Источник рентгеновского излучения с сформированной радиационной картиной

Реферат

 

Использование: для получения постоянного или импульсного рентгеновского излучения малой мощности. Источник рентгеновского излучения содержит кожух (12), источник питания, удлиненный трубчатый зонд (14), узел (26) мишени и узел (29') управления лучом. Кожух закрывает источник (22) электронного луча и имеет элементы для генерации электронного луча вдоль траектории луча. Источник питания является программированным для управления напряжением, током и временем генерации электронного луча. Узел (26) мишени включает элемент мишени, расположенный вдоль траектории луча и приспособленный для испускания рентгеновского излучения в заданной спектральной области в ответ на падающие электроны. Узел (29') управления лучом включает элемент (30) отклонения, контур (31) обратной связи и контроллер (144) отклонения. Элемент (30) отклонения отклоняет луч от условной оси, выбранной поверхностной области на элементе (26) мишени в ответ на сигнал управления отклонением. Контур (31) обратной связи включает элементы регистрации отклонения для регистрации отклонения луча и элементы для выработки характерного в этом случае сигнала обратной связи. Технический результат заключается в создании маломощного рентгеновского устройства. 5 с. и 79 з.п.ф-лы, 22 ил.

Настоящее изобретение относится к малогабаритному, программируемому источнику рентгеновского излучения малой мощности для использования при получении в значительной мере постоянного или импульсного рентгеновского излучения с низким уровнем мощности в специальной области.

Традиционные медицинские источники рентгеновского излучения представляют собой стационарно расположенные агрегаты больших размеров. Обычно головка рентгеновской трубки размещается в одной комнате, а консоль управления - в соседней. Комнаты разделяются защитной стеной, в которой имеется окно для наблюдения. Типичные размеры рентгеновской трубки составляют примерно от 20 до 35 сантиметров (см) в длину и около 15 см в диаметре. Источник питания высокого напряжения размещается внутри стойки, которая располагается в углу комнаты, содержащей рентгеновскую трубку. Пациентов направляют на рентген для диагностического, терапевтического или паллиативного лечения.

Диагностические рентгеновские аппараты обычно работают на напряжениях ниже 150 киловольт (кВ), и при токах приблизительно от 25 до 1200 миллиампер (мА). Для сравнения, токи в терапевтических аппаратах обычно не превышают 20. мА при напряжениях, которые могут находиться в пределах выше 150 кВ. При работе рентгеновского аппарата на номинальных значениях напряжений от 10 до 140 кВ проникновение рентгеновского излучения в организм человека ограничивается тканью и поэтому его можно использовать при лечении повреждений кожи. При более высоких напряжениях (порядка 250 кВ) достигается глубокое проникновение рентгеновского излучения, которое используется при лечении опухолей. Рентгеновские аппараты сверхвысокого напряжения, работающие в диапазоне напряжений от 4 до 8 мегавольт (MB), используются для удаления или разрушения всех типов тканей, кроме поверхностных повреждений кожи.

Традиционная рентгеновская трубка включает в себя анод, сетку и катодный узел. Катодный узел вырабатывает электронный пучок, который направляется на мишень электрическим полем, образующимся между анодом и сеткой. Падающий на мишень электронный пучок, в свою очередь, вырабатывает рентгеновское излучение. Излучение, поглощаемое пациентом, в основном является излучением, которое передается от мишени в рентгеновскую трубку через окно в трубке, приводя к потерям при передаче. Это окно обычно выполняют в виде тонкой пластинки берилия или другого подходящего материала. В традиционном рентгеновском аппарате, катодный узел состоит из торированной вольфрамовой спирали диаметром около 2 мм и длиной от 1 до 2 см, которая нагревается при прохождении тока, равного 4 Амперам (А) или выше, путем термоэлектрической эмиссии электронов. Эта спираль окружена металлической фокусирующей чашкой, которая фокусирует пучок электронов в пятно малых размеров на противоположно расположенный анод, который работает также как мишень. В моделях, имеющих сетку, именно сетка управляет траекторией пучка электронов и фокусировкой его.

Прохождение электронного луча от катода к аноду влияет на объемный электронный заряд, который становится заметным в традиционных рентгеновских аппаратах при токах больше 1 А. В таких традиционных аппаратах луч фокусируется на аноде в пятно диаметром в пределах от 0,3 до 2,5 миллиметров (мм). Во многих приложениях большая часть энергии электронного луча преобразуется в тепло на аноде. Для отвода такого тепла в медицинских источниках рентгеновского излучения высокой мощности часто используется охлаждающая жидкость и вращающийся с высокой скоростью анод. Таким образом, устанавливается повышенный эффективный размер области мишени и обеспечивается малый размер Фокального пятна при минимизации эффектов локального разогрева. Для достижения хорошей теплопроводности и эффективного рассеяния тепла анод обычно изготавливают из меди. Кроме того, область анода, на которую падает электронный луч, необходимо выполнять из материала с высоким атомным номером для обеспечения эффективной генерации рентгеновского излучения. Для выполнения требований по теплопроводности, эффективному рассеиванию тепла и эффективной генерации рентгеновского излучения в вольфрамовый сплав обычно добавляют мель.

В рабочем режиме общее время экспозиции рентгеновского источника прямо пропорционально интегралу по времени от интенсивности электронного луча. В течение относительно большого времени экспозиции (т.е. в пределах от 1 до 3 секунд) температура анода может значительно повышаться, приводя его к яркому свечению, связанному с локальными поверхностными проплавлениями и точечной коррозией, которые снижают мощность выходного излучения. Однако тепловое испарение спирального прямоканального катода трубки наиболее часто приводит к неисправности традиционных трубок.

Эффективность рентгеновского излучения зависит не только от тока электронного пучка, но и от ускоряющего напряжения. Ниже уровня напряжения 60 кВ только несколько десятых процента кинетической энергии электрона преобразуется в рентгеновское излучение, тогда как при напряжении 20 MB эффективность преобразования увеличивается до 70%. В спектре рентгеновского излучения содержится ряд дискретных энергетических переходов между граничными электронными энергетическими уровнями элемента мишени. В спектре также присутствует энергетический континуум рентгеновского излучения, известный как тормозное излучение, которое вызывается ускорением потока электронов при их проходе вблизи от ядер мишени. Максимальная энергия рентгеновского излучения не может превышать максимального значения энергии электрона в пучке. Кроме того, максимум кривой эмиссии тормозного излучения приходится примерно на одну третью часть от энергии электрона.

Увеличение тока электронов приводит к прямо пропорциональному увеличению эмиссии рентгеновского излучения при всех энергиях. Тем не менее, изменение ускоряющего напряжения приводит к общему изменению интенсивности выходного рентгеновского излучения, приблизительно равной квадрату напряжения с соответствующим сдвигом в максимуме энергии фотонов рентгеновского излучения. Эффективность образования тормозного излучения повышается с увеличением атомного номера элемента мишени. Пик выходной интенсивности в кривой тормозного излучения и характерные спектральные линии сдвигаются в область более высоких энергий по мере того, как увеличивается атомный номер мишени. Хотя вольфрам (z=74) представляет собой наиболее часто используемый материал мишени в современных трубках, золото (z=79) и молибден (z=42) используется в некоторых трубках специального назначения.

Рентгеновское взаимодействие происходит различными способами. Для биологических образцов наиболее важны следующие два типа взаимодействия: комптоновское рассеяние рентгеновского излучения с ослаблением энергии внешних электронных оболочек; и фотоионизационное взаимодействие с внутренней оболочкой электронов. В этих процессах вероятность атомной ионизации уменьшается с увеличением энергии фотона как в мягкой ткани, так и в кости. Для фотоэлектрического эффекта это соотношение следует из закона 1/3 для электрона.

Недостатком современных рентгеновских устройств, используемых для терапии, является высокое напряжение, которое требуется при облучении мягкой ткани внутри или под костью. Примером может служить облучение рентгеновским излучением областей мозга человека, закрытых костью. Для проникновения излучения в кость требуется высокая энергия рентгеновского пучка, при которой часто повреждается кожа и ткани мозга. Другим примером в радиационной терапии может служить облучение рентгеновским излучением мягкой ткани, расположенной внутри полости тела, которое находится в другой мягкой ткани или во внутренней структуре, содержащей кальций. Настоящие высоковольтные аппараты ограничены по своей способности в таких областях.

Другой недостаток современных рентгеновских источников с высоковольтным выходным напряжением заключается в повреждении, вызываемом в кожном покрове, при воздействии на орган или ткань человека. Поэтому высоковольтные устройства современных систем часто вызывают значительные повреждения не только в области мишени, но также во всех окружающих участках ткани и кожном покрове, особенно при использовании для лечения опухоли человека. Однако, поскольку в настоящих устройствах используется рентгеновское излучение в областях мишени, расположенных внутри пациента, от источника, расположенного во внешней области мишени, такое случайное повреждение ткани практически невозможно.

Лечение опухолей мозга требует точных технических приемов для осуществления специфического разрушения ткани, особенно как в ткани мозга, в которой отсутствует какая-либо реальная способность к регенерации. При использовании традиционных рентгеновских устройств при лечении опухоли мозга часто отсутствует прецизионное объемное облучение, что приводит к повреждению не раковой ткани мозга и связанных железистых структур.

Альтернативная форма лечения опухолей, называемая брахитерапией, включает имплантацию заключенных в капсулы радиоизотопов в опухоль, которую необходимо лечить, или рядом с ней. Хотя такое использование радиоизотопов может быть эффективным при лечении определенных типов опухолей, введение изотопов требует процедуры вторжения в организм, которая имеет возможные побочные эффекты, в виде возможной инфекции. Более того, в некоторых применениях может образоваться опухоль мозга вследствие неуправляемого облучения изотопами. Кроме того, в этом случае нельзя обеспечить требуемое управление временем облучения или необходимое значение интенсивности излучения. Обслуживание и размещение таких радиоизотопов имеет определенный риск как для обслуживающего персонала, так и для окружающей среды.

Методика вторжения в мозг человека требует точного контроля дозы облучения посредством выбора к концентрации используемых изотопов. Внутричерепное облучение приводит к значительному риску, также известному в технике.

С точки зрения выше указанных требований и ограничений для использования современных аппаратов рентгеновского излучения в терапевтических, диагностических, паллиативных или анализируемых средах существует необходимость в создании относительно небольшого, простого в обращении, управляемого, маломощного, рентгеновского устройства, в котором источник рентгеновского излучения можно устанавливать в непосредственной близости от среды, которая будет облучаться.

Такое устройство, работающее при малых энергиях и мощностях, будет пригодным для различных применений, описанных здесь.

Таким образом, задача настоящего изобретения - обеспечить простое в обращении и маломощное рентгеновское устройство.

Другая задача изобретения - обеспечить относительно небольшое, маломощное рентгеновское устройство, имеющее управляемый или программируемый источник питания.

Другая задача изобретения - обеспечить относительно небольшое, маломощное рентгеновское устройство, которое имплантируется в пациента для прямого облучения требуемой области ткани рентгеновским излучением.

Другая задача изобретения - обеспечить маломощное рентгеновское устройство для облучения объема с мишенью для установления профиля поглощения, определяемого посредством заданного контура изодозы для того, чтобы уменьшить повреждение ткани, расположенной снаружи требуемой области облучения.

Еще одна задача изобретения - обеспечить относительно небольшое, устанавливаемое на поверхности, маломощное рентгеновское устройство для воздействия на требуемую область поверхности рентгеновским излучением.

Еще одна задача изобретения - обеспечить относительно небольшое, маломощное рентгеновское устройство, которое вводится в пациента для непосредственного облучения специальных областей рентгеновским излучением.

Еще одна задача изобретения - обеспечить относительно небольшое, маломощное рентгеновское устройство для использования с соответствующим узлом Фрейма для управляемого позиционирования рентгеновского источника, расположенного рядом с опухолью пациента или внутри него для того, чтобы облучить и, следовательно, лечить эту опухоль.

Еще одна задача изобретения - обеспечить небольшое, маломощное рентгеновское устройство, которое может проходить через существующие, принимающие неправильные формы проходы.

Еще одна задача изобретения - обеспечить небольшое, маломощное рентгеновское устройство, которое включает улучшенный механизм для транспортировки электронного луча на элемент мишени.

Краткое содержание изобретения Вкратце, изобретение представляет собой простое в обращении устройство, имеющее малую мощность, электронный луч (e-луч), возбуждаемый источником рентгеновского излучения, с предварительно заданными или регулируемыми длительностью излучения, действующей энергией и интенсивностью. Для использования в медицине устройство (или зонд) может быть целиком или с перемещением введен, имплантирован в требуемый участок тела пациента или установлен на его поверхности для облучения области тела рентгеновским излучением. Кроме того, устройство можно собрать вместе с изменяемым по толщине рентгеновским экраном для вывода излучения и последовательного поглащения в нем предварительно выбранным уровнем мощности, который определяется путем установления контуров изодозы, так чтобы уменьшить эффекты рентгеновского излучения вне требуемой области облучения. Устройство можно собрать в комбинации с соответствующим кадром, например, стереотактическим кадром, и подсоединить и устройству связи, которое используется при лечении опухолей мозга. Устройство также пригодно для облучения других опухолей типа тех, которые можно обнаружить в груди или печени или в других местах; также устройство можно использовать для лечения раковых клеток на поверхности полостей тела типа мочевого пузыря.

Устройство работает при относительно низком напряжении, например, в диапазоне приблизительно от 10 кВ до 90 кВ, и при малом токе, например, в диапазоне приблизительно от 1 нА до 100 мкА. Для того, чтобы получить требуемую диаграмму направленности излучения над требуемой областью, при минимальном облучении других областей рентгеновское излучение выходит из условного или действующего "точечного" источника, размещенного внутри или рядом с требуемой областью, которая будет облучаться. Предпочтительно, точечный источник используется вместе с маской или экраном для управления конфигурацией излученного рентгеновского пучка. В некоторых применениях какую-либо часть требуемой области облучают с низкой скоростью дозы рентгеновского излучения, или постоянно, или периодически сверх нормированных периодов времени. При использовании с соответствующим кадром для лечения опухоли мозга обычно предпочтительна высокая скорость дозы для одной дозы облучения. При использовании "повторяющегося локализатора" единственную дозу можно перемещать, если требуется, посредством циклов с высокой скоростью доз, т.е. фракционированное лечение.

Устройство включает контролируемый или программируемый источник питания, размещенный снаружи требуемой области, которая будет облучаться для предоставления возможных изменений напряжения, тока и временного интервала электронного луча. Электронный луч управляется, проходя вдоль требуемой оси луча и будет падать на мишень, которая предпочтительно размещена в теле пациента, хотя для облучения поверхности тела, оси луча и мишень находятся вне тела. Ось может быть прямой или кривой. Состав и/или геометрия мишени или рентгеновское излучение, материал выбираются для обеспечения требуемой картины рентгеновского излучения. Экранирование на мишени или вокруг мишени, кроме того, дает возможность управления энергией или пространственным профилем рентгеновского излучения в строгом соответствии с требуемым распределением излучения через требуемую область. Источник рентгеновского излучения со стабильными и воспроизводимыми характеристиками можно создать при помощи электронного пятна большего или меньшего, чем мишень, хотя устройство формирования приводит к неэффективному использованию энергии электронов и в конечном счете может потерять сферическую изотропность вынужденного излучения.

Настоящее изобретение в дальнейшем обеспечивает способ облучения злокачественных клеток, типа обнаруженных в опухолях, in vivo, используя устройство, описанное выше. В общем, способ включает идентификацию и обнаружение злокачественных клеток устройством в общем пригодным в технике, таким как компьютерное томографическое (CT) сканирование или магниторезонансное изображение (MRI). Биопсию игольчатого типа опухолей можно представить для подтверждения диагноза. Затем выбирается область лечения и определяется доза излучения. Такое планирование лечения излучением включает определение размеров и конфигурации опухоли, определение точного их расположения в теле и идентификацию критической чувствительности к излучению биологических структур, окружающих опухоль, выбор правильности решения по распределению дозы излучения в опухоли и окружающей ткани и внутренней траектории в опухоли, имплантированных частях устройства. Для сферических опухолей планирование лечения можно представить вручную при использовании CT или MRI информации. Однако для более сложной геометрии близко расположенных критических структур или процедур с повышенной точностью предпочтительным является трехмерное компьютерное изображение. В этом случае опухоли и критические структуры, например, вручную или полуавтоматически сигментируются на последовательности цифрового CT сканирования, и предоставляется трехмерное изображение, которое позволяет просматривать опухоль в любом направлении. Для радиохирургических процедур разработаны различные системы программного обеспечения, наподобие тех, которые используют линак (Linac) или гамма-скальпель, и некоторые пригодны для коммерческого применения. Например, фирма Radionics Software Applications из Арлингтона, штат Массачусетс, предлагает для продажи программное обеспечение, которое позволяет получать изображение CRW и BRW-стереотактические кадры, совместно с графическим транспарантом черепа. Профили изодоз перекрываются на опухоли и другой ткани мозга. Подобное программное обеспечение можно использовать вместе с изобретением, описанным в патенте США N 955494, в котором получается изображение в соответствии со стереотактическим кадром, которое используется совместно с мишенью электронного луча, создающего рентгеновское излучение, которое введено в опухоль. Контуры изодозы вокруг мишени накладываются на опухоль и соседнюю ткань. Абсолютная дозировка излучения, получаемая вдоль каждого контура, определяется путем экспериментальной дозиметрии, представленной для калибровки зонда. В этих испытаниях доза измеряется на многократных участках вокруг мишени, погруженной в резервуар с водой. Мягкие ткани адекватно копируются водой. Доза измеряется посредством ионизационной камеры такой, как производится фирмой PTW из Фрейбурга, Германия, в которой ионы, генерирующие рентгеновское излучение, создают небольшой ток, который детектируется электрометром, таким как предлагает коммерчески пригодный вариант фирма Keithley Radiation Mesuvement из Кливленда, штат Огайо. С другой стороны, мишень можно погружать в моделирующий биологическую ткань иммитатор. Такие пластмассовые, из "твердой воды" иммитаторы находят коммерческое применение (фирма RMI, Мидлтон, WI) и моделируют различные ткани тела, мягкую ткань мозга. Термолюминесцентные детекторы (TLD), либо откалиброванную рентгеновскую чувствительную пленку (т. е. гафхромовую пленку фирмы Far West Technologies, Goleta, CA) можно установить в "твердой воде" для измерения непосредственно дозы облучения. Используя изображение и результаты дозиметрии из радиационного планирования лечением, источник электронного луча малой мощности и мишень, генерирующая рентгеновское излучение с выбираемой формой картины, и узел экрана, устанавливаются внутри или рядом с областью, содержащей клетки, которые будут облучаться, в общем опухолевые клетки, например, совместно со стереотактическим набором кадров, типа описанного в патенте США N 955494. Можно использовать и другие установленные наборы или способы.

В соответствии с настоящим изобретением геометрия узла мишени или экрана и материалы формируются и выбираются в соответствии с характеристиками требуемой области, которая будет облучаться. Предлагается программируемый источник питания, который можно использовать для изменения напряжения, тока и длительности излучения источника электронного луча для установления в соответствии с дозиметрической информацией требуемого электронного луча, который направляется на цель. В результате, рентгеновское излучение, испускаемое мишенью, как модифицированное узлом экрана, распространяется через требуемую область, которая будет облучаться для разрушения клеток в этой области. Используя способ сигнала с обратной отрицательной связью, в котором рентгеновское излучение, выходимое из мишени в обратном направлении вдоль траектории электронного луча, контролируется детектором, установленным позади электронного излучателя. Регулирование отклонения электронного луча можно производить в автоматическом режиме управления и при оптимальном положении области падения электронного луча или пятна на мишень.

В частности, лечение опухоли мозга можно осуществить при использовании устройства настоящего изобретения, содержащего сочетание рентгеновского источника малой мощности для генерации управляемой картины излучения с устройством для точного позиционирования источника рентгеновского излучения в мозге.

Источник рентгеновского излучения можно таким образом точно разместить в опухоли или рядом. Источник рентгеновского излучения вместе с мишенью и узлом экрана настоящего изобретения можно использовать в различных участках тела для выработки общепринятого типа полей облучения при лечении различных типов опухолей. Также, поля облучения можно создавать для каждой проходящей лечение опухоли. Однако геометрическое сходство для многих опухолей позволит проводить это лечение со стандартной установкой экранов.

Согласно дальнейшему воплощению изобретения зонд может быть в действительности гибким так, чтобы позволить ему проходить через существующие проходы или обходить препятствия. Согласно одному такому воплощению фотоэмиссионный элемент (т. е. фотокатод) размещен вдоль мишени элемента, в узле мишени. Кроме того, гибкий волоконно-оптический кабель, по которому проходит свет от источника лазерного излучения к фотокатоду, позволят сформировать основу для гибкого зонда.

Один вывод высоковольтного источника питания подсоединяется к фотокатоду через электрический провод, введенный в оптический волоконный кабель. Другой вывод источника питания подсоединяется к элементу мишени, через электрический провод, гибкий, снаружи оболочки, сформированной вокруг оптического волоконного кабеля. В этом случае устанавливается электрическое поле, которое действует для ускорения электронов, испускаемых из фотокатода вперед по направлению к элементу мишени. Как в предыдущих обсужденных вариантах воплощения, элемент мишени вырабатывает рентгеновское излучение в ответ на падающие электроны из фотокатода.

Краткое описание рисунков В дальнейшем изобретение поясняется конкретным вариантом его воплощения со ссылками на сопровождающие чертежи, на которых: фиг. 1 - общий вид источника рентгеновского излучения малой мощности, воплощающий настоящее изобретение; фиг. 2 - схема оболочки, приспособленной для использования с устройством, изображенным на фиг. 1; фиг. 3А и фиг. 3В - общий вид и вид в разрезе, соответственно, установленного на поверхности устройства, воплощающего настоящее изобретение; фиг. 4 - блок-схема воплощения, изображенного на фиг. 1; фиг. 5А и фиг. 5В - графическое представление спектра рентгеновского излучения вольфрамовой и молибденовой мишеней, соответственно; фиг. 6 - детальная блок-схема источника питания воплощения, изображенного на фиг. 1; фиг. 7 - детальная схема источника питания, изображенного на фиг. 6; фиг. 8 - общий вид узла управления лучом, воплощающего настоящее изобретение; фиг. 8А - вид в разрезе узла фиг. 8, показанного вдоль линии 8А; фиг. 9 - общий вид системы лечения опухоли мозга рентгеновским излучением, содержащего стереотактический кадр для позиционирования источника рентгеновского излучения; фиг. 10 - общий вид источника рентгеновского излучения и соединительный узел системы фиг. 9; фиг. 11 - схема источника питания высокого напряжения источника рентгеновского излучения, изображенного на фиг. 10; фиг. 12 - вид в поперечном сечении конца зонда, имеющего альтернативный узел мишени, который включает экран рентгеновского излучения и мишень рентгеновского излучения для получения стабильного и воспроизводимого источника рентгеновского излучения; фиг. 13 - вид фрагментов поперечного сечения одной геометрической формы рентгеновской мишени; фиг. 14 - блок-схема лазерной системы фрезерования для производства рентгеновских экранов с переменной толщиной; фиг. 15А и фиг. 15В - общие виды зонда и узла мишени для точной угловой регулировки рентгеновского экрана; фиг. 16 - вид в поперечном сечении источника рентгеновского излучения малой мощности, имеющего внутренний узел управления лучом, который включает контур обратной связи для установки электронного луча; фиг. 17 - вид в поперечном сечении источника рентгеновского излучения малой мощности, имеющего внешний узел управления лучом, который включает контур обратной связи для установки электронного луча; фиг. 18 - вид в поперечном сечении узла, изображенного на фиг. 17, показанного вдоль линий 16с; фиг. 19 - вид в поперечном сечении устройства механической установки зонда для облучения широкой области; фиг. 20A и 20B - виды в поперечном сечении гибкого зонда, который состоит из фотоэмиттера, размещенного внутри узла мишени; фиг. 21A-21F - изображают образцы различных контуров изодозы, которые можно получить при помощи изобретения; фиг. 22 - схематически изображает в разрезе наконечник зонда, имеющего экран, который установлен рядом с фотокатодом источника, изображенного на фиг. 20А.

Подобные перечисленные элементы на каждой фигуре представляют аналогичные или сходные элементы.

Описание предпочтительных вариантов Настоящее изобретение представляет собой относительно небольшое, возбуждаемое электронным лучом, рентгеновское устройство малой мощности. Устройство можно использовать для медицинских целей, например, при терапевтическом или паллиативном лечении облучением опухолей или для других целей.

В отношении медицинского использования устройство можно полностью имплантировать или частично вводить в заранее выбранную внутреннюю область пациента для проведения рентгеновского облучения рентгеновским излучением при выбираемых временах экспозиции. С другой стороны, устройство можно установить на поверхности пациента, внешней к области, которая будет облучаться. Также описан способ для лечения опухолей пациентов при использовании устройства изобретения.

В общем, устройство настоящего изобретения включает электронный луч (e-луч), возбуждаемый источником рентгеновского излучения, который работает при относительно малых напряжениях, т.е. в диапазоне приблизительно от 10 кВ до 90 кВ, и относительно малых токах электронного луча, т.е. в диапазоне приблизительно от 1 нА до 100 мкА. При этих рабочих напряжениях и токах, выходное рентгеновское излучение относительно мало, и устройство можно сделать относительно небольшим и приспособленным для имплантации в медицинских терапевтических применениях. С точки зрения низкого уровня выходного рентгеновского излучения адекватное проникновение в ткань и разрушительную дозу облучения можно достигнуть посредством размещения рентгеновского источника рядом с областью, которая будет облучаться, или внутри ее. Таким образом, рентгеновское излучение генерируется из хорошо определенного, маленького источника, размещенного внутри или рядом с областью, которая будет облучаться. В одном варианте воплощения малую дозу интенсивности рентгеновского излучения можно использовать для любой части опухоли, либо постоянно, либо периодически сверх установленных периодов времени, т.е. вплоть до одного месяца. При использовании стереотактического кадра для лечения опухолей мозга более высокую дозу интенсивности можно использовать для опухоли за более короткие периоды времени (т.е. порядка от 5 мин до 3 ч).

Настоящее изобретение обеспечивает промежуточную радиотерапию, подобную той, которая достигается посредством имплантированных капсул, иголок, трубок и нитей, содержащих натуральные радиоактивные изотопы, известные как брахитерапия. Однако программируемый источник питания можно включать в рентгеновский источник настоящего устройства для изменения энергии, интенсивности и длительности излучения. Это отличается от брахитерапии тем, что интенсивность и глубину проникновения рентгеновского излучения можно изменять без хирургического или без вторжения в организм перемещающихся изотопов. Более того, настоящее изобретение не ограничивается периодом полураспада характерных изотопов и отсутствует риск излучения при выключении.

Фиг. 1 показывает рентгеновское устройство 10, воплощающее настоящее изобретение. Устройство 10 включает корпус 12 и цилиндрический зонд 14, который проходит от кожуха 12 вдоль соответствующей оси 16. Кожух 12 закрывает источник 12А (источник питания высокого напряжения изображен в виде электрической схемы на фиг. 6 и 7). Зонд 14 представляет собой полую трубку, имеющую генератор электронного луча (катод) 22 рядом с источником 12А питания высокого напряжения. Катод 22 расположен в непосредственной близости с круглым фокусирующим электродом 23 обычно под одним потенциалом, как и катод 22. Круглый анод 24 установлен на расстоянии приблизительно 0,5 см или больше от круглого фокусирующего электрода 23. Полый трубчатый зонд 14 расположен вдоль такой же оси как катод, сетка и щель в аноде. Зонд 14 представляет собой одно целое с кожухом 12 и вытянут вперед по направлению к узлу 26 мишени. В различных вариантах воплощений часть зонда 14 можно выборочно экранировать для управления пространственным распределением рентгеновского излучения. Кроме того, зонд 14 можно снабдить магнитным экраном для предотвращения воздействия от внешних магнитных полей, вызывающих отклонения луча в сторону от мишени.

Генератор 22 электронного луча может включать термоэмиттер (управляемый ненагруженным источником питания низкого напряжения) или фотокатод (облучаемый светодиодом или лазером). Источник питания высокого напряжения устанавливает ускоряющую разность потенциалов между катодом и генератором 22 и заземленным анодом 24 так, что электронный луч устанавливается вдоль контрольной оси 16, через центральное отверстие анода и до узла 26 мишени, с областью между анодом 24 и узлом 26 мишени являясь в сущности свободным полем. Элементы генерации и ускорения луча приспособлены для установки тонкого (т. е. диаметром 1 мм или меньше) электронного луча внутри зонда 14 вдоль условной прямолинейной оси 16.

В предпочтительном варианте воплощения зонд 14 является полым цилиндром с откаченным воздухом, сделанным из берилиевой (Be) насадки и молибден-рениевого (Mo-Re), молибденового (Mo) или мю-мераллического корпуса и с удлиненным концом из нержавеющей стали. Цилиндр имеет длину 16 см с внутренним диаметром 2 мм и внешним диаметром 3 мм. Узел 26 мишени включает излучающий элемент, состоящий из небольшого берилиевого (Be) элемента 26A мишени, покрытого тонкой пленкой или слоем 26В из элемента с высоким Z, таким как вольфрам (W), уран (U) или золото (Au) на подвергаемой воздействию падающего электронного луча стороне. Например, с электронами, ускоренными до 30 кэВ, двухмикронная вольфрамовая пленка толщиной 2,2 микрона поглощает все падающие электроны, при передаче приблизительно 95%, от 30 кэВ, 88% от 20 кэВ, и 83% от 10 кэВ рентгеновского излучения, генерируемого в этом слое. В предпочтительном варианте воплощения берилиевый элемент 26А мишени имеет толщину 0,5 мм с результатом, что 95% этого рентгеновского излучения, генерируемого в перпендикулярном и прямом направлении к подложке, и прошедшего через вольфрамовую мишень, проходит далее через берилиевую подложку и наружу на отдаленный конец зонда 14. Хотя элемент 26A мишени, показанный на фиг. 3B, сделан в форме диска, можно использовать элементы с другими формами, такими, которые имеют полусферические или конические внешние поверхности.

В некоторые формы мишени, элемента 26A окна можно включить многослойную пленку (или сплав) 26B, в которой различные слои могут иметь разные характеристики эмиссии. Например, первый слой может иметь пик эмиссии (энергии) на относительно низкой энергии, и второй (основной) слой может иметь пик эмиссии (энергии) на относительно высокой энергии. С этой формой изобретения может использоваться низкая энергия электронного луча для генерации рентгеновского излучения для достижения первой характеристики излучения. В качестве примера электронный луч шириной 0,5 мм излучается на катоде и ускоряется до 30 кэВ анодом, с поперечными энергиями электронов 0,1 эВ, и попадает на узел 26 мишени, расположенный от анода на расстоянии шестнадцати сантиметров, с диаметром луча меньше 1 мм на элементе 26A мишени. Рентгеновское излучение генерируется в узле 26 мишени в соответствии с предварительно выбранным напряжением луча, током и составом элемента 26A мишени. Вырабатываемое таким образом рентгеновское излучение проходит через элемент 26A берилиевый мишени в зонде с минимальной потерей энергии. В качестве альтернативного варианта для берилия элемент 26A мишени можно сделать из углерода или другого подходящего материала, который позволяет рентгеновскому излучению проходить с минимальной потерей энергии. Оптимальным материалом для элемента 26A мишени является углерод в форме алмаза, так как этот материал обладает отличной теплопроводностью. Используя эти параметры, полученное в результате рентгеновское излучение имеет достаточную энергию для проникновения в мягкие ткани на глубину от сантиметра и более, точная глубина зависит от распределения энергии рентгеновского излучения.

Устройство, изображенное на фиг. 1, частично адаптировано для полной имплантации в пациента, где кожух 12 имеет биосовместимую внешнюю поверхность и закрывает как схему 12A источника питания высокого напряжения, предназначенного для установления управляющего напряжения для генератора 22 луча, так и объединенную батарею 12B для управления этой цепью 12A. В этом случае объединенный контроллер 12C управляет выходным напряжением в схеме 12A высоков