Оптоэлектронный узел

Реферат

 

Изобретение относится к оптоэлектронным жидкокристаллическим процессорным устройствам для обработки оптических информационных потоков. Оптоэлектронный узел, выполненный в виде объемного оптоэлектронного модуля, содержит основание с управляющим модулем. Внутри основания размещены соединенные друг с другом световоды и V-образные разветвители, полости которых заполнены жидкокристаллическим или оптоволоконным материалом. Входы и выходы оптоэлектронного узла выполнены в виде окон основания. Световоды и разветвители соединены друг с другом в виде зигзагообразного разветвителя. В окнах размещены приемный и светоизлучающий элементы световых информационных потоков. Зигзагообразный разветвитель снабжен оптическими выключателями. Технический результат - расширение возможностей обработки оптической информации. 24 з.п. ф-лы, 67 ил.

Изобретение относится к оптоэлектронным жидкокристаллическим процессорным устройствам для обработки световых информационных потоков, включающей усиление, преобразование, переключение, разветвление, изменение частоты, разложение в спектр и фильтрацию оптических сигналов, выполнение логических операций, а более конкретно - к оптоэлектронному узлу. Данное изобретение может быть использовано в виде интегральных оптоэлектронных модулей в оптических компьютерных системах и вычислительных устройствах промышленного применения, а также в волоконно-оптических телекоммуникационных системах и системах связи. Изобретение может быть использовано в лазерных системах, например, для многоканального считывания информации в оптических накопителях. Изобретение может быть использовано в матричных лазерных системах с синфазным излучением мощных световых потоков. Изобретение может быть использовано в многоканальных лазерных системах управления информационными потоками в оптических суперкомпьютерах с производительностью обработки информации в несколько сот TFLOPS. Изобретение может быть также использовано в оптических гироскопах.

Известен оптоэлектронный узел (DE 4304993), выполненный в виде оптического пространственного переключателя, содержащего несколько оптических разветвителей, структура которых сформирована на общем основании. В оптоэлектронном узле использована схема управления прозрачностью оптически активного слоя.

Известный оптоэлектронный узел имеет ограниченные возможности использования и может быть применен только в качестве оптического переключателя без реализации возможностей обработки оптических сигналов.

Известно интегральное оптическое устройство (Волноводная оптоэлектроника: Пер. с англ./Под ред. Т. Тамира. - М.: Мир, 1991, рис. 6.1. с. 429), содержащее подложку GaAs, волновод, лазер, детектор, электронную схему управления, электрооптический переключатель, одномодовые волокна.

Известное интегральное оптическое устройство имеет ограниченные возможности обработки световых информационных потоков с ограничением спектра оптического сигнала.

Известен также оптоэлектронный узел (RU 2024899), содержащий основание с размещенными в нем входами и выходами оптоэлектронного узла, с которыми соединены световоды, V-образные разветвители, приемные элементы световых информационных потоков и электрические контактные устройства, Известный оптоэлектронный узел имеет ограниченные возможности использования и может быть применен в качестве оптического транзистора, в котором осуществляется только усиление оптического сигнала в ограниченном спектре оптических сигналов. Используемые V-образные разветвители в известном оптоэлектронном узле позволяют осуществлять разветвление оптического сигнала в пределах нескольких градусов, что существенным образом снижает возможности повышения компактности оптоэлектронных узлов.

В основу настоящего изобретения положена задача создания оптоэлектронного узла, обеспечивающего расширение возможностей обработки оптической информации за счет реализации в оптоэлектронном узле режимов усиления, преобразования, переключения, разветвления, изменения частоты, разложения в спектр и фильтрации оптических сигналов, выполнения логических операций, а также достижения возможностей формирования лазерных системы с синфазными излучателями, расположенными в оптоэлектронном узле в виде двухсторонних матриц.

Другой задачей настоящего изобретения является задача увеличения комбинационных возможностей обработки световых информационных потоков, поступающих в оптоэлектронный узел с любых пространственных направлений во всем спектре оптических сигналов.

С учетом поставленных задач в оптоэлектронном узле, содержащем по меньшей мере одно основание с размещенными в нем входами и выходами оптоэлектронного узла, с которыми соединены световоды, V-образные разветвители, приемные элементы световых информационных потоков и электрические контактные устройства, согласно изобретению оптоэлектронный узел дополнительно снабжен управляющим модулем, излучающими элементами световых информационных потоков и оптическими контактными устройствами, входы и выходы оптоэлектронного узла выполнены в виде окон основания, в которых установлены приемные и/или излучающие элементы, окна соединены с оптическими контактными устройствами, полости световодов и V-образных разветвителей заполнены оптически прозрачным материалом, выполнены с возможностью прохождения внутри них световых информационных потоков и с возможностью светоотражения указанных световых информационных потоков от внутренних светоотражающих поверхностей полостей или светоотражения от светоотражающего покрытия, нанесенного на оптически прозрачный материал, указанные световоды и V-образные разветвители снабжены оптическими выключателями, выполненными с возможностью перекрытия проходящих через них световых информационных потоков, световоды и V-образные разветвители соединены друг с другом по меньшей мере в виде одного зигзагообразного разветвителя, при этом выпуклые и вогнутые фрагменты одной стороны зигзагообразного разветвителя соединены с окнами одной стороны основания, а выпуклые и вогнутые фрагменты другой стороны указанного зигзагообразного разветвителя соединены с окнами другой стороны основания или выпуклыми и вогнутыми фрагментами другого зигзагообразного разветвителя.

Работоспособность оптоэлектронного узла обеспечивается за счет использования установленных в окнах основания приемных и излучающих элементов световых информационных потоков.

При этом приемные элементы световых информационных потоков могут быть выполнены в виде фотодиода и/или составного фототранзистора, и/или торцевой поверхности световода или разветвителя, и/или окна основания, и/или светоотражающего модуля с управляемыми характеристиками светоотражения, и/или светопоглощающего модуля с управляемыми характеристиками светопоглощения, и/или оптического контактного устройства, и/или оптического выключателя. Приемные элементы снабжены приемной поверхностью. Приемные поверхности приемных элементов световых информационных потоков могут быть выполнены плоской, или выпуклой, или вогнутой, или зигзагообразной формы, или с угловым углублением, или с угловым выступом.

Излучающие элементы световых информационных потоков могут быть выполнены в виде светодиода и/или лазера, и/или торцевой поверхности световода, и/или разветвителя, и/или окна основания, и/или светоотражающего модуля с управляемыми характеристиками светоотражения, и/или оптического контактного устройства, и/или оптического выключателя. Излучающие элементы снабжены излучающей поверхностью. Излучающие поверхности излучающих элементов световых информационных потоков могут быть выполнены плоской, или выпуклой, или вогнутой, или зигзагообразной формы, или с угловым углублением, или с угловым выступом.

В случае использования плоской, или выпуклой, или с угловым выступом приемной или излучающей поверхности в приемных и излучающих элементах световых информационных потоков их соответствующие диаграммы направленности без фокусирующих устройств могут достигать угла раскрыва 180 градусов и более. В этом случае обеспечивается возможность ввода световых информационных потоков в зигзагообразный разветвитель оптоэлектронного узел через окно, установленное на его выпуклом фрагменте, с последующим распространением этого потока в любом направлении в пределах полусферы. Аналогичным образом обеспечивается съем информации в пределах полусферы через окно, установленное на выпуклом фрагменте зигзагообразного разветвителя оптоэлектронного узла. Окна, установленные на вогнутых фрагментах зигзагообразных разветвителей, позволяют существенно расширить число входов и выходов оптоэлектронного узла. В этом случае число входов или выходов в V-образных и зигзагообразных разветвителях и число подключаемых световодов к оптоэлектронному узлу не ограничивается.

Использование установленных на входах и выходах оптоэлектронного узла в зигзагообразных и V-образных разветвителях в световодах оптических выключателей, выполняющих роль оптических затворов, позволяет существенно увеличить комбинационные возможности обработки и коммутации световых информационных потоков по меньшей мере на порядок по сравнению с известным уровнем техники. Кроме того, достигается возможность по одним и тем же каналам передачи информации осуществлять перемещение в противоположных направлениях световых информационных потоков, что существенно повышает производительность передачи информации в системах телекоммуникаций и коэффициент использования волоконно-оптических систем.

В конструктивных вариантах с целью расширения функциональных возможностей основание оптоэлектронного узла выполнено в виде объемного оптоэлектронного модуля или объемного интегрального модуля, или монтажной платы, или печатной платы, или тканой платы, или коммутационной платы, или световодной ленты, или плоского световодного кабеля.

В конструктивных вариантах с целью расширения функциональных возможностей электрическое контактное устройство оптоэлектронного узла выполнено в виде контактных площадок или планарных выводов, или контактного устройства для соединения с плоскими электрическими кабелями.

В конструктивных вариантах с целью расширения функциональных возможностей оптическое контактное устройство оптоэлектронного узла выполнено в виде волоконно-оптического соединителя или планарных световодных выводов, или контактного устройства для соединения с плоскими световодными кабелями, или контактного устройства для соединения с плоскими световодными лентами.

В конструктивных вариантах с целью расширения функциональных возможностей излучающие и/или приемные элементы световых информационных потоков выполнены в виде модуля, который установлен на основании с возможностью фиксации или съема с последующей установкой, или с возможностью возвратно-поступательного или вращательного перемещения.

В конструктивных вариантах с целью расширения функциональных возможностей окна основания и полости световодов и V-образных разветвителей выполнены в сечении прямоугольной или многоугольной, круглой или эллипсообразной, или произвольной криволинейной, пирамидальной, или конусообразной формы.

В конструктивных вариантах с целью расширения функциональных возможностей оптически прозрачный материал выполнен в виде жидкокристаллического или оптоволоконного материала.

В конструктивных вариантах с целью расширения функциональных возможностей оптические выключатели выполнены с возможностью полного и/или частичного перекрытия информационных световых потоков, с возможностью образования дифракционных отверстий.

В конструктивных вариантах с целью расширения функциональных возможностей оптические выключатели выполнены в виде пластины, установленной с возможностью возвратно-поступательного или вращательного перемещения в прорези основания и снабженной отрезком световода, расположенного напротив входов и/или выходов световодов, и/или V-образных разветвителей, и/или приемных и/или излучающих элементов световых информационных потоков.

В конструктивных вариантах с целью расширения функциональных возможностей оптические выключатели выполнены в виде группы управляющих электродов, расположенных внутри жидкокристаллических световодов и/или V-образных жидкокристаллических разветвителей напротив друг друга с размещением между ними жидкокристаллического материала и установленными с возможностью формирования между указанными электродами управляющими напряжениями, подаваемыми с управляющего модуля, оптически непрозрачных зон.

В конструктивных вариантах с целью расширения функциональных возможностей управляющие электроды расположены на внутренних светоотражающих поверхностях жидкокристаллических световодов и/или V-образных жидкокристаллических разветвителей, или в сечении окон основания, или в сечении оптических выключателей.

В конструктивных вариантах с целью расширения функциональных возможностей оптический выключатель дополнительно содержит вторую группу управляющих электродов, которые нанесены на управляющие электроды, расположенные на внутренних светоотражающих поверхностях жидкокристаллических световодов и/или V-образных жидкокристаллических разветвителей, один над другим внахлестку с образованием ими общей зоны перекрытия, в которой между электродами размещен слой диэлектрика.

В конструктивных вариантах с целью расширения функциональных возможностей оптический выключатель дополнительно содержит размещенную между первой группой электродов третью группу управляющих электродов с возможностью формирования между указанными электродами управляющими напряжениями, подаваемыми с управляющего модуля, оптически непрозрачных зон, при этом третья группа электродов размещена между электродами первой группы в виде многослойной структуры в последовательности: электрод первой группы, жидкокристаллический слой, электрод третьей группы, жидкокристаллический слой, электрод первой группы.

В конструктивных вариантах с целью расширения функциональных возможностей управляющие электроды выполнены прозрачными и/или полупрозрачными из алюминиевого материала или из окиси индия-олово.

В конструктивных вариантах с целью расширения функциональных возможностей оптически непрозрачная зона, сформированная между электродами при подаче управляющих напряжений с управляющего модуля на управляющие электроды, выполнена светоотражающей или светопоглощающей.

В конструктивных вариантах с целью расширения функциональных возможностей оптически непрозрачные зоны, сформированные при подаче управляющих напряжений с управляющего модуля на управляющие электроды, выполнены в виде дифракционной решетки.

В конструктивных вариантах с целью расширения функциональных возможностей в полостях световодов или разветвителей, или в окнах основания дополнительно установлены оптические фильтры или линзы.

В конструктивных вариантах с целью расширения функциональных возможностей приемные и/или светоизлучающие элементы световых информационных потоков установлены в окне основания вдоль прямой или ломаной линии, или вдоль зигзагообразной кривой, или в матричном порядке, или в концентрическом порядке, или в хаотичном порядке.

В конструктивных вариантах с целью расширения функциональных возможностей световоды и разветвители соединены друг с другом последовательно вдоль прямой линии, и/или зигзагообразной кривой, и/или ломаной линии в Т-образной, или в С-образной, и/или в П-образной, и/или в Z-образной последовательности.

В конструктивных вариантах с целью расширения функциональных возможностей управляющий модуль выполнен в виде оптоэлектронного модуля, или объемного оптоэлектронного интегрального модуля, или объемного интегрального модуля, или интегральной схемы, контроллера, процессора с фиксированной или плавающей архитектурой, усилителя электрических сигналов.

В конструктивных вариантах с целью расширения функциональных возможностей оптоэлектронный узел выполнен в бескорпусном исполнении.

В конструктивных вариантах с целью расширения функциональных возможностей оптоэлектронный узел снабжен корпусом, выполненным в виде контейнера с крышкой, в который помещен оптоэлектронный узел, при этом контейнер и/или крышка контейнера снабжена устройствами для внешнего крепления, электрическими и оптическими контактными устройствами для соединения с электрическими и световодными цепями соответственно.

В конструктивных вариантах с целью расширения функциональных возможностей световоды, и/или разветвители, и/или оптические выключатели соединены друг с другом с возможностью формирования оптического резонатора.

На фиг. 1 показан общий вид оптоэлектронного узла; на фиг. 2, 3 - оптоэлектронный узел с увеличенным изображением жидкокристаллических оптических выключателей; на фиг. 4 - схемотехническое соединение световодов и разветвителей в зигзагообразной последовательности; на фиг. 5 - соединение жидкокристаллических световодов и разветвителей в прямолинейной последовательности; на фиг. 6 - конструктивный вариант схемотехнического соединения жидкокристаллических световодов и разветвителей в зигзагообразной последовательности; на фиг. 7 - соединение жидкокристаллических световодов и разветвителей в Т-образной последовательности; на фиг. 8, 9 - размещение жидкокристаллических световодов и разветвителей внутри основания; на фиг. 10, 11 - принцип работы оптоэлектронного узла; на фиг. 12 - оптоэлектронный узел, снабженный корпусом; на фиг. 13 - схемотехническое соединение световодов и разветвителей в зигзагообразной последовательности; на фиг. 14 - соединение жидкокристаллических световодов и разветвителей в П-образной последовательности; на фиг. 15 - соединение жидкокристаллических световодов и разветвителей в С-образной последовательности; на фиг. 16 - соединение жидкокристаллических световодов и разветвителей в Z-образной последовательности; на фиг. 17-20 - принципы коммутации световых информационных потоков в оптоэлектронном узле; на фиг. 21-26 - принципы формирования диаграмм направленности излучающими и приемными элементами; на фиг. 27 - оптоэлектронный узел с двумя зигзагообразными разветвителями; на фиг. 28-31 - принципы коммутации световых информационных потоков в оптоэлектронном узле с использованием двух зигзагообразных разветвителей; на фиг. 32 - оптоэлектронный узел с размещением управляющего модуля на одной боковой поверхности основания; на фиг. 33 - схемотехническое соединение световодов и разветвителей в зигзагообразной последовательности; на фиг. 34 - оптоэлектронный узел с окнами, размещенными на верхней, нижней и одной боковой поверхностях основания; на фиг. 35 - схемотехническое соединение световодов и разветвителей с окнами, размещенными на боковой поверхности основания; на фиг. 36 - принципы коммутации световых информационных потоков в оптоэлектронном узле с окнами, размещенными на верхней, нижней и боковой поверхностях основания; на фиг. 37 - оптоэлектронный узел с окнами, размещенными на верхней, нижней и боковых поверхностях основания; на фиг. 38, 39 - оптоэлектронный узел с V-образными разветвителями, содержащими три и пять выходов; на фиг. 40 - схемотехническое соединение V-образных разветвителей с тремя и пятью выходами; на фиг. 41 - V-образный разветвитель с увеличенным изображением оптического выключателя; на фиг. 42-45 - оптоэлектронный узел с дифракционными решетками; на фиг. 46-48 - оптоэлектронный узел с оптически прозрачными линзами; на фиг. 49-54 - размещение приемных и светоизлучающих элементов в окне основания; на фиг. 55, 56 - оптоэлектронный узел с зигзагообразным разветвителем в виде световода из оптоволоконного материала; на фиг. 57-67 - лазерная система.

В лучшем конструктивном варианте исполнения оптоэлектронный узел (фиг. 1, 2), выполненный в виде объемного оптоэлектронного модуля, содержит одно основание 1, на котором установлен управляющий модуль 2. Внутри основания размещены соединенные друг с другом световоды 3, 4 и V-образные разветвители 5, 6. Внутренние поверхности 7, 8 световодов 3, 4 и разветвителей 5, 6 соответственно выполнены светоотражающими, а их полости 9 заполнены жидкокристаллическим или оптоволоконным материалом 10 с возможностью прохождения внутри указанных полостей 9 информационных световых потоков 11, 12. В случае использования оптоволоконного материала для заполнения полостей 9 световодов и разветвителей на внешнюю поверхность оптоволоконного материала может быть нанесено светоотражающее покрытие. Полости 9 в сечении световодов 3, 4 и V-образных разветвителей 5, 6 могут быть выполнены в сечении прямоугольной или многоугольной, круглой или эллипсообразной, или произвольной криволинейной, пирамидальной, или конусообразной формы.

Световоды 3, 4 установлены параллельно боковой поверхности 13 основания 1, V-образные разветвители 5, 6 установлены под углом к верхней 14 и нижней 15 поверхностям основания 1. Входы и выходы оптоэлектронного узла выполнены в виде окон 16-18 и 19-22 основания 1, размещенных на верхней 14 и нижней 15 поверхностях основания 1 соответственно. Окна основания 16-22 могут быть выполнены в сечении прямоугольной или круглой, или эллипсообразной, произвольной криволинейной, или пирамидальной, или конусообразной формы.

Указанные световоды 3, 4 и V-образные разветвители 5, 6 соединены друг с другом в виде зигзагообразного разветвителя: нижний вход световода 3 соединен с окном 19, верхний выход световода 3 соединен с первым левым выходом разветвителя 5 и окном 16, вход разветвителя 5 соединен с окном 20, второй правый выход разветвителя 5 соединен с первым левым выходом разветвителя 6, вход разветвителя 6 соединен с окном 17, второй центральный выход разветвителя 6 соединен с окном 21, третий правый выход разветвителя 6 соединен с нижним входом световода 4 и окном 22, верхний выход световода 4 соединен с окном 18.

При этом выступающие фрагменты, включающие левый выход разветвителя 5, вход разветвителя 6, и вогнутый фрагмент, включающий третий правый выход разветвителя 6, верхней стороны зигзагообразного разветвителя соединены с окнами 16-18 соответственно. Выступающие фрагменты, включающие вход разветвителя 5 и третий правый выход разветвителя 6, и вогнутые фрагменты, включающие нижний вход световода 3 и центральный выход разветвителя 6, нижней стороны зигзагообразного разветвителя соединены с окнами 20, 22 и 19, 21 соответственно.

Световод 4 снабжен оптическим выключателем 23 в виде пластины, установленной с возможностью возвратно-поступательного или вращательного перемещения в прорези 24 основания 1 и снабженной отрезком световода 25, расположенного напротив входа и выхода световода 4. Отрезок световода 25 выполнен с сечением меньшим, чем сечение световода 4, что обеспечивает частичное перекрытие информационных световых потоков. В конструктивном варианте пластина 23 может быть снабжена дифракционным отверстием или дифракционной решеткой. В конструктивных вариантах оптический выключатель 23 может быть установлен в V-образных разветвителях 5 и 6, и/или приемных 26, и/или излучающих 27 элементах световых информационных потоков 11, 12.

В окне 16 основания 1 размещен приемный элемент 26 светового информационного потока 11, который выполнен в виде кремниевого эпитаксиального фотодиода. В окне 17 основания 1 размещен светоизлучающий элемент 27 светового информационного потока 12, который выполнен в виде светодиода инфракрасного излучения на основе твердого раствора галлий-алюминий-мышьяк.

В качестве фотодиода 26 и светодиода 27 могут быть использованы, например, компоненты диодной оптопары 3ОД141А-1.

В конструктивном варианте в качестве светоизлучающего элемента могут быть использованы светодиоды на основе нитрида галлия стандартного синего, зеленого и красного свечения, используемых в дисплейных ЖК-"чипах".

Управляющий модуль 2 соединен электрически с фотодиодом 26 и светодиодом 27 с помощью соединительных проводников.

В окнах 18-22 основания 1 установлены оптические контактные устройства для соединения со световодными цепями, выполненными в виде волоконно-оптического соединителя 28, с помощью которых осуществляют соединение оптоэлектронного узла со световодами волоконно-оптических кабелей.

Основание 1 оптоэлектронного узла (фиг. 1) в конструктивных вариантах может быть выполнено в виде объемного оптоэлектронного модуля или объемного интегрального модуля, или в виде монтажной, или печатной, или тканой, или коммутационной платы, или в виде световодной ленты, или в виде световодного кабеля 23. Управляющий модуль 2 в конструктивных вариантах может быть выполнен в виде оптоэлектронного модуля или объемного оптоэлектронного интегрального модуля, или объемного интегрального модуля, или интегральной схемы, контроллера, процессора с фиксированной или плавающей архитектурой, усилителя электрических сигналов.

Работоспособность оптоэлектронного узла (см. фиг. 1) обеспечивается за счет использования установленных в основании приемных и излучающих элементов световых информационных потоков.

При этом приемные элементы световых информационных потоков могут быть выполнены в виде фотодиода, и/или фототранзистора, и/или торцевой поверхности световода или разветвителя, и/или окна основания, и/или светоотражающего модуля с управляемыми характеристиками светоотражения, и/или светопоглощающего модуля с управляемыми характеристиками светопоглощения, и/или оптического контактного устройства, и/или оптического выключателя. Приемные элементы снабжены приемной поверхностью. Приемные поверхности приемных элементов световых информационных потоков могут быть выполнены плоской, или выпуклой, или вогнутой, или зигзагообразной формы, или с угловым углублением, или с угловым выступом.

Излучающие элементы световых информационных потоков могут быть выполнены в виде светодиода и/или лазера, и/или торцевой поверхности световода, и/или разветвителя, и/или окна основания, и/или светоотражающего модуля с управляемыми характеристиками светоотражения, и/или оптического контактного устройства, и/или оптического выключателя. Излучающие элементы снабжены излучающей поверхностью. Излучающие поверхности излучающих элементов световых информационных потоков могут быть выполнены плоской, или выпуклой, или вогнутой, или зигзагообразной формы, или с угловым углублением, или с угловым выступом.

В случае использования плоской или выпуклой приемной или излучающей поверхности в приемных и излучающих элементах световых информационных потоков их соответствующие диаграммы направленности без фокусирующих устройств могут достигать угла раскрыва 180 градусов и более. В этом случае обеспечивается возможность ввода световых информационных потоков в зигзагообразный разветвитель оптоэлектронного узла через окно, установленное на его выпуклом фрагменте, с последующим распространением этого потока в любом направлении в пределах полусферы. Аналогичным образом обеспечивается съем информации в пределах полусферы через окно, установленное на выпуклом фрагменте зигзагообразного разветвителя оптоэлектронного узла. Окна установленные на вогнутых фрагментах зигзагообразных разветвителей позволяют существенно расширить число входов и выходов оптоэлектронного узла. В этом случае число входов или выходов в V- образных и зигзагообразных разветвителях и число подключаемых световодов к оптоэлектронному узлу не ограничивается.

Использование установленных на входах и выходах зигзагообразных разветвителей оптических выключателей, выполняющих роль оптических затворов, позволяет существенно увеличить комбинационные возможности обработки и коммутации световых информационных потоков по меньшей мере на порядок по сравнению с известным уровнем техники.

Световод 3 снабжен оптическим выключателем 29 (фиг. 2), выполняющим роль оптического затвора и выполненным в виде группы управляющих прозрачных или полупрозрачных электродов 30, 31, расположенных внутри световода 3 напротив друг друга с размещением между ними жидкокристаллического материала 32 и установленными с возможностью формирования между указанными электродами управляющими напряжениями, подаваемыми с управляющего модуля 2, оптически непрозрачных зон 33 в жидкокристаллическом материале 32. В конструктивных вариантах оптически непрозрачная зона 33 может быть выполнена светоотражающей или светопоглощающей. Управляющие электроды 30, 31 расположены на внутренних светоотражающих поверхностях 8 V-образного разветвителя 5 (фиг. 2), а также в сечении световода 3 в виде многослойной структуры в последовательности: жидкокристаллический слой 34, электрод 31, жидкокристаллический слой 32, электрод 30. Управляющий модуль 2 соединен электрически с электродами 30, 31.

В конструктивном варианте в качестве жидкокристаллического материала может быть использован сегнетоэлектрический ЖК-материал с упорядоченной молекулярной структурой.

В конструктивном варианте в качестве жидкокристаллического материала может быть использован обычный нематический ЖК-материал.

В конструктивном варианте прозрачные или полупрозрачные электроды могут быть выполнены из алюминиевого материала.

В конструктивном варианте прозрачные или полупрозрачные электроды могут быть выполнены из окиси индия-олова.

Оптический выключатель 29, размещенный в световоде 3 (фиг. 2), содержит также вторую группу управляющих прозрачных или полупрозрачных электродов 35, 36, которые нанесены на управляющий электрод 31, расположенный на внутренней светоотражающей поверхности 8 V-образного разветвителя 5, один над другим внахлестку с образованием ими общей зоны перекрытия, в которой между электродами размещен слой диэлектрика 37. Наличие второй группы электродов 35, 36 позволяет сформировать неразрывные оптические непрозрачные зоны 38, 33 и 39 в жидкокристаллическом слое 32 при подаче на электроды 30, 31 и 35, 36 управляющих напряжений с управляющего модуля 2 соответственно 5 В и 2,5 В, который электрически соединен с электродами 30, 31 и 35, 36.

Центральный выход V-образного разветвителя 6 снабжен оптическим выключателем 40 (фиг. 3), выполненным в виде группы управляющих электродов 41, 42, расположенных внутри световода напротив друг друга с размещением между ними жидкокристаллического материала 43 и установленными с возможностью формирования между указанными электродами управляющими напряжениями, подаваемыми с управляющего модуля 2, оптически непрозрачных зон 44 в жидкокристаллическом материале 43. В конструктивных вариантах оптически непрозрачная зона 44 может быть выполнена светоотражающей или светопоглощающей. Управляющие электроды 41, 42 размещены в сечении второго центрального выхода разветвителя 6, соединенного с окном 21, в виде многослойной структуры в последовательности: жидкокристаллический слой 45, электрод 42, жидкокристаллический слой 43, электрод 41.

Оптоэлектронный узел (фиг. 1) снабжен элементами 46 для внешнего крепления, а также электрическими контактными устройствами 47 для соединения с внешними электрическими цепями в виде контактных площадок, размещенных на поверхности 14 основания 1. Контактные площадки 47 электрически соединены с управляющим модулем 2, фотодиодом 26 и светодиодом 27 с помощью электрических проводников.

Световод 3, V-образный разветвитель 5 с двумя выходами, V-образный разветвитель 6 с тремя выходами и световод 4 (фиг. 1) соединены друг с другом схемотехнически (фиг. 4) в виде зигзагообразного разветвителя в последовательности 48, образующей зигзагообразную линию, а в сечении А-А основания 1 (фиг. 5) - в последовательности 49, образующей прямую линию. При этом полость 50 в поперечном световоде 3 в его сечении имеет прямоугольную форму, полость 51 V-образного разветвителя 5 - круглую форму, полость 52 в поперечном сечении V-образного разветвителя 6 имеет прямоугольную форму.

В конструктивном варианте световод 3, два V-образных разветвителя 6 с тремя выходами и световод 4 (фиг. 1) соединены друг с другом схемотехнически (фиг. 6) в последовательности 53, образующей зигзагообразную линию, а в сечении А-А основания 1 (фиг. 7) - в Т- образной последовательности 54.

В конструктивном варианте световод 4 и световоды 55, 56 в сечении Б-Б (фиг. 5, 8) выполнены вдоль своей оси прямолинейной формы 57 и размещены параллельно или под углом к боковой поверхности 13 основания 1 соответственно.

В конструктивном варианте (фиг. 7, 9) в сечении В-В центральный выход разветвителя 6 выполнен прямолинейной формы 57 и размещен на боковой поверхности 13 основания 1. Световод 58 и фрагмент разветвителя 59 в сечении В-В выполнены вдоль своей оси зигзагообразной и ломаной формы соответственно и размещены внутри основания под углом к боковой его поверхности 13 основания 1.

Принцип работы оптоэлектронного узла может быть следующим.

В исходном состоянии (см. фиг. 1, 10) внешние световоды 60, 61, 63 и 64 оптоэлектронного узла соединены через волоконно-оптические соединители 28 с окнами 19, 20, 22, 18, подключенными к открытым оптическим выключателям 40, 29, 29 и 23 соответственно, а внешний световод 62 соединен через волоконно-оптический соединитель 28 с окном 21, подключенным к закрытому оптическому выключателю 40.

Световой поток 65 через световод 60, окно 19, открытый оптический выключатель 40, световод 3 и открытый оптический выключатель 29 поступает на фотодиод 26, с которого снимается информация в электронной форме. Для исключения прохождения оптической информации в разветвитель 5 в оптическом выключателе 29 подачей с управляющего модуля 2 управляющего напряжения, например 2,5 В, формируется оптически непрозрачная зона 39.

При открытых оптических выключателях 29, установленных на входах соединенных между собой разветвителей 5 и 6 и подключенных к окнам 17 и 20 соответственно, информационный световой поток 66 поступает от светодиода 27 в световод 61. Для исключения прохождения оптической информации в световоды 3, 4 и 62 в оптическом выключателе 29 разветвителя 5, в оптическом выключателе 29 и 40 разветвителя 6 сформированы оптически непрозрачные зоны 67, 68 и 44 соответственно подачей с управляющего модуля 2 управляющего напряжения, например 2,5 В.

При открытых оптических выключателях 29 и 23 световода 4 световой поток 67 через световод 63, окно 22, световод 4 и окно 18 поступает в световод 64 для дальнейшей передачи оптической информации во внешнюю телекоммуникационную систему. Для исключения прохождения оптической информации в разветвитель 6 в оптическом выключателе 29 световода 4 подачей с управляющего модуля 2 управляющего напряжения, например 2,5 В, формируется оптически непрозрачная зона 69.

Для изменения состояния оптоэлектронного узла производят изменение состояния оптических выключателей, что, в свою очередь, позволяет изменить условия коммутации световых потоков из внешних телекоммуникационных сетей.

Для осуществления подачи светового потока 70 из световода 61 через окно 20 к фотодиоду 26 закрывают оптический выключатель 40 световода 3 (см. фиг. 1, 10, 11) формированием оптически непрозрачной зоны 44 с помощью управляющего напряжения 2,5 В, подаваемого с управляющего модуля 2, выключают оптически непрозрачные зоны 39 и 67 в оптических выключателях 29 световода 3 и разветвителя 5 снятием управляющих напряжений и формируют оптически непрозрачную зону 72 в оптическом выключателе 29 разветвителя 5 подачей с управляющего модуля 2 управляющего напряжения, например 2,5 В, в результате чего формируется оптически прозрачный канал передачи оптической информации в виде светового потока 70 от световода 61 к фотодиоду 26.

Для осуществления подачи светового потока 66 от светодиода 27 в световод 63 формируют оптически непрозрачную зону 73 и выключают оптически непрозрачную зону 68 в оптическом выключателе 29 разветвителя 6 путем подачи управляющего напряжения, например 2,5 В, с управляющего модуля 2, выключают оптически непрозрачную зону 69 в оптическом выключателе 29 световода 4 путем снятия управляющих напряжений, перекрывают прохождение световых потоков через оптический выключатель 23 путем смещения отрезка световода 25