Аналоги витамина d, соединения, способы их получения и фармацевтическая композиция

Реферат

 

Описываются новые аналоги витамина D общей формулы I, где значения R1, R2, R3, R4, R5, R'2, R'3, R'4, R'5, X, У, У' указаны в п.1 формулы, которые проявляют селективную активность в отношении клеточных функций. Описывается способ их получения и фармацевтическая композиция на основе соединений формулы I. 10 с. и 14 з.п. ф-лы, 5 ил., 3 табл.

Изобретение описывает до сих пор неизвестный и поэтому новый класс соединений, которые являются аналогами 1 , 25-(OH)2D3 и проявляют селективную активность в отношении клеточных функций.

Уровень техники Витамин D, либо поставляемый с пищей (витамин D2 или D3) либо вырабатываемый в коже под воздействием ультрафиолетового света, подвергается метаболизму в некоторых тканях, давая вначале 25-гидроксивитамин D3[25-OHD3] и позднее 1 , 25-дигидроксивитамин D3[1 , 25-(OH)D3] и многочисленные другие метаболиты (1-6) витамина D. Некоторые гидроксилазы присутствующие в различных тканях (например, печень, почки, плацента, кератиноциты, фибробласты, моноциты, лимфоциты, костные клетки.) ответственны за активацию и инактивацию метаболических путей родительских молекул витамина D. 1 , 25-(OH)2D3 ведет себя как классический стероидный гормон, так как его синтез имеет обратную связь с регулированием некоторыми гормонами, ионами и гуморальными факторами, поддерживая нормальный гомеостаз тела плазмы и костных минералов. Кроме того, гормон(ы) витамина D действуют, связывая и активируя специфические рецепторы витамина D, присутствующие в большинстве тканей и клеток. Затем, стероидно-рецепторный комплекс действует как трансактивирующий фактор посредством связывания со специфическими ДНК последовательностями, известными как витамин D чувствительные элементы, т.о., что транскрипция многочисленных генов либо активируется, либо инактивируется (7,8). Эта генная (ин)активация проявляется совместно с другими ядерными вспомогательными факторами, частью которых является рецептор витамина A (R X R) (9, 10). Кроме того, существует некоторое доказательство того, что витамин D, его метаболиты и аналоги действуют по негеномному механизму, либо путем активации кальциевых каналов или другой мембраны, либо вторичных сигналов предвестников (11-13). Витамин D, его метаболиты и аналоги оказывают сильные воздействия на кальциевый и фосфатный метаболизм. Кроме того, они могут быть использованы для профилактики и терапии дефицита витамина D и других нарушений плазменного и костно-минерального гомеостаза (например, остеомаляция, остеопороз, почечная остеодистрофия, нарушения паратироидной функции). Кроме того, найдены рецепторы витамина D в многочисленных тканях и клетках, которые не принадлежат "ткани- мишени" ответственной за только что упомянутый кальциевый гомеостаз. Такие клетки включают больше всего клетки, относящиеся к эндокринной системе, и витамин D, его метаболиты и аналоги способны влиять на гормональную секрецию этих желез или тканей (например, инсусил, паратироид, кальцитонин, гипофизарные гормоны). Зафиксирована также активность рецепторов витамина D и витамина D в переносящих кальций тканях, кроме кишки и костей (например, плацента и молочные железы). Вдобавок, наблюдается, что рецепторы витамина D и витамин D действуют на большинство других клеток (например, клетки, относящиеся к иммунной системе, клетки кожи). Эти клетки или ткани могут быть доброкачественного, аденоматозного и злокачественного типа. Эти так называемые некальцемические эффекты витамина D, его метаболитов и аналогов создают возможность применения таких соединений в различных терапевтических целях, таких как модификация иммунной системы, модификация секреции гормонов, изменение транспорта кальция в различных тканях, модификация внутриклеточной концентрации кальция, индукция дифференциации клеток и ингибирование пролиферации клеток 14, 15). В частности, такие соединения могут быть полезны в терапии нарушений, характеризуемых пролиферацией клеток (например, псориаз, карцинома) (16-18).

Для увеличения терапевтической возможности природного витамин D гормона(ов), могут быть синтезированы аналоги с повышенной эффективностью для специфического воздействия и снижения воздействия другого типа. Например, для получения лекарственного средства против псориаза, могут быть синтезированы аналоги с повышенным воздействием на кератиноциты и лимфоциты, присутствующие в пораженной кожной поверхности, но с пониженными воздействиями на кальций сыворотки, мочи или кости (19-23). Подобные аналоги могут обладать повышенной эффективностью к ингибированию пролиферации клеток карциномы (например, лейкоз или раковые клетки молочной железы) и/или повышению дифференциации таких клеток, либо сами по себе, в результате присущей им эффективности, либо в результате возрастания таких воздействий в комбинации с другими лекарственными средствами (например, факторы роста или цитокины, другие стероидные или антистероидные гормоны или ретиновые кислоты, или родственные соединения) и в то же самое время, обладать пониженной эффективностью в отношении воздействия на кальций сыворотки, мочи и кости или фосфатный гомеостаз.

Другим таким примером могут служить аналоги с повышенной активностью в отношении специфической секреции гормона (например, паратироидный гормон, инсулин) без подобной соответствующей эффективности в отношении других деятельностей природных витамин D гормонов(а). Аналоги с повышенной активностью в отношении доброкачественных клеток, относящихся к иммунной системе, могут быть использованы для лечения иммунных расстройств (например, аутоиммунные расстройства, СПИД, предупреждение отторжения трансплантанта или реакции "трансплантант против хозяина") особенно если их воздействие на другие системы (например, кальциевый и фосфатный метаболизм) должно быть сравнительно ослабленным. Кроме того, могут быть разработаны аналоги с повышенной активностью в отношении образующих кости клеток без одновременного воздействия на костные поглощающие клетки или наоборот и такие аналоги могут быть полезны в лечении костных нарушений.

Ряд аналогов витамина D с видоизмененным специфическим воздействием на различные ткани (особенно, соотношение дифференциации клеток и кальцемических эффектов) описан ранее с переменным успехом в такой дифференциации.

Особенно, окса аналоги в боковой цепи (патент WO 90/09992; EP 0385 446A 2), модификации или гомологизация боковой цепи (WO 87/00834, международная патентная классификация C 07 C 172/00), изменения в стехиометрии при углероде 20 (WO 90/09991, международная патентная классификация C 07 C 401/00, A 61 K 31/59), модификации по C11 C-кольца (EP 89/401, 262-4) и эпокси аналоги (PCT/EP 92/0126) боковой цепи, проявившие интересующие характеристики.

Описание изобретения Данное изобретение относится к синтезам и биологической оценке оригинальных соединений, которые все же сохраняют некоторые основные характеристики воздействия витамина D, но с более селективным паттерном, (т.е., не все функции физиологического витамин гормона сохраняются в той же относительной степени) и со структурой, которая может быть основательно изменена в центральной части. Действительно, в структуре витамина D можно различить три различные части: (i) центральная часть, состоящая из бициклической C-кольцевой системы: (ii) верхняя часть, состоящая из боковой цепи, которая соединена с положением 17 D-кольца; (iii) нижняя часть, состоящая из A-цикла и (5,7)-диена (так называемого seco (вторичного) B-цикла), который связан с положением 8 c-кольца. Первая цель данного изобретения состоит во внесении значительных структурных изменений в центральной части витамина D.

В частности, данное изобретение относится к аналогам витамина D, в которых отсутствуют объединенные трансконденсированные шестичленный C-цикл и пятичленный D-цикл, но все же существует центральная часть, состоящая из замещенной цепи из пяти атомов, атомы которой соответствуют положениям 8, 14, 13, 17 и 20 витамина D, и концы которой связаны в положении 20 со структурной составляющей, являющейся частью боковой цепи витамина или аналога витамина D, и в положении B с (5,7)-диен составляющей, связанной с A-циклом активного 1-альфа-гидрокси метаболита или установленного аналога витамина D.

Соединения данного изобретения представлены общей формулой I, и в этой формуле: - P обозначает водород, алкил или ацил; - X обозначает часть боковой цепи витамина D или один из его установленных аналогов; - Y и Y', которые могут быть одинаковыми или различными, представляют водород или алкил, или, взятые вместе, представляют алкилиден группу, или образуют карбоцикл; - W и W', которые могут быть одинаковыми, или различными, представляют водород или алкил, или, взятые вместе, представляют алкилиден группу или образуют карбоцикл; - один из атомов углерода центральной части, соответствующий положениям 14, 13, 17 или 20, вместе с присоединенными к нему R и R' заместителями, может быть заменен кислородом (O), серой (S) или несущим азот заместителем (NR).

R и R' (т.е. R, R1, R2, R'2, R3, R'3, R'4, R4, R5, R'5): когда локализованы в отношении положения 1, 3 центральной цепи, таком как R1 и R3 или R'3, R2 или R'2, и R4 или R'4. R3 или R3 и R5 или R'5, взятые вместе с тремя примыкающими атомами центральной цепи, которые соответствуют положениям 8, 14, 13 или 14, 13, 17 или 13, 17, 20, соответственно, могут образовывать насыщенный или ненасыщенный карбоциклический или гетероциклический 3-, 4-, 5-, 6- или 7- членный цикл, тем самым также включается случай, когда геминально замещенные R и R', взятые вместе, образуют циклическую ненасыщенную связь, при условии, что когда R1 и R3, образуют 6-членный карбоцикл следующей природы (1) незамещенный и насыщенный, (2) монозамещенный при C-11 или (3) имеющий двойную связь между C-9 и C-11, R2 и R4 не образуют пятичленный карбоцикл, если R3 представляет метил, этил или этенил когда локализованы в отношении положения 1,2 (т.е. вицинальное) центральной цепи, так как R1 и R2 или R'2, R2 или R'2 и R3 или R'3, R3 или R'3 и R4 или R'4, R4 или R'4 и R5 или R'5 и когда не являются частью цикла описанного выше, взятые вместе с двумя прилежащими атомами центральной цепи, которые отвечают положениям 8, 14 или 14, 13 или 13, 17 или 17, 20 соответственно, могут образовывать насыщенный или ненасыщенный карбоциклический или гетероциклический 3-,4-, 5-, 6- или 7-членный цикл, тем самым включается также случай, когда геминально замещенный R и R', взятые вместе, образуют циклическую ненасыщенную связь.

когда локализованы в отношении 1,1-положения (т.е. геминальные) центральной цепи, таком как R2 или R'2, или R3 или R'3, или R4 или R'4 или R5 или R'5, и когда не являются частью описанного выше цикла, взятые вместе с атомом углерода несущим R и R' заместители, могут образовывать либо насыщенный, либо ненасыщенный карбоциклический или гетероциклический 3-, 4-, 5-, или 6-членный цикл.

которые могут быть одинаковыми или различными, и когда они не образуют цикл или связь как описано выше, представляют водород или низшую алкил группу, или, взятые вместе в случае геминального замещения, обозначают низшую алкилиден группу.

В контексте изобретения выражение "низшая алкил группа" означает линейную или разветвленную насыщенную или ненасыщенную углеродную цепь, содержащую от 1 до 7 углеродных атома, и "низшая алкилиден группа" означает линейную или разветвленную насыщенную или ненасыщенную углеродную цепь, содержащую от 1 до 7 углеродных атомов, которая связана с одним из атомов 14, 13, 17 и/или 20 основной цепи через двойную связь.

В контексте изобретения часть боковой цепи витамина D или одного из его установленных аналогов означает замещенную алкильную цепь с 2-15 углеродными атомами, особенно как присутствует в витамине D2(C-22 - C-28) или D3(C-22 - C-27) или частично видоизмененную, как показано ниже, с нумерацией витамина D.

Главным образом: - гидроксил заместитель в одном или более положениях, например 24, 25 и/или 26 и/или - метил или этил заместитель в одном или более положениях, например 24, 26 и/или 27 и/или - галоген заместитель(и) в одном или более положениях, например перфторированные в положениях 26 и/или 27 или дифторированные в положении 24 и/или - дополнительный углеродный атом(ы), главным образом C24 между положениями 24 и 25, с таким же паттерном замещения, как упомянуто выше и/или - сложноэфирные производные одного или более гидроксильных заместителей упомянутых выше и/или - замена одного или более углеродных атомов на атомы кислорода, азота или серы, например в положениях 22, 23 или 24 и/или - цикл, образованный атомами углерода 26 и 27 с помощью одной связи (циклопропан) или путем промежуточного звена из 1-4 углеродных атомов, цикл может быть насыщенным, ненасыщенным или ароматическим и может необязательно быть замещенным в любом возможном положении (иях) вышеупомянутым заместителем и/или - цикл, образованный между углеродными атомами 26 и 27 посредством 1-4 атомов с получением гетероциклического кольца, включая ароматическое, которое может необязательно быть замещенным в любом возможном положении вышеупомянутым заместителем и/или - ненасыщенный с одной или более двойной или тройной C-C связями (связью), эти ненасыщенные цепи могут быть замещены в любом возможном положении вышеупомянутыми заместителями и/или - может присутствовать эпоксидная функциональная группа между углеродными атомами 22, 23 или 23, 24 или 24, 25 или 25, 26: эти эпоксидированные цепи могут быть насыщенными или ненасыщенными и могут быть замещенными в любых возможных положениях вышеупомянутыми заместителями и/или - два или более углеродных атома боковой цепи могут быть соединены простой связью или через промежуточное звено из 1-5 углеродных атомов, атомов кислорода, азота или серы, образуя 3-7-членный насыщенный или ненасыщенный карбоциклический или гетероциклический, включая ароматический, цикл, который может оптимально быть замещен в любом возможном положении вышеупомянутыми заместителями и/или замещенный в одном или более положениях насыщенным, ненасыщенным карбоциклическим, гетероциклическим или ароматическим циклом, который может быть замещен в любом возможном положении(иях) вышеупомянутыми заместителями - изомерные формы замещенной цепи.

Следовательно, изобретение относится к сериям аналогов с широко варьируемыми структурами, как приведено в качестве примеров в Таблице 1, где показаны некоторые специфические примеры соединений формулы 1, и которые приводятся в многочисленных препаративных методиках и примерах.

Наиболее часто соединения изобретения представлены одной из формул IIa (тип C), IIb (тип D), IIc (тип E), IId (тип CD), IIe (тип CE), IIf (тип DE) и IIg (ациклический тип): где X, Y, Y', W и W' имеют вышеуказанные значения; - Z представляет насыщенную или ненасыщенную углеводородную цепь, содержащую ноль (следовательно, Z представляет связь между 1,3-смежными углеродными атомами центральной цепи), один, два, три или четыре атома, которые все могут быть замещенными и/или замененными гетероатомом, таким как кислород, сера и азот.

- R1, R2, R'2, R3, R'3, R4, R'4, R5, R'5, которые могут быть одинаковыми или различными, представляют водород или низший алкил, такой как метил, этил или н-пропил.

Среди этих соединений предпочтительны циклические производные типа C, D, E, CD, CE и DE, которые соответствуют структурам IIIa, IIIb, IIIc, IIId, IIIe и IIIf, соответственно.

где: n - целое число, равное 2 или 3; - X представляет одну из следующих частей боковой цепи витамина D: (4-гидрокси-4-метил)фенил, (R)- или (S)-(3-гидрокси-4-метил) фенил, (3'-гидрокси-3'-метил)бутилокси, (4-гидрокси-4-этил)гексил, (4-гидрокси-4-метил)-2-пентинил, (4'-гидрокси-4'-этил)гексилокси; 4,5-эпокси. 4-метил-2-пентинил; 4-гидрокси-4-этил-2-гексииил; (3-метил-2,3-эпокси)-бутилокси; (3-гидрокси-3-этил)пентилокси; (4-гидрокси-4-этил)-гексилокси.

Y, Y', W и W' - одинаковые и представляют водород, или, взятые вместе, представляют метилен группу =CH2; R1, R2, R'2, R3, R'3, R4, R'4, R5 и R'5, которые могут быть одинаковыми или различными, представляют водород или метил.

Все соединения изобретения могут быть получены использованием реакций, которые хорошо известны в технике синтетической органической химии. В частности, во всех случаях, нижняя часть структуры может быть введена в соответствии со способом Lythgoe (24), по которому защищенный фосфин оксид IV взаимодействует с соответствующим карбонил производным VII, в котором различные реакционноспособные функциональные группы предпочтительно защищены и в котором группы X, Y, Y', W, W', Z, R, R1, R2...R'5, имеют те же значения, что определены выше, после чего с реакционноспособных функциональных групп снимают защиту. О синтезе таких производных, как IV сообщается также в литературе (25).

Альтернативные способы включают a) сочетание соответствующего винильного карбаниона (из VIII) с V с последующим катализируемым кислотой сольволизом и b) взаимодействие алкинил аниона VI с соответствующим карбонил производным VII с последующим частичным восстановлением тройной связи и катализируемым кислотой сольволизом (26). Можно изменить способ так, чтобы мог быть использован альтернативный способ сочетания, такой как сульфоновый способ (27a) или Okamura's сочетание (27b).

Как будет показано в ряде экспериментов, соединения структуры VII могут быть получены разнообразными способами. Важно отметить, что эти производные в большинстве случаев получают синтетическими способами, которые короче и более эффективны, чем способы, обычно используемые для получения аналогов витамина D.

Схема 1 (см. в конце описания).

a) AlC3 изопрен, толуол, 6 ч, -78oC, - комн. темп. (72%); b) MeONa, MeOH, 1ч, комн.темп. (94%); c) NaBH4, MeOH, 12 ч, 0oC - комн. темп. (86%); d) MEMCl, DIPEA, ТГФ (THF), 3 ч, комн. темп. (98%); e) (i) OSO4, NMMO, Me2CO: H2O (3:1), 12 ч, комн. темп. (86%); (ii) NaIO4, Me2IO4, Me2CO:H2O (3: 1), 12 ч, комн.темп. (98%); f) KOH, 12ч. 60oC (53%); g) (i) 10% Pd/C, 1 атм H2, гексан, 1,5 ч, 0oC (93%); (ii) MeONa, MeOH, 3 ч. 0oC - комн.темп. (97%); h) Ph3P= CH2, HMPA: ТГФ (1:1), 2ч, - 20oC (100%); i) (i) 9-BBN, ТГФ, 4 ч, комн. темп. ; (ii) EtOH, NaOH 6 н., H2O2 30%, 1 ч, 60oC (74%-91%); j) TsCl, DMAP, Et3N, CH2Cl2, 12 ч, комн. темп. (91%-97%); k) NaH, DMSO 2-(1-этокси)-этокси-2-метил-3-бутин, 1,5 ч, 60oC-комн. темп. (70%); l) 10% Pd/C, 4 бар, H2, EtOAc, 1ч, комн.темп. (34%); m) Me2BBr, CH2Cl2, 1 ч, -78oC (73%); n) PDC, CH2Cl2, 4 ч, комн. темп. (86%-99%); o) TSIM, ТГФ, 1 ч, комн. темп. (94%-98%); p) TBAF, ТГФ, 5 дней, 30oC (99%); q) (i) NaH, CS2, 24 ч, комн. темп. ; (ii) MeI, ТГФ, 2 ч, комн. темп. (98%); r) Bu3SnH, AIBN, толуол, 9 ч, 110oC (92%); s) K1, DMSO, 4 ч, 60oC (95%); t) метилвинилкетон, CuI, Zn, EtOH: H2O (7:3), 3,15 ч, 15oC (83%); u) MeMgCl, ТГФ, 1 ч, комн. темп. (98%); v) Amberlyst 15, MeOH, 1 неделя, 30oC (96%).

Схема 1 18-нор-витамина D скелет отражает аналоги типа IIId. Основными стадиями синтеза являются: а) синтез транс-конденсированного декалона, (b) сужение одного кольца до транс-конденсированного гидриндана, с) построение боковой цепи.

Известно, что описанный в литературе диенофил 1.1 дает син продукт присоединения Дильса- Альдера к силокси группе (28). Таким образом, ригоселективное взаимодействие с изопреном дает 1.2a; эпимеризация индуцированная основанием приводит к 1,2b. Селективное восстановление карбонильной функциональной группы и последующая спиртовая защита приводят к промежуточному продукту 1.3b. Расщепление двойной связи и альдольная реакция образования диальдегида дают транс-гидриндан 1.4. Гидрирование 1.4 приводит к смеси С-17 эпимеров, которая, после индуцируемой основанием эпимеризации, превращается термодинамически более стабильный продукт 1,5a. Реакция Виттига и гидроборация приводят к 1.6a, затем приблизительно к 20% C-20 эпимера. После разделения, боковую цепь вводят посредством тозилата 1,6b. Наконец, каталитическое гидрирование, восстановление C-8 карбонильной функции и 25-гидроксил защита приводят к заданному предшественнику 1.8d. промежуточный продукт 1.5b также позволяет удалить C-12 окси-функциональную группу путем известной методики, включающей радикальную реакцию (29).

Гидроборация 1.9c и последующая трансформация гидроксил группы в иод-соединение 1.10c (4:1, 20S:20R). Боковая цепь вводится при воздействии ультразвука, что дает 1.10 (30). Этот кетон дает при взаимодействии с метилмагнийхлоридом третичный спирт 1.11a. Окисление до C-8 кетона 1.11.C и защита третичного спирта приводят к заданному предшественнику 1.11d.

Аналоги с шестичленной структурой IIIa могут быть синтезированы способом, который включает в качестве ключевой стадии перегруппировку Ireland-Claisen'a субстрата полученного из сложного эфира, спиртовую часть которого составляет (R) - 3-метил-2-циклогексенол (31). Два примера такого подхода приведены в схеме 2 (см. в конце описания).

Взаимодействие (R) -3-метил-2-циклогексенола с гомохиральной кислотой 2.1, получаемой из (-)-ментона (32), дает сложный эфир 2.2. После депротонации сложного эфира, анион этанола взаимодействует (на месте) с третбутилдиметисилил хлоридом; последующий термолиз приводит к циклогексену 2.3 (67% от превращения исходного материала) (33). Карбоксигруппу в 2.3 в дальнейшем превращают в метил группу, следуя стандартным условиям, что в результате дает производное 2.4. Гидроборация 2.4 дает вторичный спирт, который окисляют до циклогексанона 2.5. Последний представляет требуемый карбонильный субстрат для синтеза аналогов 4, обладающих (24S)-конфигурацией.

a) DCC, DMAP, CH2Cl2 (91%); b) LiCA, THF, HMPA; tBuMe2SiCl; c) (67%); d) CH2N2, диэтиловый эфир (86%); e) LAH, THF (89%); f) TsCl, пиридин (96%); g) LAH, THF (91%); (h) 9-BBN, THF: NaOH, H2O2 (80%); i) PDC, CH2Cl2 (90%); j) TBAF, THF, 30oC (88%); k) PPh3, DEAD, pNO2PhCOOH (68%); l) K2CO3, KOH; m) TBSCl, имидазол, DMF, DMAP (97%); n) 9-BBN, THF (92%); o) PDC, CH2Cl2 (92%); p) DCC (96%); q) LDA, TBSCl; r) LAH, THF, (86%); s) TsCl, py (100%); t) LAN, THF (100%); u) Hg(OAc)2, NaOH, NaBH4; v) TESCl, DMAP, DMF, имидазол; w) 9-BBN, H2O2 (95%); x) PDC (80%).

Схема 2 Синтез его (24R)-эпимера выполняют аналогичным способом после инверсии при C-24. Поэтому, исходя из промежуточного продукта 2.4. удаляют защитную группу и образовавшийся спирт обращают по методике (34). Воспроизведение приведенной выше последовательности дает циклогексанон 2.7. Обычная методика сочетания приводит затем в конечном итоге к аналогам 5 и 6, которые содержат (24R)-гидрокси группу.

Использованием аналогичного подхода может быть осуществлен синтез 25-гидрокси аналога. Поэтому (R)-3-метил-2-циклогексенол этерифицируют (R)-(+)-цитронелловой кислотой (2.8), получая сложный эфир 2.9. Следующая затем перегруппировка Ireland-Claisen'a дает кислоту 2.10. После превращения карбоксигруппы в метил группу (2.11), тризамещенную двойную связь преимущественно окисляют до третичного спирта, используя ацетат ртути, NaOH и боргидрид натрия. Последующая спиртовая защита и региоселективное окисление циклической двойной связи приводят к циклогексанону 2.12, из которого получают, используя обычную реакцию сочетания, аналоги 7 и 8.

Аналоги типа IIIa с обращенной конфигурацией при C-13 могут также быть получены способом Ireland-Claisen'a Это иллюстрируется схемой 3 (см. в конце описания). С этой целью ацетат (S)-3- метил-2-циклогексенола (3.1:86%) может быть непосредственно депротонирован, и соответствующий энол силилэфир перегруппировывают до кислоты 3.2. Дальнейшее обогащение заданного энантиомера достигается посредством разделения в R-(+)- -метилбензиламине. Дальнейшая последовательность включает восстановление кислоты 3.2 и защиту образовавшегося первичного спирта до 3.3. Последний может быть окислен использованием 9-BBN и перекисью водорода до спирта 3.4. После защиты-снятия защиты, первичный спирт используют для построения окса боковой цепи. Это осуществляется взаимодействием аниона с 1-хлор-3-метил-2-бутеном. После гидролиза и окисления получают циклогексанон 3,6. Окончательное введение 25-гидрокси группы выполняют по методике восстановления с помощью меркурацетатно-гидридного восстановления. Полученное карбонилпроизводное 3.7 служит предшественником аналога 9, характеризуемого 22-окса боковой цепью и эпимерной конфигурации при C-13. Следует далее отметить, что обычное сочетание Horner-Wittig'a. также приводит в этом случае к образованию изомера с (Z)-7,8-двойной связью (соотношение 4:1).

P=SiPh2tBu a) PGL, фосфатный буфер (86%); b) LDA, tBuMe2SiCl, ТГФ; HCl; разделение в R-(+)- -метил бензиламине (48%); c) LAH, диэтиловый эфир (95%); d) tBuPh2SiCl, DMF имидазол (98%); e) 9-BBN, H2O2 (96%); f) ДНР, CH2Cl2 (93%); g) (м-Bu)4NF, ТГФ (91%); h) ClCH2CH=C(CH3)2, NaH, DMF (81%); i) TSOH, MeOH, комн. темп. (98%); j) PDC, CH2Cl2, комн. темп. (84%); k) Hg(OAc)2, NaBH4 (68%).

Схема 3 Другой подход к синтезу аналогов типа IIIa состоит в присоединении к сопряженным связям части боковой цепи, включающей 3-метил-2-циклогексанон в качестве субстрата. Пример приведен в схеме 4 (см. в конце описания).

a) tBuPh2SiCl, имидазол, DMF, 36 ч, комн. темп. (100%); b) DIBALH, гексан, 0,5 ч, - 78oC; c) t-BuOK, (MeO)2Р(O)CHN2 THF, 20ч, - 78oC, комн. темп. (90% всего из 4.2); d) В-ВГ-9-BBN, CH2Cl2, 4 ч, 0oC, затем CH3COOH, 0,5 ч, 0oC, NaOH; H2O2 0,5 ч, комн. темп. (90%); e) tBuLi, CuI/HMPT, BF3-OEt2, 3-метил циклогексенон, диэтиловый эфир, 16 ч, -120o-20oC (40%); f) TBAF, THP, 3 ч, комн. темп. (90%); g) ВДЖХ, элюент: гексан:этилацетат 6:4; h) Ph3P, имидазол, l2, THF, 6 ч, -20oC - комн.темп. (88%); Схема 4 Необходимый гомохиральный купрат-реагент получают приведенной далее последовательностью превращений, исходя из метил (S)-3-гидрокси-2-метилпропаноата (4.1). После защиты спирта, сложный эфир восстанавливают и полученный альдегид 4.3 обрабатывают анионом, полученным из метил диазометил фосфоната (35). Образовавшийся алкин 4.4, полученный с 90% выходом из 4.2, превращают в дальнейшем в винил бромид производное 4.5. Из последнего требуемый купрат реагент получают обработкой трет- бутиллитием и CuJ при -120oC. 1,4-Присоединение к 3-метил-2- циклогексенону выполняют в диэтиловом эфире в присутствии борнитрофторида (36). После обычной обработки и очистки получают циклогексанон 4.6 вместе с C13-эпимером.

После гидролиза заданный спирт 4.7 может быть отделен от его C13-эпимера (конфигурационное отнесение соответствует CD), и далее превращают в иодид 4.8. Это карбонильное производное служит субстратом для присоединения A-цикла.

Для синтеза соединений типа IIc приведен пример в схеме 5 (см. в конце описания). Исходное соединение 5.1 получают из R-лимонно-яблочной кислоты (37).

a) TSOH, THF, 20 ч, комн.темп. (90%); b) DDQ, 3 ч, комн.темп.; c) PDC, DMF, 20 ч, комн.темп.; d) CH2N2, Et2O (94%); e) EtMgBr, 2 ч, комн. темп.; f) Pd/c, H2 (50%); g) TPAP, NMMO, 2 ч, комн.темп. (70%); Схема 5 Построение гетероциклических ядер из 5.1 и 5.2 предусматривает сборку предшествующего скелета путем конвергенции. Оба эпимера 5.3 с соответственно и ориентированной боковой цепью получают в соотношении 1:1. Дальнейшие превращения выполняются на этой эпимерной смеси. Разделение возможно на стадии конечных аналогов. Трансформация п-метоксибензилового эфира в 5.3 (+) в сложном эфире 5.4 (+) и последующая реакция Гриньяра приводят к боковой цепи. Наконец вводят альдегидную функциональную группу и получают предшественник 5.6 (+) .

Группа аналогов с пятичленным циклом, как примеры общей формулы IIIc, легко может быть получена исходя из известного 6.1 (38). Расщепление простой эфирной связи в 6.1 с помощью иодида натрия приводит к ключевому промежуточному соединению, иодиду 6.2. Основные синтетические возможности при введении (a) боковой цепи использованием иод-функциональной группы через (1) прямое сочетание или (2) после превращения иодметильного заместителя в гидроксильный заместитель или (3) после обращения ориентации иодметильного заместителя или (4) после превращения иодид группы в формил группу и (b) A-циклической части после гомологизации по гидроксиметил заместителю. Примеры таких подходов приведены ниже и иллюстрированы схемой 6 (см. в конце описания).

Иод-соединение 6.2 может быть подвергнуто реакции сочетания в условиях обработки ультразвуком с метил-винил кетоном и этил-винил кетоном, что дает соответственно 6.8 и 6.9. Кетон 6.8 при взаимодействии с метилмагнийбромидом дает соответствующий третичный спирт. Окисление первичного спирта и 1-C гомологизация образующегося альдегида 6.10 с метокситрифенилфосфоний метилидом и последующий гидролиз приводят к альдегиду 6.12, требуемому для сочетания с A-циклом. Аналогично, реакция 6.9 с этилмагнийбромидом и последующая трансформация дают 6.13.

a) Cl3SiCH3, NaI, CH3CN (90%); b) DIPEA, CH3OCH2Cl, CH2Cl2 (86%); c) TBAF, THF (88%); d) OSO4, NaIO4, THP:H2O (65%); e) LiAlH4, THF, комн.темп., (95%); f) (1) 9-BBN, TMF, 60oC; 2) H2O2, NaOH (87%); g) Ph3P имидазол, I2, диэтиловый эфир: CH3CN 3:1 (93%); h) Amberlyst-15, MeOH, THF (86%); i) CuJ, Zn., MVK, EVK или T-2,4-пентадионовой кислоты этиловый эфир, EtOH:H2O 7:3 (45%); j) Mg, EtI, Et2O, 0oC (73%); j') MeLi, Et2O, - 78oC (85%); k) TPAP, NMMO, молекулярные сита CH2Cl2 (66%); k') (CrO3)Py2 ("Collins"). CH2Cl2 (35%); l)(1) [Ph3PCH2OCH3] +Cl-, н-BuLi, диэтиловый эфир, -30oC, 2) HCl 2 н., THF (48%); m) KOH, изопренилхлорид, 18-Крон-6, толуол, ультразвук (40%); n) KOH, аллибромид, 18-Крон-6, THF (75%); o) (1) Hg (OAc)2, H2O, TH; 2) NaBH4, NaOH (94%); p) SO3P,. Et3N, CH2Cl2:DMSO 1:1 (71%); q) (1) 9-BBN, THF, 60oC, (2) H2O2, NaOH (95%); r) (1) PDC, DMF, 40oC; CH2N2, Et3O, 0oC (36%); s) Mg, Et1 (2 экв. ), Et2O, 0oC (92%); t) MEMCl, DIPEA, CH2Cl2; (80%); u) (1) NaNO2, DMF, мочевина, 25oC (45!%); (2) NaOMe (1,3 экв.), MeOH; (3) O3, Na2S - 78oC (70%); (v) (EeO)2P(O)CH2CH=CHCOOEt. LDA, THF(91%); (w) H2/Pd (4 атм.), 3 ч (80%); x) Me2BBr, ClCH2CH2Cl:CH2Cl2 1:6 (93%); y) Mg, MeBr, THF; z) TBAF, THF.

Схема 6 С другой стороны, основание полученное отщеплением иодида 6.2 после защиты гидроксил группы, дает олефин 6.3. Гидроборация 6.3 приводит к двум диастереомерам в соотношении 1:1. После выделения, изомер 6.6 превращают в иодид 6.7. Как описано для эпимера 6.2, 6.7 используют для синтеза ключевого промежуточного соединения 6.16.

Окислительное расщепление двойной связи в 6.3 и восстановление образовавшегося кетона приводит к эпимерным спиртам 6.4 и 6.5. Смесь подвергают реакции Вильямсона (получение простых эфиров), что приводит к аллиловым простым эфирам 6.17 и 6.17 Присоединение воды по двойной связи, гидролиз МОМ-диэтилового эфира и окисление образовавшегося первичного спирта дает эпимерные альдегиды 6.19 и 6.19 , которые могут быть разделены ВДЖХ (гексан-ацетон 9:1). Соответствующие структуры обоих эпимеров устанавливают nOe измерениями. 1-C гомологизация, как уже описано для 6.10, приводит к промежуточным продуктам 6.21 и 6.21 .

Также взаимодействие смеси анионов 6.4 и 6.5 с аллилбромидом дает смесь 6.18 (+) . Последовательное применение гидроборации концевой двойной связи, окисление и обработка диазометаном проводят к соответствующему сложному метиловому эфиру карбоновой кислоты, который реагирует с этилмагнийбромидом. Последующий гидролиз простого МОМ эфира и окисление первичного спирта дают эпимерные альдегиды, которые разделяют ВДЖХ. Соответствующие структуры 6.20 и 6.20 устанавливают nOe измерениями. Затем 1-C гомологизации дает соответственно 6.22 и 6.22 Сочетание альдегидов 6.12, 6.13, 6.16 6.21 , 6.21 , 6.22 и 6.22 с A-циклом описано ниже.

Кроме того, превращение иодида 6.2, через соответствующее нитросоединение (39), в альдегид 6.24 дает возможность введения боковой цепи. Это может быть выполнено по реакции типа Horner-Wittig'a с применением фосфонокротоната с последующим каталитическим гидрированием. Затем выполняется 1-C гомологизация как описано для 6.12. Сочетание (24) образующегося 6.26 с анионом 13.1 приводит к промежуточному продукту 6.27. После чего сложноэфирная функциональная группа может быть превращена в третичные спирты. Эта последовательность служит примером построения аналогов, в которых заданная боковая цепь образуется в результате Lythgoe's сочетания.

в другом примере из этой серии иод-соединение 6.2 сочетается в условиях обработки ультразвуком со сложным этиловым эфиром транс-2,4- пентадионовой кислоты. Вслед за гидрированием 6.28, образующийся спирт 6.29 подвергают, как уже описано, гомологизации до предшественника 6.30.

Другой пример аналогов типа IIIc имеет ароматическое кольцо и легко может быть построен из 3-гидроксифенетилового спирта 7.1 (см. схему 7 в конце описания) и включает создание боковой цепи через фенольную гидроксильную группу и окисление первичного спирта до альдегидной функциональной группы, подходящей для сочетания с А циклической частью. Образование простого эфира с тозилатом 7.2 дает 7.3.

a) KOH, DMSO, 4 ч, комн.темп. (85%); b) Et3N, SO3C5H5N, 15 мин (48%); c) CH3I, KO-t, Bu (55%).

Схема 7 После окисления первичного спирта в 7.3, образующийся альдегид бисметилируют, получая предшественник 7.4.

Кроме того, возможно несколько способов для синтеза аналогов с общей структурой IIIc. Несколько возможных вариантов показано в схеме 8 (см. в конце описания).

В первом способе описанное ранее соединение 3.4 (схема 3) этерифицируют как указано выше: после снятия защиты могут быть выделены два спиртовых диастереомера 8.1. Оба выделенных спирта 8.1 и 8.1 обрабатывают ацетатом ртути/боргидридом натрия, и впоследствии окисляют, получая альдегиды 8.2 и 8.3, которые после выполнения в обычном порядке сочетания дают аналоги 22 и 23, соответственно.

-Эпимер 8.1 может также быть превращен в диастереомерную смесь эпоксидов, которые после окисления приводят к альдегиду 8.4. Полученное соединение представляет собой субстрат для сочетания с аналогом 24. Окончательно 8.4 может также привести к эпимерной смеси первичных спиртов через окисление до соответствующего кетона, реакцию Виттига с метилентрифенилфосфораном и 9-BBN окислением. После тозилирования первичного спирта вводят боковую цепь через вытеснение анионом 3-этоксиэтил-3-метил-1-бутина; снятие защиты дает 8,5 в виде смеси эпимеров, которые теперь могут быть разделены. Окисление -эпимера 8,5 с помощью PDC приводит к альдегиду 8.6, предшественнику аналога 25.

a) ClCH2CH= C(CH3)2, NaH (89%); b) (нВ)4NF (81%); c) Hg(OAc)2; NaOH, NaBH4 (76%) 2: 1 смесь; d) PDC, CH2Cl2, комн.темп. (80%); e) мCPBA, CH2C2, 0