Устройство для распределения потока излучения

Реферат

 

Использование: для модификации изотропных потоков гамма-излучения. Сущность изобретения: устройство для распределения потока излучения размещают между источником излучения и облучаемым образцом для уменьшения числа фотонов, не проходящих под требуемым углом к плоскости поверхности образца и для сохранения числа тех фотонов, которые приближаются к плоскости поверхности мишени под нужными углами. В частности, устройство представляет собой сетку, определяющую количество излучения при проходе через ее ячейки. Способ модификации потока излучения заключается в изготовлении сетки, распределяющей поток излучения, и размещении ее между источником и мишенью. Для изготовления сетки определяют ряд геометрических и физических параметров, относящихся к сетке, источнику и мишени. При установке сетки осуществляют ряд последовательных операций, определяя структуру потока сначала для одной ячейки сетки, а затем и для сетки в целом. Технический результат заключается в равномерном облучении образца. 4 с. и 17 з.п.ф-лы, 19 ил.

Изобретение представляет собой устройство для модификации изотропных потоков гамма-излучения таким образом, чтобы дозы радиации, полученные облучаемым образцом, были равномерные. Точнее, настоящее изобретение представляет собой устройство, помещенное между источником излучения и облучаемым образцом, для уменьшения, (но не уничтожения) числа фотонов, не проходящих под или вблизи требуемых углов (например, прямых углов) к плоскости поверхности образца, без значительного уменьшения числа тех фотонов, которые приближаются к плоскости поверхности мишени под нужными углами (например, под прямыми углами).

Когда образцы облучаются гамма-излучением, чтобы получить полезный химический, физический, или биологический эффект, в результате возникает некоторое количество нежелательных неоднородностей. Эти неоднородности следуют из четырех основных факторов: 1. Геометрия источников излучения и образца и их геометрическое взаимное расположение.

2. Изотропная природа излучения, испускаемого источниками радиоактивных изотопов.

3. Коэффициенты ослабления массы облучаемых материалов.

4. Средние объемные плотности облучаемых веществ (включая удельный вес).

Проблему возможно лучше будет понять, объясняя ее как "поверхностный ожог". Поверхность образца, облучаемая чрезмерной дозой по сравнению с внутренней стороной образца, во многом схожа с тем, как жаркое, вращающееся на вертеле, может обгореть на поверхности, оставаясь при этом сырым внутри.

Когда образец облучается для достижения конкретной цели, необходимо убедиться, что все части образца получают хотя бы то количество радиации, которое необходимо для исполнения желаемого эффекта. Эта величина радиации обозначена как МИНИМАЛЬНАЯ ДОЗА (Дмин).

Однако в некоторых случаях слишком много радиации, полученной образцом, может повлечь нежелательный результат (повреждение образца). Или доза может превысить обязательный регулирующий порог действия и стать "законным пороком". Эта величина радиации названа МАКСИМАЛЬНОЙ ДОЗОЙ ИЗЛУЧЕНИЯ (Дмакс).

Очевидно, излучатели должны проектироваться так, чтобы доставить ко всем частям образца такую дозу радиации, которая находится в этих пределах (больше > Дмин, но меньше < Дмакс). К сожалению, чтобы достичь этой цели, прежде было бы необходимо пожертвовать эффективностью излучателя или эффективностью работы, или тем и другим. Есть два традиционных способа уменьшить неоднородность (уменьшить Дмаксмин), это: облучать более тонкие слои вещества или увеличить расстояние между источником излучения и образцом. Первый способ жертвует производительностью (увеличивая обработку материала образца), тогда как второй способ уменьшает коэффициент поглощения излучения (процентное отношение радиации, полезно поглощенной в образце, к полной величине радиации, излученной источником). Аналогия с мясом на вертеле все еще остается в силе; либо мясо надо нарезать на более тонкие куски и готовить отдельно, или отодвинуть его подальше от пламени и таким образом дольше готовить.

Характерная причина "поверхностного ожога" кроется в изотропной природе излучения радиоактивных изотопов и явления "обратного квадрата" в результате этого. Все излучение (фотоны) в электромагнитном спектре ведет себя подобным образом, включая видимый свет.

Гамма-кванты не могут преломляться, отражаться или фокусироваться так же эффективно, как фотоны света. Практически только около одного процента гамма-квантов может отражаться от поверхности, и не существует линзы, способной сфокусировать пучок гамма-излучения. Некоторые виды радиации, такие как бета-частицы от радиоактивных изотопов или пучки электронов можно формировать и фокусировать магнитами, но только гамма-лучи не могут подвергаться воздействию магнитных полей. Сверхсильные гравитационные поля, такие, как у тяжелых звезд и "черных дыр" в космосе, могут "изгибать" гамма-лучи (и световые волны), но не существует никакой практической технологии, способный приблизиться к этому феномену.

Однако гамма-излучение может поглощаться, и в большей или меньшей степени, всеми веществами. Вообще говоря, чем выше атомный номер элемента (Z), тем больше излучения он ослабит. Другими словами, чем выше плотность вещества, тем эффективнее оно будет ослаблять или поглощать гамма-излучение. Следовательно, свинец, обедненный уран и железо обычно используются в качестве ядерных экранирующих материалов. Если толщина экрана не ограничена, то могут использоваться материалы с меньшей плотностью и большей толщиной, такие как бетон или зола, которые дешевле, хотя и требуется больше такого материала. Из патента США N 4288697 известен коллиматор, передающий рентгеновское излучение и предназначенный для фокусирования потока излучения на одномерном электронном коллекторе. В коллиматоре использован точечный источник излучения. Слоистая структура коллиматора уменьшает количество поглощающего излучения материала и позволяет более точно управлять траекторией излучения. Регулирование потока излучения происходит за счет ослабления. Из патента США N 4288697 известен также способ изготовления коллиматора.

Недостатком известного устройства и способа является то, что в нем нельзя уменьшить число фотонов, которые не пролетают под нужным углом или под углом, близким к нужному, без значительного уменьшения числа фотонов, приближающихся или достигающих минимальной базовой точки в мишени.

Из патента США N 4651012 известна система коллимации фотонов для фокусирования, содержащая две пластины с отверстиями, и способ фокусирования изотропного излучения на плоской поверхности. Регулирование потока излучения происходит за счет его ослабления. Изображение в данном патенте получают на двухмерной поверхности.

Недостатки данного патента те же, что и в патенте N 4288697.

Настоящее изобретение обеспечивает устройство для распределения потока излучения и способ получения и применения этого устройства, которое производит видоизменение потока излучения, и которое создает отклонение по отношению к фотонам, приближающимся к поверхности мишени под более или менее подходящими углами (например, прямыми углами).

Соответственно, задача данного изобретения - обеспечить устройство для распределения потока излучения, чтобы уменьшить число фотонов, которые не пролетают под нужным углом, или под углом, близким к нужному (например, прямому углу), к передней поверхности облучаемой "мишени", без значительного уменьшения числа фотонов, приближающихся или достигающих минимальной базовой точки в мишени. По существу, цель этого изобретения - преобразовать обычный источник изотропного излучения в источник анизотропного излучения.

Поставленная задача решается тем, что в устройстве для распределения потока излучения, установленном в устройстве, содержащем источник излучения фотонов и облучаемую трехмерную мишень, и расположенном между источником и трехмерной мишенью, согласно изобретению источник излучения содержит двухмерную пластину источника изотропного излучения для передачи излучения широким лучом из двухмерной площади, занятой двухмерной пластиной источника изотропного излучения, к устройству для распределения потока излучения, уменьшающему число фотонов, испускаемых источником и пролетающих под углами, отличающимися от нужных углов, к трехмерной мишени, при этом устройство для распределения потока излучения содержит стенку, определяющую, по меньшей мере, один проход излучения для разрешения фотонам пролетать в основном линейно через него, причем стенка ослабляет фотоны, пролетающие от источника к трехмерной мишени под углами, отличными от нужных углов, благодаря чему трехмерный поток фотонов через трехмерную мишень распределяется по существу однородно.

В устройстве согласно изобретению источник излучения может содержать стационарную двухмерную пластину источника изотропного излучения.

В устройстве согласно изобретению стенка может содержать сетку, определяющую количество излучения при проходе через ячейки.

В устройстве согласно изобретению ячейки могут быть выстроены горизонтально бок о бок.

В устройстве согласно изобретению стенка может содержать криволинейные ограничительные пластинки ячеек сетки.

В устройстве согласно изобретению стенка может содержать плоские ограничительные пластинки ячеек сетки.

В устройстве согласно изобретению плоские ограничительные пластинки ячеек сетки могут определять ячейки с многоугольной конфигурацией поперечного сечения.

В устройстве согласно изобретению ячейки могут иметь прямоугольную поперечную конфигурацию.

В устройстве согласно изобретению ячейки могут иметь поперечную конфигурацию, содержащую, по меньшей мере, три стороны.

В устройстве согласно изобретению ячейки могут иметь поперечную конфигурацию в виде сот.

Поставленная задача решается также тем, что в способе модификации потока излучения с помощью сетки, распределяющей поток излучения, помещенной между источником излучения и мишенью образца и характеризующейся структурой потока излучения, согласно изобретению определяют ряд переменных для сетки, распределяющей поток излучения, включающий в себя, по меньшей мере, один горизонтальный ограничительный угол, вертикальный ограничительный угол, расстояние от источника излучения до передней стороны сетки, расстояние от передней стороны сетки до задней стороны сетки, расстояние от задней стороны ограничительной распределяющей сетки до передней стороны мишени образца, плотность материала сетки и мишени образца, толщину сетки, равную слою десятикратного ослабления, размеры образца мишени, высоту сетки ограничителя, вертикальную длину источника излучения и горизонтальную длину источника излучения, устанавливают высоту плоскости, устанавливают расстояние в точке мишени образца, устанавливают расстояние до точки мишени, параллельное передней поверхности образца, накапливают величины дозы в точке мишени, определяют, существует ли какое-либо еще расстояние до точек мишени, параллельное передней поверхности образца и, если да, то возвращают к шагу установки расстояния до точки мишени, параллельного к передней поверхности образца, в противном случае переходят к следующему шагу, определяют, существует ли еще какое-либо расстояние до точек мишени внутри образца и, если да, то возвращают к шагу установки расстояния до точки мишени внутри образца, в противном случае переходят к следующему шагу, сохраняют полученные данные плоскости, определяют, существуют ли какие-либо еще плоскости, и, если да, то возвращают к шагу, устанавливающему высоту плоскости, в противном случае модифицируют структуру потока излучения сетки, распределяющей поток излучения.

В способе модификации потока излучения согласно изобретению задают переменные с бесконечно малыми коэффициентами так, что есть проявление устранения каждого ограничителя сетки, распределяющей поток излучения, устанавливают точку высоты источника излучения, устанавливают расстояние, параллельное расстоянию до точки передней поверхности источника излучения, задают расположение ограничителя, определяют траектории излучения, которые пересекают положения ограничителя, и индицируют сообщение об ошибке или, если отсутствуют пересечения, переход к следующему ограничителю, определяют, существует ли какое-либо еще расстояние, параллельное до точек передней поверхности источника излучения, и, если да, то возвращают к шагу установки расстояния, параллельного расстоянию до точки передней поверхности источника, в противном случае переходят к следующему шагу, определяют, существуют ли еще какие-либо точки высоты источника излучения, и, если да, то возвращают к шагу установки точки высоты источника излучения, в противном случае переходят к следующему шагу, умножают накопленную дозу на коэффициент ослабления, и вырабатывают структуру потока, по меньшей мере, для одной ячейки.

Способ модификации потока излучения согласно изобретению устанавливают высоту плоскости с данными, по меньшей мере, одной упомянутой ячейки, считывают данные расстояния до точки ячейки, параллельного передней поверхности образца, считывают данные расстояния в точку ячейки передней поверхности образца, определяют, существуют ли еще какие-либо данные расстояния в точку ячейки передней поверхности образца, и если да, то возвращают к шагу считывания данных расстояния в точку ячейки передней поверхности образца, в противном случае переходят к следующему шагу, определяют, существует ли какое-либо еще расстояние до точки ячейки, параллельное передней поверхности образца и, если да, то возвращают к шагу считывания данных расстояния до точки ячейки, параллельного передней поверхности образца, в противном случае переходят к очередному шагу, выравнивают каждую точку ячейки и каждую точку мишени, и вырабатывают структуру полного потока на основании расположения каждой точки ячейки.

В способе согласно изобретению устанавливают точку высоты источника излучения, устанавливают расстояние, параллельное расстоянию до точки передней поверхности источника излучения, задают расположение ограничителя на сетке, распределяющей поток излучения, определяют траектории излучения, которые пересекают положения ограничителя, и умножают коэффициент ослабления на множитель ослабления траекторий через ограничитель или, если пересечения отсутствуют, переходят к следующему ограничителю, определяют, существует ли еще расстояние, параллельное расстоянию до точки передней стороны источника излучения, и если да, то возвращают к шагу установки расстояния, параллельного расстоянию до точки передней поверхности источника излучения, в противном случае переходят к следующему шагу, умножают накопленную дозу на коэффициент ослабления, и вырабатывают структуру потока, по меньшей мере, для одной ячейки сетки, распределяющей поток излучения.

В способе модификации потока излучения согласно изобретению устанавливают высоту плоскости с данными, по меньшей мере, одной ячейки с использованием сетки, распределяющей поток излучения, считывают данные расстояния до точки ячейки, параллельного к передней поверхности образца, считывают данные расстояния в точке ячейки передней поверхности образца, определяют, существуют ли еще какие-либо данные расстояния в точке ячейки передней поверхности образца, и, если да, то возвращают к шагу считывания данных расстояния в точке ячейки передней поверхности образца, в противном случае переходят к следующему шагу, определяют, существуют ли еще какие-либо данные расстояния до точки ячейки, параллельного к передней поверхности образца, и если да, то возвращают к шагу считывания данных расстояния до точки ячейки, параллельного передней поверхности образца, в противном случае переходят к следующему шагу, выравнивают каждую из точек ячейки и каждую из точек мишени и вырабатывают структуру полного потока на основании расположения точек каждой из ячеек в горизонтальном направлении.

В способе модификации потока излучения согласно изобретению устанавливают плоскость с данными ячейки из выборок, основанных на высоте ограничителя, определяют, существуют ли еще какие-либо плоскости с данными ячейки, и если да, то возвращают к шагу установки плоскости с данными ячейки, в противном случае переходят к следующему шагу, вырабатывают структуру полного потока для источника излучения.

В способе модификации потока излучения согласно изобретению устанавливают плоскость с данными ячейки из выборок, основанных на высоте ограничителя, включая любое наложение, определяют, существуют ли еще какие-либо плоскости с данными ячейки, и, если да, то возвращают к шагу установки плоскости с данными ячейки, в противном случае переходят к следующему шагу, и вырабатывают структуру полного потока для источника излучения вертикальным суммированием плоскостей.

Поставленная задача решается также тем, что в способе изготовления сетки, распределяющей поток излучения, имеющей вертикальные и горизонтальные части, согласно изобретению определяют расстояние между, по меньшей мере, двумя вертикальными частями сетки, распределяющей поток излучения, определяют толщину одной из вертикальных частей сетки, распределяющей поток излучения, определяют толщину сетки, распределяющей поток излучения, выбирают материал для изготовления сетки, распределяющей поток излучения, рассчитывают расстояние оси симметрии, от оси симметрии пластины источника до оси симметрии сетки, распределяющей поток излучения, рассчитывают расстояние передней поверхности от оси симметрии сетки до передней поверхности образца мишени, выбранного для облучения, выбирают расстояние образца от оси симметрии пластины источника до оси симметрии образца мишени, и изготавливают сетку, распределяющую поток излучения, имеющую вертикальные и горизонтальные структуры с переменным расположением, толщиной элементов, и углами сетки для распределения потока излучения, затем рассчитывают расстояния по формуле обосновывают ослабление ограничительной пластины при толщине, равной слою десятикратного ослабления, где материал ограничителя = свинец, TVL (слой десятикратного ослабления для свинца для 0,662 МэВ - мегаэлектронвольт) - 0,84 дюйма (2.134 см), расстояние = длина пролета фотона через материал ограничителя, так, что ослабление = 10-(расстояние/0.84), и обосновывают ослабление образца на коэффициентах ослабления и нарастания, где коэффициент ослабления = 0.857 г/см3 = 11.7 (г/см3)-1 средняя объемная плотность образца = г/см3, преобразование дюймов в сантиметры = 2.54 см/дюйм, так что ослабление =0,368[(расстояние)(2,54) (плотность/11,7)], нарастание = 4ехр[(0.302)(расстояние)(2.54) (плотность/11.7)].

В способе изготовления сетки, распределяющей поток излучения, согласно изобретению выбирают материал, по меньшей мере, один из следующих: свинец, обедненный уран, вольфрам.

Поставленная задача решается тем, что в способе изготовления сетки, распределяющей поток излучения, имеющей вертикальные и горизонтальные части, согласно изобретению определяют расстояние между, по меньшей мере, двумя вертикальными частями сетки, распределяющей поток излученил, определяют толщину одной из вертикальных частей сетки, распределяющей поток излучения, определяют толщину сетки, распределяющей поток излучения, выбирают материал для изготовления сетки, распределяющей поток излучения, рассчитывают расстояние оси симметрии от оси симметрии пластины источника до оси симметрии сетки, распределяющей поток излучения, рассчитывают расстояние передней поверхности от оси симметрии сетки до передней поверхности образца мишени, выбранного для облучения, выбирают расстояние образца от оси симметрии пластины источника до оси симметрии образца мишени, и изготавливают сетку, распределяющую поток излучения, имеющую вертикальные и горизонтальные структуры с переменными расположением, толщиной элементов, и углами сетки для распределения потока излучения, затем задают расстояние между пластинами как расстояние = ширина/[tan (/57,3)), где ширина = расстояние между передней поверхностью и задней поверхностью сетки (в дюймах), = ограничительный угол (в градусах), полное ослабление = (ослабление) (нарастание), характерная константа гамма-лучей для цезия - 137 = 0.32 рад-м2/Кюри-часы, и где рад - это единица дозы, поглощенной в образце (соответствует 100 эрг/г), и кюри - это мера величины радиоактивности (соответствует 3,71010 распадов/сек).

В способе изготовления сетки, распределяющей поток излучения, согласно изобретению выбирают материал, по меньшей мере, один из следующих свинец, обедненный уран, вольфрам.

В дальнейшем изобретение поясняется описанием конкретных вариантов его воплощения со ссылками на сопроводительные чертежи, на которых показано фиг. 1 изображает типичную модель сетки ячеек согласно настоящему изобретению, фиг. 2 изображает влияние модели сетки ячеек, изображенной на фиг. 1, на траектории фотонов согласно настоящему изобретению, фиг. 3а и 3б изображают переменные, принятые во внимание для расчета модели сетки ячеек согласно настоящему изобретению, фиг. 4 изображает типичные варианты воплощения моделей сетки ячеек, разработанные согласно настоящему изобретению, фиг. 5 и 6 изображают блок-схемы программы для создания отображений полного потока для определенных ячеек согласно настоящему изобретению; фиг. 7 и 8 изображают блок-схемы расчетов накопления эффектов для каждой ячейки, согласно настоящему изобретению, фиг. 9 и 10 изображают блок-схемы расчетов аккумуляции (накопления) для каждого горизонтального линейного источника, согласно настоящему изобретению, фиг. 11 и 12 изображают блок-схемы программы сопоставления сред трехмерной мишени, согласно настоящему изобретению, фиг. 13 AU-KU и АС-КС изображают поток от единичной ячейки через гипотетические (воображаемые) плоскости, как будто они удаляются вертикально от плоскости, на которой расположен точечный источник согласно настоящему изобретению, фиг. 14 AU-KU и АС-КС изображают распределение потока от горизонтального линейного источника согласно настоящему изобретению, фиг. 15 AU-FU и AC-FC изображают распределение потока от горизонтального линейного источника согласно настоящему изобретению, фиг. 16 AU-FU и AC-FC изображают структуру полного потока образца согласно настоящему изобретению, фиг. 17 AU-FU и AC-FC изображают структуру полного потока образца в формате контурной графики согласно настоящему изобретению.

Настоящее изобретение, согласно фиг. 1 и 2, направлено на устройство для распределения потока излучения с помощью распределяющей поток излучения сетки, изображенной в общих чертах позицией 10, и расположенной между пластиной источника излучения 12 и мишенью 14 облучаемого образца. Сетка 10 типовой прямоугольной геометрической конфигурации, сделана из вещества с очень высокой плотностью, такого, как свинец, обедненный уран или вольфрам. Сетка 10 формируется в виде множества элементов, образующих стенки, или ограничительные пластинки 18, 19, определяющие ячейки, формирующие траекторию пробега фотона. В данном варианте выполнения ограничительные пластины 18, 19 расположены под нужными углами (под прямыми углами), которые в типично используемом вертикальном положении, в результате оказываются горизонтальными частями 18 и вертикальными частями 19.

Как показано на фиг. 2, траектории гамма-квантов 20, 22, проходящие через сетку, стоящую на их пути к образцу, будут либо проходить прямо, не подвергаясь воздействию, если они проходят через пространство или просвет ячейки, либо будут частично или полностью ослабляться одной или несколькими ограничительными пластинками 18, 19 в сетке 10, как показано позицией 22.

Действие сетки 10, распределяющей поток излучения, согласно настоящему изобретению состоит в том, чтобы уменьшить число фотонов, которые не проходят под нужным углом, или углом, близким к нужному (например, прямым углом), к лицевой плоскости мишени образца, без значительного уменьшения фотонов, движущихся к образцу мишени под нужными углами (например, прямыми углами). Высокие поверхностные дозы, которые обычно применяются на практике в излучателях уровня техники, представляют собой результат излучения фотонов из пластины источника 12, которые достигают мишени образца 14 под экстремальным углом, что схематически обозначено позицией 22. Эти "экстремально-угловые" фотоны значительно ослабляются сеткой 10, как показано на фиг.

Согласно фиг. 3а и 3б, имеется семь переменных, которые влияют на эффективность сетки 10. Первая представляет собой расстояние "А" между вертикальными частями 19. Следующая, это толщина "В" вертикальных частей 19. Третья рассматриваемая переменная представляет собой толщину "С" сетки 10. Четвертая переменная это материал "D", из которого изготовлена сетка 10. Следующая переменная представляет собой расстояние "E" от пластины источника 12, точнее от его оси симметрии 24, до оси симметрии 26 сетки. Шестая переменная представляет собой расстояние "F" от оси симметрии 26 сетки до лицевой стороны 28 мишени образца 14. Последняя, или седьмая рассматриваемая переменная представляет собой расстояние "G" от оси симметрии 24 источника излучения до оси симметрии 29 образца.

Был проведен анализ геометрии сетки 10, изображенной на фиг. 1, которая является прямолинейной. Однако можно использовать любое количество других геометрий сетки, или их комбинаций. Другие варианты воплощения сеток согласно настоящему изобретению изображены на фиг. 4, на которой сетки имеют конфигурации ячеек, которые являются: треугольными 30, гексагональными (шестиграннными) 32 или круглыми 34. Эти геометрические структуры могут устанавливаться вертикально или горизонтально, и в некоторых случаях, может быть, необходимо использовать неоднородные структуры, до тех пор, пока используемые переменные: пространственное расположение, толщина элемента, и углы сетки в достаточной мере распределяют поток излучения.

Управляя этими семью переменными, можно проектировать сетки специально для излучателей с различными конфигурациями источника, и для различных плотностей образца для одного излучателя. Сетка 10 может быть подогнана к существующим излучателям или включена в новые проекты излучателей.

Соответственно, в предпочтительной структурной конфигурации излучателя, использующей сетку 10, корпус из четырех сеток окружал бы мишень образца 14 сетками 10, расположенными между мишенью образца 14 и пластиной источника 12, чтобы видоизменять и/или управлять распределением потока гамма-квантов по всей мишени образца 14. Чтобы определить параметры геометрической конфигурации ячейки сетки 10, и, таким образом, характеристику видоизменения потока сеткой 10 или сетками, могут быть введены в действие элементы пробного и ошибочного расположения ячейки сетки, определяющие член пропускания излучения, и, таким образом, исследуемая сетка может тестироваться, чтобы определить распределение излучения в мишени образца.

В предпочтительном варианте исполнения способа строится математическая модель, чтобы оптимизировать структуру ячейки сетки 10.

Как говорилось со ссылкой на фиг. 2, сетка 10 распределяет траектории 20, 22 гамма-квантов, чтобы позволить максимуму полезной энергии поглощаться веществом мишени 14, при этом ограничивая ненужные фотоны. После появления в материале источника, такого как цезий-137, который является радиоактивным изотопом цезия, фотоны пролетают мимо, или через сетку 10 внутрь образца 14, где их энергия преобразуется в низкотемпературный нагрев. Из этого можно сделать вывод, что можно использовать любой изотоп, лишь бы были достигнуты желаемые результаты.

Математическая модель Метод математического моделирования принимает в расчет геометрию расположения пластины источника 12, взаимодействие фотонов с сеткой 10 и поглощение фотонов в веществе мишени 14. Из-за ряда характерных встречающихся переменных моделирование базируется на расчетах по точкам Кернеля, которые условно "разбивают" и источник 12 и мишень 14 на особенные точки и рассчитывается фактическое взаимодействие траекторий фотона между ними. Чем больше точек выбрано, тем больше точность. Конечно, это ограничивается только полным временем компьютерной обработки, доступным по экономическим соображениям.

Настоящее изобретение выборочно ограничивает траекторию 22 некоторых фотонов. Модель "разбивает" источник на столько точек Кернеля, насколько это допустимо для микро-геометрии. Чтобы выполнить эту задачу, изобретен метод "ячейки". Ячейка 16 или пластина мини-источника 16 делит этот источник на двенадцать вертикальных и двенадцать горизонтальных компонентов для расчета по точкам Кернеля. Это включает источник 12, окруженный четырьмя слоями ограничительных пластин 18 и 19, или решетку 10, излучающую по всем направлениям от пластины источника 12. Пластина источника 12 задана как двухмерная решетка капсул с цезием-137 из нержавеющей стали. В варианте выполнения изобретения, которое раскрывается в дальнейшем, пластина источника 12 разбита на конечное число гипотетических (воображаемых) ячеек 16 как по горизонтали 18, так и по вертикали 19. Это формирует основу для множества всеобщих конфигураций пластины источника. Модель делит источник 12 на конечное число "ячеек", которые охватывают специфические типы геометрии для данной конфигурации сетки. С помощью метода точек Кернеля рассчитывается распределение полного потока для удельной плотности материала мишени, продлевая одну сторону теоретического источника через теоретический воздушный зазор. Воздушный зазор - это расстояние между пластиной источника 12 и поверхностью или лицевой стороной 28 мишени образца 14. Ряд точек мишени и их расположение выбраны на двойной ширине и высоте теоретически максимального размера образца по осям Y и Z от центральной точки материала источника. Толщина мишени (ось X) определена максимальным размером толщины образца. После того, как все точки рассчитаны для характерной ячейки 16, ячейки могут быть геометрически выстроены для теоретической пластины или пластин источника. Используя ячейки 16 в качестве точек источника, величины дозы в точках мишени накапливаются суммированием величин дозы в различных точках мишени для каждого положения соответствующей ячейки 16.

Ориентация модели Модель ячейки основана на относительной декартовой системе координат. Начало координат представляет собой теоретическую точку, в центре которой возникает изотропное излучение (точечный источник). Все размерные позиции основаны на координатах, отсчитываемых от этой точки. Настоящая модель использует дюймы как основную единицу расстояния. Ограничительные пластины 18, 19 сетки 10 задаются координатой ближайшей точки и координатой самой далекой точки каждой горизонтальной и вертикальной пластины. Горизонтальная ограничительная пластина 18 определена как содержащая плоские пластины из материала с высоким Z (атомным номером), которые ориентированы горизонтально, чтобы ограничить поток фотонов по вертикали. Вертикальная ограничительная пластина 19 определена как содержащая плоские пластины из материала с высоким Z (атомным номером), которые ориентированы вертикально, чтобы ограничить поток фотонов по горизонтали. Исходя из рассматриваемых здесь углов, выбрано только восемь ближайших ограничительных пластин (и горизонтальных, и вертикальных). Последующие пластины не внесут значительный вклад в модель, и поэтому предполагается, что после четырех сеток в любом направлении (8 пластин вертикально и 8 пластин горизонтально) поток фотонов полностью ослабится.

Ослабление есть показатель количества энергии фотонов, поглощенной либо ограничительными пластинами 16, либо материалом образца 14. С другой стороны, нарастание является показателем, противоположным ослаблению, появляющееся за счет вторичных фотонов, возникающих при начальном ослаблении в материале ограничительных пластин 16, или в материале образца мишени 14. По существу, когда фотон замедляется, он иногда производит "переродившиеся" фотоны, которые продолжат путь к образцу мишени 14 или к точке мишени, и поэтому внесут вклад в суммарную дозу в этой точке. Точки мишени также определены относительно начала координат вышеупомянутой декартовой системы координат для каждого расчета ячейки.

Ячейка 16 рассчитывается и полностью отображается только один раз, потом эти данные вносятся в другие программы, которые используют относительную декартову систему, основанную на единицах ячейки как для горизонтального, так и вертикального задания точечного источника (Y и Z оси). Например, если ячейка 16 имеет 2 дюйма (5.08 см) ширины и 4 дюйма (10.16 см) высоты и полный размер пластины источника 12 составляет 40х40 дюйм2, то пластину источника 12 можно определить как 10 ячеек высотой при 20 ячейках шириной. Мишень задана в дюймах для ее X и Y осей. Ее Z ось измерена в дюймах. Однако интервал между Z плоскостями выбран так, что он основан на вертикальном размере ячейки.

Решение модели Каждая ячейка источника разбита на 12 точек по горизонтали и 12 точек по вертикали (всего 144 точки). Каждая мишень 14 первоначально разбита на маленькие участки размером в 1 дюйм (2,54 см) вдоль ее оси Y (перпендикулярно к потоку фотонов, направленному из пластины источника 12 внутрь образца). Ось X поделена на маленькие участки по 4 дюйма (10,6 см) (расстояние внутрь образца). Если образец имеет размер 40х40 дюймов2 (101,6х101,6 см2), то будет 41 точка на оси Y и 11 точек на оси X для каждой плоскости мишени на оси Z. Ось Z разбита на маленькие участки, равные одному вертикальному размеру ячейки. Поэтому, если образец был высотой 40 дюймов (101.6 см), и ячейка имела вертикальный размер 5 дюймов (12.7 см), тогда на оси Z будет 9 плоскостей с координатами x и y.

Каждый раз, когда пластина источника 12 делится на "кернели" или ячейки, полная накопленная доза для соответствующих точек мишени должна быть поделена на такое же число так, чтобы аккумуляция не принимала в расчет одни и те же фотоны сверх того числа раз, на которое делится источник.

Расчеты модели Расчеты расстояний основаны на: Ослабление ограничительных пластин основано на толщине, равной слою десятикратного ослабления следующим образом: допустим, что: материал ограничителя = свинец, TVL (слой десятикратного ослабления свинца для 0.662 МэВ - мегаэлектронвольт) = 0,84 дюйма (2.134 см).

расстояние = длина пролета фотона через материал ограничителя, тогда: ослабление = 10-(расстояние/0,84) Ослабление образца основано на коэффициентах ослабления и нарастания следующим образом: допустим, что: коэффициент ослабления = 0,857 г/см3 = 11.7(г/см3)-1, средняя объемная плотность образца = г/см3, преобразование дюймов в сантиметры = 2.54 см/дюйм, тогда: ослабление = 0.368[(расстояние)(2,54)(плотность/11,7)] нарастание = 4 ехр [(0.302) (расстояние) (2.54) (плотность) 11.7)] полное ослабление = (ослабление) (нарастание).

Характерная константа гамма-лучей для цезия-137 равна 0,32 рад - м2/Кюри-часы, где рад - это единица дозы, поглощенной образцом (соответствует 100 эрг/г), и кюри - это мера величины радиоактивности (соответствует 3.7 1010 распадов/сек).

Модель определения ослабления После того, как определены специальная координата точки источника и специальная координата точки мишени, рассчитывается длина пробега через воздух и через материал образца, чтобы определить распределение дозы к точке мишени, основанное на ослаблении образца, так же как обратный квадрат расстояния. Модель определяет: произошло или нет столкновение фотона с ограничительной пластиной. Если да, ослабление этой пластины включается в уравнение.

Ограничительные пластины 18, 19 расположены