в предоставлении разнесения трасс всем абонентам без различия. Однако фактически имеется много различных типов абонентских терминалов и много различных типов окружающей среды, в которой данный абонент может находиться временно или постоянно. Например, некоторые абоненты используют абонентские терминалы, установленные на подвижных объектах, которые могут передвигаться через окружающую среду довольно быстро. Другие абоненты могут использовать переносные или стационарные абонентские терминалы, которые могут вообще не перемещаться. Кроме того, имеются разные ландшафты, где могут размещаться абоненты, такие как океаны, пустыни, леса, пригороды, города, сельхозугодья и т.д.

Понятно, что не все условия связи требуют разнесения трасс в одинаковой степени и, кроме того, не все абонентские терминалы в определенных условиях требуют одного и того же уровня разнесения трасс.

Сущность изобретения Вышеописанные и другие проблемы преодолеваются в спутниковой системе связи, которая построена и работает в соответствии с данным изобретением.

Ниже описываются способы и устройства для улучшения и оптимизации разнесения трасс в системе связи со спутниковыми ретрансляторами, экономящие как каналы частотного уплотнения, так и мощность спутника. Когда один или несколько передатчиков орбитальных спутниковых ретрансляторов (12) экранируются или подвергаются сильным замираниям, прием сигналов связи улучшается с помощью распознавания необходимости приема с разнесением в реальном или почти в реальном времени. Таким образом, абонентский терминал (13) принимает сигнал с достаточной интенсивностью для того, чтобы избежать автоматического завершения связи, благодаря оптимизации разнесения спутниковых трасс (образуемых несколькими радиолиниями) применительно (а) к классам (типам) абонентских терминалов и/или (b) к отдельным абонентским терминалам в зависимости от их местоположения, а также от локальных условий распространения радиочастот для абонентского терминала. Кроме того, изобретение предлагает учитывать ресурсы спутника, имеющиеся в распоряжении в некоторый данный момент времени, и запрещать или ограничивать возможность разнесения спутниковых трасс, увеличивая те самым общую пропускную способность системы.

Также отдельный абонент может иметь запись предыстории работы, или "сигнатуру", в некоторых условиях. Запись предыстории может использоваться для того, чтобы оптимизировать типичное использование системы абонентом и благодаря этому еще более улучшить возможности для достижения более высокой эффективности работы системы.

Данное изобретение предлагает способ работы спутниковой системы связи, который включает следующие операции: (а) начало связи между абонентским терминалом и наземной станцией через по меньшей мере один спутниковый ретранслятор сигнала связи; (b) классификацию абонентского терминала по его типу и/или определение местоположения абонентского терминала в пределах зоны обслуживания наземной станции; и (с) выбор числа спутниковых ретрансляторов сигналов связи, чтобы ретранслировать сообщения между абонентским терминалом и наземной станцией, причем выбранное число является функцией по меньшей мере типа и/или местоположения абонентского терминала и других характеристик, которые могут храниться в базе данных. Операция выбора может включать определение характеристики распространения радиочастотной энергии, которая связана с определенным местоположением абонентского терминала. Для этой цели может быть использована карта распространения радиочастот в зоне обслуживания. Эта карта формируется, например, на основании спутниковых изображений естественных и искусственных особенностей местности в пределах зоны обслуживания. Операция выбора может также включать анализ предыстории регулирования мощности абонентского терминала. Это полезно при различении, например, абонентского терминала подвижного типа, который находится в движении, от абонентского терминала подвижного, типа, который неподвижен. Операция выбора может также включать анализ текущей доступности радиочастотных каналов спутниковой связи на спутниковых ретрансляторах и физической загрузки блоков радио частотных каналов и спутниковых ретрансляторов.

В предпочтительном варианте осуществления данного изобретения связь между абонентским терминалом и наземной станцией осуществляется с помощью сигнала многостанционного доступа с кодовым разделением каналов и расширением спектра. В этом случае способ включает следующие дополнительные операции: (d) прием сигнала связи абонентским терминалом, причем сигнал принимается через различные трассы связи, связанные с индивидуальными ретрансляторами из выбранного числа спутниковых ретрансляторов сигналов связи; (е) выравнивание по меньшей мере фазовых сдвигов и временных задержек сигналов, принимаемых по каждой из различных трасс, чтобы получить множество выровненных сигналов связи; и (f) объединение выровненных сигналов связи в составной принимаемый сигнал связи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ Изложенные выше и другие признаки изобретения будут более ясны при рассмотрении подробного описания вместе с приложенными чертежами, на которых: фиг. 1 представляет собой блок-схему системы спутниковой связи в соответствии с предпочтительной формой осуществления данного изобретения; фиг. 2 представляет собой блок-схему одной из земных узловых станций, показанных на фиг. 1; фиг. 3А представляет собой блок-схему бортовой аппаратуры связи одного из спутников, показанных на фиг. 1; фиг. 3В иллюстрирует часть диаграммы направленности луча одного из спутников, показанных на фиг. 1; фиг. 4 представляет собой блок-схему наземного оборудования для обеспечения функций спутниковой телеметрии и управления; на фиг. 5 показана блок-схема подсистемы многостанционного доступа с кодовым разделением каналов, приведенной на фиг. 2; на фиг. 6 показана блок-схема системы предоставления разнесения трасс для прямой линии связи в соответствии с настоящим изобретением; на фиг. 7 показана блок-схема части системы, показанной на фиг. 6, вместе с системой выбора разнесения трасс в соответствии с данным изобретением; на фиг. 8 показана блок-схема, поясняющая обратную линию связи от абонентской станции до земной узловой станции; на фиг. 9 показана блок-схема варианта разнесения трасс для обратной линии в соответствии с данным изобретением; на фиг. 10 показан образец карты, используемой для связи окружающей среды, такая карта является отличительным признаком данного изобретения; на фиг. 11 показана блок-схема алгоритма, поясняющая способ согласно данному изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ Фиг. 1 иллюстрирует предпочтительную форму осуществления системы спутниковой связи 10, которая пригодна для использования с предпочтительной формой осуществления настоящего изобретения. Перед подробным описанием данного изобретения для его более полного понимания сначала будет приведено описание системы связи 10. Система связи 10 может быть концептуально разделена на множество сегментов 1, 2, 3 и 4. Сегмент 1 называется здесь космическим сегментом, сегмент 2 - абонентским сегментом, сегмент 3 - наземным (земным) сегментом и сегмент 4 - сегментом инфраструктуры телефонной системы.

В предпочтительной форме осуществления настоящего изобретения имеется всего 48 спутников, например, на низкой околоземной орбите высотой 1414 км. Спутники 12 распределены в восьми орбитальных плоскостях, по шесть одинаково разнесенных спутников в плоскости ("созвездие" Уолкера). Орбитальные плоскости наклонены на 52o относительно экватора и каждый спутник проходит по орбите за 114 минут. Такой подход обеспечивает почти глобальную зону обслуживания, предпочтительно по меньшей мере с двумя спутниками, находящимися в любое данное время в пределах видимости абонента, расположенного между приблизительно 70o южной широты и приблизительно 70o северной широты. По существу пользователю предоставляется возможность осуществлять радиосвязь с почти любым или из почти любого пункта на земной поверхности в пределах зоны обслуживания земной узловой станции (наземного "шлюза") 18 с другими или из других пунктов на земной поверхности (посредством телефонной сети общего пользования) через одну или несколько земных узловых станций 18 и один или несколько спутников 12, возможно также с использованием части сегмента 4 телефонной инфраструктуры.

Здесь уместно заметить, что предыдущее и нижеследующее описание системы 10 представляет лишь одну из подходящих форм осуществления системы связи, в рамках которой может найти применение концепция данного изобретения. То есть, специфические подробности системы связи не должны пониматься или рассматриваться с точки зрения ограничения практического применения этого изобретения.

Продолжим далее описание системы 10 и процесса плавной передачи (переключения) линий связи между спутниками 12, а также между отдельными узкими лучами 16, передаваемыми каждым спутником (фиг. 3В), которые обеспечивают непрерывную связь путем многостанционного доступа с кодовым разделением каналов и сигналами с расширенным спектром. Данный предпочтительный способ многостанционного доступа с кодовым разделением каналов путем расширения спектра сигналов подобен рассмотренному в промежуточном стандарте TIA/EIA "Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System" TIA/EIA/IS-95, July 1993, ("Стандарт совместимости подвижных станций-базовых станций для двухрежимной широкополосной сотовой системы с расширением спектра" IS-95 Ассоциации промышленности средств связи /Ассоциации электронной промышленности, июль 1993), хотя могут быть использованы и другие способы и протоколы расширения спектра сигналов и доступа с кодовым разделением каналов.

Низкие околоземные орбиты позволяют маломощным стационарным или подвижным абонентским оконечным станциям (терминалам) 13 осуществлять связь через спутники 12, каждый из которых согласно предпочтительной форме осуществления этого изобретения работает только как ретранслятор типа "изогнутая труба". Такой ретранслятор принимает сигнал трафика связи (типа речи и/или данных) от абонентской станции 13 или от земной узловой станции 18, преобразует полученный сигнал трафика связи в другую частотную полосу, а затем переизлучает преобразованный сигнал. То есть, никакой бортовой обработки принимаемого сигнала трафика связи не происходит и спутник 12 не узнает никакой информации, которую могут транспортировать полученный или переданный сигнал трафика связи.

Кроме того, не требуется никакого прямого канала или каналов связи между спутниками 12. То есть, каждый из спутников 12 получает сигнал только от передатчика, размещенного в абонентском сегменте 2, или от передатчика, размещенного в надземном сегменте 3, и передает сигнал только на приемник, размещенный в абонентском сегменте 2, или на приемник, размещенный в наземном сегменте 3.

Абонентский сегмент 2 может включать множество типов абонентских станций 13, которые приспособлены для связи со спутниками 12. Абонентские станции 13 включают, например, множество различных типов стационарных и подвижных абонентских терминалов, включая, но не ограничиваясь ими, карманные радиотелефоны 14, радиотелефоны 15, установленные на транспортных средствах, пейджинговые устройства передачи сообщений 16 и стационарные радиотелефоны 14a. Абонентские станции 13 предпочтительно обеспечиваются ненаправленными антеннами 13а для двусторонней связи через один или большее число спутников 12. Следует заметить, что стационарные радиотелефоны 14а могут использовать направленные антенны. Это выгодно тем, что дает возможность уменьшить взаимные помехи и в результате увеличить число пользователей, которые могут одновременно обслуживаться одним или большим числом спутников 12.

Кроме того, следует отметить, что абонентские станции 13 могут быть устройствами двойного использования, которые содержат также и схемы для связи стандартным способом с наземной сотовой системой.

Обратимся также к фиг. 3А. Абонентские станции 13 должны быть способны работать в полном дуплексном режиме и осуществлять связь через, например, линии радиосвязи диапазона L (1000-2000 МГц) (линия "Земля- спутник" или обратный канал 17b) и линии радиосвязи диапазона S (2-4 ГГц) (линия "спутник-Земля" или прямой канал 17а) через обратный и прямой спутниковые ретрансляторы (транспондеры) 12а и 12b, соответственно. Обратные линии 17b радиосвязи диапазона L могут работать в полосе частот от 1,61 ГГц до 1,625 ГГц с шириной полосы 16,5 МГц и модулироваться пакетными цифровыми речевыми сигналами и/или сигналами данных в соответствии с предпочтительным методом расширения спектра. Прямые линии 17а радиосвязи диапазона S могут работать в полосе частот от 2,485 ГГц до 2,5 ГГц с шириной полосы 16,5 МГц. Прямые линии радиосвязи 17а также модулируются в земной узловой станции 18 пакетными цифровыми речевыми сигналами и/или сигналами данных в соответствии с методами расширения спектра.

Полоса частот шириной 16,5 МГц прямой линии связи разбита на 13 каналов с числом пользователей, назначаемых на канал, например, до 128. Обратная линия может иметь различную ширину полосы частот и данной абонентской станции 13 может назначаться или не назначаться канал, отличный от канала, назначенного по прямой линии. Однако при работе в режиме разнесенного приема на обратной линии (прием от двух или более спутников 12) абоненту назначаются одинаковые радиоканалы прямой и обратной линии для каждого из спутников.

Наземный сегмент 3 содержит по меньшей мере одну, но как правило множество земных узловых станций 18, которые осуществляют связь со спутниками 12, например, через полнодуплексную радиолинию 19 диапазона С (4-8 ГГц) (прямая линия связи 19а (на спутник), обратная линия 19b (со спутника)), которая как правило работает в диапазоне частот выше 3 ГГЦ и предпочтительно - в диапазоне С. Радиоканалы диапазона С передают в обе стороны сигналы фидерных каналов связи, а также передают команды спутникам и телеметрическую информацию со спутников. Прямой фидерный канал 19а связи может работать в диапазоне от 5 ГГц до 5,25 ГГц, в то время как обратный фидерный канал 19b может работать в диапазоне от 6,875 ГГц до 7,075 ГГц.

Спутниковые антенны 12д и 12h фидерных каналов предпочтительно являются антеннами с широким покрытием, которые охватывают максимальную наземную область, если смотреть со спутника 12 на низкой околоземной орбите. В предпочтительной форме осуществления данной системы связи 10 угол, охватываемый из данного спутника 12 на низкой околоземной орбите (при угле возвышения 10o от поверхности земли) составляет приблизительно 110o. Это дает зону покрытия, которая имеет приблизительно около 6000 км в диаметре.

Антенны диапазона L и диапазона S являются многолучевыми антеннами, которые обеспечивают покрытие в пределах соответствующей наземной зоны обслуживания. Антенны 12d и 12с диапазона L и диапазона S, соответственно, предпочтительно являются конгруэнтными одна с другой, как показано на фиг. 3В. То есть, лучи, передаваемые от космического корабля и принимаемые им, покрывают одну и ту же область на поверхности Земли, хотя эта особенность и не принципиальна для работы системы 10.

Например, несколько тысяч полнодуплексных соединений может осуществляться через один из спутников 12. В соответствии с особенностью системы 10, одно и то же сообщение между данной абонентской станцией 13 и одной из земных узловых станций 18 может передавать каждый из двух и более спутников 12. Этот режим работы, как подробно описано ниже, обеспечивает комбинирование разнесенных сигналов в соответствующих приемниках, обеспечивая повышенную устойчивость к замираниям и облегчая реализацию плавного переключения.

Следует обратить внимание на то, что все частоты, полосы частот и т.п., которые описаны здесь, характерны лишь для одной конкретной системы. Другие частоты и полосы частот могут использоваться без изменения рассматриваемых принципов. В качестве лишь одного примера, фидерные каналы между земными узловыми станциями и спутниками могут использовать частоты в диапазоне, отличном от диапазона С (приблизительно от 3 ГГц до 7 ГГц), например в диапазоне Ku (приблизительно от 10 ГГц до 15 ГГц) или в диапазоне Ka (выше приблизительно 15 ГГц).

Функцией земных узловых станций 18 является связь бортовой аппаратуры связи или стволов транспондера 12а и 12b (фиг. 3А) спутников 12 с сегментом 4 телефонной инфраструктуры. Стволы транспондера 12а и 12b содержат приемную антенну 12с диапазона L, передающую антенну 12d диапазона S, усилитель 12е мощности диапазона С, малошумящий усилитель 12f диапазона С, антенны 12g и 12h диапазона С, блок 12i преобразования частоты диапазона L в диапазон С и блок 12j преобразования частоты диапазона С в диапазон S. Спутник 12 содержит также задающий генератор 12k и аппаратуру 12l управления и телеметрии.

В связи с этим можно сослаться также на патент США N 5422647, озаглавленный "Бортовая аппаратура связи спутника связи с подвижными объектами".

Сегмент 4 телефонной инфраструктуры состоит из существующих телефонных систем и включает шлюзы 20 сети связи общего пользования для связи с наземными подвижными объектами, городские (местные) автоматические телефонные станции 22, такие как станции региональных телефонных сетей общего пользования или других местных поставщиков телефонных услуг, национальные сети дальней связи 24, международные сети 26, частные сети 28 и другие региональные телефонные сети 30 общего пользования. Система связи 10 работает так, чтобы обеспечивать двустороннюю передачу речи и/или данных между абонентским сегментом 2 и телефонами 32 телефонной сети общего пользования, а также телефонами 32 сегмента 4 телефонной инфраструктуры, не относящимися к телефонной сети общего пользования, или другими абонентскими станциями различных типов, которые могут относиться к частным сетям.

На фиг.1 (а также на фиг. 4) как часть наземного сегмента 3 показан также центр 36 управления полетами спутников и наземный центр 38 управления. Тракт связи, который включает наземную сеть 39 передачи данных (см. фиг. 2), предусмотрен для соединения земных узловых станций 18 и блоков 18а управления и телеметрии, центра 36 управления полетами спутников и наземного центра 38 управления, относящихся к наземному сегменту 3. Эта часть системы связи 10 обеспечивает общие функции управления системой.

На фиг. 2 одна из земных узловых станций 18 показана более подробно. Каждая земная узловая станция 18 имеет до четырех под систем с двойной поляризацией радиодиапазона С, каждая из которых содержит параболическую антенну 40, привод антенны 42 и основание 42а, малошумящие приемники 44 и усилители 46 большой мощности. Все эти компоненты могут быть размещены внутри структуры обтекателя антенны, чтобы обеспечить защиту от окружающей среды.

Кроме того, земная узловая станция 18 содержит преобразователи 48 с понижением частоты и преобразователи 50 с повышением частоты для обработки соответственно получаемых и передаваемых сигналов радиочастотной несущей. Преобразователи 48 с понижением частоты и преобразователи 50 с повышением частоты соединены с подсистемой 52 многостанционного доступа с кодовым разделением каналов, которая, в свою очередь, соединена с телефонной сетью общего пользования через интерфейс 54 телефонной сети общего пользования. В качестве необязательного варианта телефонная сеть общего пользования может параллельно использовать межспутниковую линию.

Подсистема 52 многостанционного доступа с кодовым разделением каналов содержит блок 52а суммирования/коммутации сигналов, подсистему 52b приемопередатчика земной узловой станции, контроллер 52с приемопередатчика земной узловой станции, подсистему 52d соединения на основе многостанционного доступа с кодовым разделением каналов и подсистему 52е селекторного каналообразующего оборудования. Подсистема 52 многостанционного доступа с кодовым разделением каналов управляется устройством 52f управления базовой станцией и работает аналогично аппаратуре базовой станции, совместимой с многостанционным доступом с кодовым разделением каналов (например, совместимой со стандартом IS-95). Подсистема 52 многостанционного доступа с кодовым разделением каналов содержит также необходимый синтезатор 52g частоты и приемник 52h глобальной системы определения местоположения.

Интерфейс 54 коммутируемой телефонной сети общего пользования включает пункт 54а коммутации служб телефонной сети общего пользования, процессор 54b управления вызовом, регистр 54с посетителей и регистр 54d местоположения абонентов. Регистр положения абонентов может быть размещен в шлюзе 20 сотовой сети (фиг. 1) или, по выбору, в интерфейсе 54 телефонной сети общего пользования.

Земная узловая станция 18 соединена с сетями дальней связи через стандартный интерфейс, реализуемый с помощью пункта 54а коммутации служб. Земная узловая станция 18 обеспечивает интерфейс и соединяется с телефонной сетью общего пользования через интерфейс первичной скорости. Кроме того, земная узловая станция 18 способна обеспечивать прямое соединение с центром коммутации системы связи с подвижными объектами.

Земная узловая станция 18 обеспечивает передачу в процессор 54b сигнализации по выделенному каналу сигналов цифровой сети с интеграцией служб на основе системы сигнализации N 7. На стороне земной узловой станции этого интерфейса процессор 54b управления вызовом стыкуется с подсистемой 52d соединения на основе многостанционного доступа с кодовым разделением каналов и, следовательно, с подсистемой 52 многостанционного доступа с кодовым разделением каналов. Процессор 54b управления вызовом обеспечивает функции преобразования протокола для системного интерфейса со средствами радиосвязи, который может быть аналогичен промежуточному стандарту IS-95 для связи на основе многостанционного доступа с кодовым разделением каналов.

Блоки 54с и 54d в основном обеспечивают интерфейс между земной узловой станцией 18 и внешней сотовой телефонной сетью, совместимой, например, с сотовыми системами IS-41 (Североамериканский стандарт AMPS) или GSM (Европейский стандарт, MAP) и, в частности, с определенными методами для обработки заказов "роумеров", то есть абонентов, которые заказывают разговор по телефону, находясь за пределами той системы, где они обычно расположены. Земная узловая станция 18 обеспечивает идентификацию абонентских станций для телефонов системы 10/AMPS и для телефонов системы 10/GSM. В зонах обслуживания, где нет существующей инфраструктуры дальней связи, регистр местоположения абонентов может быть добавлен к земной узловой станции 18 и сопряжен с интерфейсом сигнализации N 7.

Абонент, делающий вызов за пределами своей обычной зоны обслуживания ("роумер"), обслуживается системой 10, если он имеет на это право. Так как роумер может быть найден в любом месте, абонент может использовать одно и то же оконечное устройство (терминал), чтобы делать вызов из любой точки в мире, а необходимые преобразования протокола выполняются прозрачно земной узловой станцией 18. Интерфейс 54d протокола не используется, если протокол не требуется преобразовывать, например, из GSM в AMPS.

В рамках этого изобретения обеспечивается выделенный универсальный интерфейс к шлюзам 20 сотовых систем, в дополнение к стандартному интерфейсу "А", определенному для центров коммутации подвижных абонентов системы GSM, или вместо него, и интерфейсам с центрами коммутации подвижных абонентов системы IS-41, которые определяют производители оборудования. Кроме того, в пределах объема этого изобретения, обеспечивается интерфейс непосредственно с телефонной сетью общего пользования (ТФОП), как показано на фиг. 1 в виде пути сигнала, обозначенного PSTN-INT.

Общее управление земной узловой станцией обеспечивается контроллером 56 земной узловой станции, который содержит интерфейс 56а с вышеупомянутой наземной сетью 39 передачи данных и интерфейс 56b с центром 60 управления предоставлением услуг. Контроллер 56 земной узловой станции как правило взаимодействует с земной узловой станцией 18 через устройство 52f управления базовой станцией и через радиочастотные контроллеры 43, связанные с каждой из антенн 40. Кроме того, контроллер 56 земной узловой станции подключен к базе 62 данных, например, базе данных абонентов, эфемеридных данных спутников и т.д., и к модулю 64 ввода-вывода, который дает возможность обслуживающему персоналу получать доступ к контроллеру 56 земной узловой станции. Наземная сеть 39 передачи данных двунаправленно состыкована также с модулем 66 телеметрии и управления (фиг. 1 и 4).

Как показано на фиг. 4, функцией наземного центра 38 управления является планирование и управление использованием спутников земными узловыми станциями 18, а также координация этой эксплуатации с центром 36 управления полетами спутников. В общем, наземный центр 38 управления анализирует тенденции, создает планы трафика, распределяет спутник 12 и ресурсы системы (например, но не ограничиваясь только ими, мощность и распределение каналов), контролирует эффективность всей системы 10 и выдает команды использования через наземную сеть 39 передачи данных на земные узловые станции 18 в реальном времени или заранее.

Центр 36 управления полетами спутников функционирует для того, чтобы поддерживать и контролировать орбиты, ретранслировать информацию об использовании спутников на земную узловую станцию для ввода в наземный центр 38 управления через наземную сеть 39 передачи данных, контролировать общее функционирование каждого спутника 12, включая состояние спутниковых батарей, устанавливать коэффициент усиления для трактов радиосигнала внутри спутника 12, гарантировать оптимальную ориентацию спутника относительно поверхности земли.

Как описано выше, каждая земная узловая станция 18 функционирует так, чтобы соединять данного пользователя с телефонной сетью общего пользования как для передачи информации сигнализации, так и для передачи речи и/или данных, а также создавать с помощью базы данных 62 (фиг. 2) данные для расчета за предоставленные услуги. Выбранные земные узловые станции 18 содержат модуль телеметрии и управления 18а для приема данных телеметрии, которые передаются спутниками 12 через обратную линию 19b, и для передачи команд на спутники 12 через прямую линию 19а связи. Наземная сеть 39 передачи данных функционирует для связывания между собой земных узловых станций 18, наземного центра 38 управления и центра 36 управления полетами спутников.

Вообще, каждый спутник 12 из группы спутников на низких околоземных орбитах функционирует так, чтобы ретранслировать информацию от земных узловых станций 18 к абонентам (из прямого канала 19а диапазона C в прямой канал 17а с диапазона S) и ретранслировать информацию от абонентов на земные узловые станции 18 (из обратного канала 17b диапазона L в обратный канал 19b диапазона C). Эта информация содержит, в дополнение к сигналам управления мощностью, сигналы синхронизации системы многостанционного доступа с кодовым разделением каналов и сигналами с расширенным спектром и сигналы служебных каналов. Могут также использоваться различные пилот-каналы многостанционного доступа с кодовым разделением каналов, чтобы контролировать помехи в прямой линии связи. Данные для коррекции спутниковых эфемеридных данных также передаются на все абонентские станции 13 с земной узловой станции 18 через спутники 12. Спутники 12 выполняют также функцию ретрансляции информации сигнализации от абонентских станций 13 на земную узловую станцию 18. Эта информация включает в себя запросы на доступ, запросы на изменение мощности и запросы о регистрации. Спутники 12 также ретранслируют сигналы связи между абонентами и земными узловыми станциями 18 и могут применять защиту информации, чтобы предотвратить ее несанкционированное использование.

Во время работы спутники 12 передают данные телеметрии космического корабля, которые включают результаты измерения состояния спутника. Поток телеметрической информации со спутников, команды из центра 36 управления полетами спутников и фидерные каналы 19 связи совместно используют антенны 12g и 12d диапазона С. Те земные узловые станции 18, которые содержат аппаратуру 18а телеметрии и управления, могут немедленно посылать принятые спутниковые данные телеметрии в центр 36 управления полетами спутников или же данные телеметрии могут сохраняться и позже посылаться в центр 36 управления полетами спутников, обычно по его запросу. Данные телеметрии, передаваемые немедленно или сохраняемые и посылаемые впоследствии, передаются через наземную сеть 39 передачи данных как пакетные сообщения, каждое пакетное сообщение содержит одиночный малый кадр телеметрии. Если поддержку спутников должен обеспечивать более чем один центр 36 управления полетами спутников, то данные телеметрии направляются во все центры управления полетами спутников.

Центр 36 управления полетами спутников выполняет несколько функций взаимодействия с наземным центром 38 управления. Одна из этих функций касается информации о положении орбиты, причем центр 36 управления полетами спутников предоставляет орбитальную информацию в наземный центр 38 управления так, что каждая земная узловая станция 18 может точно прослеживать до четырех спутников, которые могут быть в зоне радиовидимости земной узловой станции. Эти данные включают таблицы данных, которые являются достаточными для того, чтобы позволить земным узловым станциям 18 разработать свои собственные списки контактов со спутниками, используя известные алгоритмы. Центру 36 управления полетами спутников не требуется знать планы слежения земной узловой станции. Аппаратура 18а телеметрии и управления ищет диапазон телеметрии линии "спутник-Земля" и уникально идентифицирует спутник, отслеживаемый каждой антенной, перед прохождением команд.

Другая функция взаимодействия касается информации о состоянии спутника, которая сообщается из центра 36 управления полетами спутников в наземный центр 38 управления. Эта информация о состоянии спутника содержит сведения о готовности спутника/транспондера, состоянии батареи и орбитальную информацию и включает, как правило, любые ограничения, связанные со спутником, которые могли бы препятствовать использованию всего спутника 12 или его части для задач связи.

Важным аспектом системы 10 является использование многостанционного доступа с кодовым разделением каналов и расширением спектра сигналов вместе с комбинированием разнесенных сигналов в приемниках земных узловых станций и в приемниках абонентских станций. Комбинирование разнесенных сигналов использовано для того, чтобы смягчить эффекты замирания, поскольку сигналы приходят на абонентские станции 13 или земную узловую станцию 18 с нескольких спутников по нескольким путям с различной длиной. Приемники с обработкой сигналов по методу RAKE используются в абонентских станциях 13 и земных узловых станциях 18 для того, чтобы принимать и комбинировать сигналы от нескольких источников. Например, абонентская станция 13 или земная узловая станция 18 обеспечивает комбинирование разнесенных сигналов для прямой линии связи или обратной линии связи, которые одновременно принимаются и передаются через многие лучи спутников 12.

В связи с этим описание патента США N 5233626 озаглавленного "Система связи с расширенным спектром и разнесением ретрансляторов", включено в данное описание путем ссылки на соответствующий документ. Рабочие характеристики в непрерывном режиме разнесенного приема превосходят характеристики приема одного сигнала через один спутниковый ретранслятор и, кроме того, не происходит никакого перерыва связи, если один канал связи будет потерян из-за затенения деревьями или другими преградами, оказывающими неблагоприятное воздействие на принимаемый сигнал.

Антенны 40 с возможностью ориентации диаграммы направленности по нескольким направлениям из определенной земной станции 18 способны передавать сигнал прямой линии связи (от земной узловой станции на абонентскую станцию) через различные лучи одного или нескольких спутников 12, чтобы обеспечивать комбинирование разнесенных сигналов в абонентских станциях 13. Ненаправленные антенны 13а абонентских станций 13 передают через лучи всех спутников, которые могут быть "видны" из местоположения абонентской станции 13.

Каждая земная узловая станция 18 поддерживает функцию управления мощностью передатчика, чтобы подавлять медленные постепенные замирания, а также обеспечивает перемежение блоков, чтобы подавлять средние и быстрые замирания. Управление мощностью выполнено на обеих, прямой и обратной, линиях связи. Время реагирования функции управления мощности подстраивается, чтобы обеспечивать для наихудшего случая задержку двусторонней передачи сигнала через спутник на 30 мс.

Устройства перемежения блоков (53-d, 53е, 53f, фиг. 5) работают с длиной блока, которая связана с п