Диск с отверстиями, в частности, для клапанных форсунок и способ изготовления диска с отверстиями

Реферат

 

Изобретение относится к двигателестроению, в частности для использования на клапанных форсунках в системах впрыскивания топлива, в лакокрасочных соплах или же в способах сублимационной сушки. Изобретение позволяет достичь высокого качества распыления и требуемой формы струи. Диск с отверстиями содержит полный проход для текучей среды, в частности для топлива. Проход складывается из впускных отверстий и выпускных отверстий и по меньшей мере из одного расположенного между ними канала. Впускные и выпускные отверстия располагаются при этом в диске с отверстиями так, что они в проекции на плоскость ни в одном месте не перекрываются. Благодаря такому смещению выпускных отверстий относительно впускных отверстий получают S-образную форму течения потока среды, которая накладывает свой отпечаток на образование турбулентности, способствующей распылению. 2 с. и 34 з.п.ф-лы. 33 ил.

Изобретение относится к диску с отверстиями, предназначенному, в частности, для клапанных форсунок в соответствии с ограничительной частью основного пункта 1 формулы изобретения и к способу изготовления диска с отверстиями согласно ограничительной части пункта 27 формулы изобретения.

Из выложенного описания изобретения к неакцептованной заявке Европейского Патентного Ведомства - EP-OS 0354660 - известно, как изготавливаются форсунки в форме дисков с отверстиями, так называемые "диски типа S". Этим самым предполагается, что впускные и выпускные отверстия в диске с отверстиями выполнены смещенными друг относительно друга, в результате чего в потоке текучей среды, проходящей через диск с отверстиями, принудительно возникает "S-образный виток". Предложенные диски с отверстиями образуются двумя плоскими, соединенными бондами пластинками, выполненными из кремния. На кремниевых пластинках отформованы зоны уменьшенной толщины, так что между отверстиями первой пластинки и одним отверстием второй пластинки образованы щелевидные отверстия, проходящие поперек потока параллельно торцевым поверхностям пластинок. С помощью известной технологии масок посредством травления на кремниевых пластинках, которые имеют множество структур дисков с отверстиями, выполняют впускные и выпускные отверстия. Имеющие форму усеченного конуса контуры для отверстий в диске с отверстиями вытекают логически из анизотропной техники травления.

Клапанная система, состоящая из эластичной кремниевой клапанной пластинки и пластинки форсунки, выполненной также из кремния, уже известна из выложенного описания изобретения к неакцептованной заявке Европейского Патентного Ведомства - EP-OS 0314285. Обе кремниевые пластинки соединены друг с другом и могут отклоняться относительно друг друга. В кремниевых клапанных пластинках предусмотрены впускные отверстия, которые размещены со смещением относительно выпускных отверстий в пластинках форсунок. В закрытом состоянии клапанной системы плоские поверхности кремниевой клапанной пластинки уплотняют выпускные отверстия в пластинке форсунок, в то время как при деформации пластинки форсунки посредством элемента манипулирования возникает S-образный проход для текучей среды, и клапанная система открывается.

Из патента США 4907748 уже известна топливная клапанная форсунка, которая на своем конце, расположенном по течению потока, имеет состоящее из двух кремниевых пластинок сопло. Так же, как и в описанных выше дисках с отверстиями, впускные отверстия в обеих кремниевых пластинках смещены друг относительно друга, так что в потоке текучей среды - в данном случае это топливо - возникает "S-образный виток".

Все названные выше диски с отверстиями, которые выполнены из кремния, обладают недостатком - недостаточным при определенных обстоятельствах сопротивлением разрушению, которое является следствием хрупкости кремния. Как раз при длительных нагрузках, например в клапанной форсунке (колебания двигателя), имеется опасность ломки кремниевых пластинок. Установка кремниевых пластинок на металлических элементах конструкции, как например, на клапанных форсунках, является дорогостоящей, так как должны быть найдены особые решения по выполнению зажимов без напряжений, и герметизация клапана является проблематичной. Например, невозможно произвести приваривание выполненных из кремния дисков с отверстиями к клапанной форсунке. Кроме того, недостаток состоит в износе краев отверстий кремниевых дисков при частом прохождении текучей среды.

Далее, из патента ФРГ - DE-PS 483615 - уже известна форсунка для двигателей внутреннего сгорания с системой впрыска топлива, которая образована также двумя пластинками форсунки, при этом пластинки форсунки имеют размещенные со смещением друг относительно друга впускные и выпускные отверстия, чтобы способствовать разрыву протекающего топлива. Однако с помощью этой форсунки никоим образом невозможно формирование струи разбрызгиваемого топлива в соответствии с желаемой геометрией.

Преимущества изобретения Диск с отверстиями согласно изобретению, обладающий отличительными признаками основного пункта 1 формулы изобретения, имеет преимущество, состоящее в том, что равномерное мельчайшее распыление текучей среды достигается без дополнительной энергии, а именно, лишь за счет имеющегося в распоряжении давления среды, причем достигается особенно высокое качество распыления и форма струи, соответствующая предъявляемым требованиям. И, как следствие, при использовании такого диска с отверстиями, установленного на двигателе внутреннего сгорания, кроме всего прочего, уменьшается выброс выхлопных газов, а также и достигается уменьшение потребления топлива.

Таким образом, с помощью дисков с отверстиями согласно изобретению, выполненных как диски типа S, можно получать струи экзотических, необычных форм. Эти диски с отверстиями позволяют получать для одноструйных, двухструйных и многоструйных спреев бесчисленные варианты форм поперечных сечений струи, как, например, прямоугольники, треугольники, кресты, эллипсы. Такие необычные формы струй позволяют производить точное оптимальное согласование с заданной геометрией, например с разными поперечными сечениями выпускного газопровода двигателей внутреннего сгорания. Отсюда вытекают преимущества согласованного по форме использования имеющегося в распоряжении поперечного сечения для равномерно распределенной подачи смеси, которая ведет к уменьшению количества выхлопных газов, и для предотвращения отложений на стенках выпускного газопровода, наносящих вред выхлопных газам.

С помощью приведенных в зависимых пунктах формулы изобретения мер имеется возможность реализации других предпочтительных форм выполнения и улучшенных вариантов выполнения указанного в основном пункте 1 формулы изобретения диска с отверстиями.

Особенно предпочтительным является то, что каналы, выполненные в виде элементов, соединяющих потоки, проходящие через впускные и выпускные отверстия, снабжены продолжениями (cavities), в которых за счет протекающей мимо текучей среды образуются завихрения потока. Взаимодействие между завихрением и образующим его потоком приводит к временной нестабильности в зоне взаимодействия. Поток принудительно приводится в колебательное движение, в результате чего, во-первых, могут возникать своеобразные рисунки струй, а во-вторых, возникающая как следствие турбулентность приводит к уменьшению среднего диаметра капли в спрее.

Следующее преимущество вытекает из использования в диске с отверстиями задерживающей ловушки. Вследствие движения по инерции после задерживающей ловушки возникает вихревой шлейф с сильными поперечными импульсами. Турбулентность в вихревом шлейфе способствует тому, чтобы разбрызгивался спрей, содержащий очень мелкие капельки. Следствием предпочтительного уменьшения среднего диаметра капельки в спрее является равномерное распределение спрея. Причиной является меньшая плотность распределения капелек как результат гомогенности спрея. Отсюда вытекает снижение вероятности коагуляций капелек.

Другие преимущества упомянуты при описании примеров выполнения.

Способ изготовления диска с отверстиями по изобретению с отличительными признаками пункта 27 формулы изобретения имеет преимущество, состоящее в том, что диски с отверстиями можно изготавливать репродуцируемым способом одновременно с высокой точностью, очень дешево и в большом количестве, при этом, поскольку они выполнены из металла, то обладают определенным запасом прочности, являясь простыми и дешевыми, и могут монтироваться, например, путем приваривания к металлическим конструктивным элементам, например клапанным форсункам. Технологические операции по изобретению дают широкие возможности в части формы конструктивного выполнения, поскольку контуры отверстий в диске с отверстиями выбираются свободно. Предпочтительным образом, при этом комбинируются такие способы, как глубинная УФ-литография, сухое травление или аблятирование с помощью микрогальваники, для осаждения друг на друга тонких металлических слоев со все новыми структурами. Этот процесс пригоден для создания двух, трех или более слоев для одного диска с отверстиями.

С помощью приведенных в дополнительных пунктах формулы изобретения признаков становятся возможными другие предпочтительные и усовершенствованные формы указанного в пункте 27 формулы изобретения способа получения диска с отверстиями.

Особое преимущество состоит в создании в процессе технологической операции гальванической обработки, по меньшей мере, одного слоя диска с отверстиями, охватывающего две плоскости или же две функциональные плоскости, причем применяется так называемое "боковое разрастание" гальваники. При этом без дополнительного нанесения стартового гальванического слоя и нового слоя фоторезиста рост металла целенаправленно продолжается за пределами структуры фоторезиста предшествующей плоскости. С помощью "бокового разрастания" достигается четкая экономия расходов и времени.

Чертежи Примеры выполнения изобретения представлены на чертеже в упрощенном виде и более подробно пояснены в последующем описании. На фиг. 1 показана изображенная частично клапанная форсунка, имеющая диск с отверстиями по изобретению, на фиг. 2 - диск с отверстиями в виде снизу, на фиг. 3 - диск с отверстиями в разрезе по III - III по фиг. 2, на фиг. 4 - зона протекающей среды трехслойного диска с отверстиями, на фиг. 5 - зона протекающей среды трехслойного диска с отверстиями с первым продолжением канала, на фиг. 6 - зона протекающей среды трехслойного диска с отверстиями со вторым продолжением канала, на фиг. 7 - зона протекающей среды пятислойного диска с отверстиями с продолжениями канала, на фиг. 8 - зона протекающей среды четырехслойного диска с отверстиями с продолжениями канала, на фиг. 9 - схематический вид сверху на диск с отверстиями с боковыми продолжениями канала, на фиг. 10 - зона протекающей среды диска с отверстиями с задерживающей ловушкой, на фиг. 11 - диск с отверстиями в виде снизу, на фиг. 12 - диск с отверстиями в разрезе по XII-XII по фиг. 11, на фиг. 13 - диск с отверстиями в виде снизу, на фиг. 14 - другой диск с отверстиями в виде сверху с немногогранными отверстиями, на фиг. 15 - диск с отверстиями в разрезе по XV-XV по фиг. 14 с изображенными схематическими инструментами (в обратном направлении потока), на фиг. 16-20 - технологические операции по изготовлению диска с отверстиями с помощью полислойной гальваники, на фиг. 21 - диск с отверстиями после бокового разрастания, на фиг. 22 - изображение в разрезе диска с отверстиями с различными диаметрами отдельных слоев, на фиг. 23 - вид сверху на центральную зону диска с отверстиями, представленного в разрезе на фиг. 22, на фиг. 24 - следующий диск в виде сверху, на фиг. 25-27 - три центральные зоны дисков с отверстиями с соответствующим прямоугольным впускным отверстием, на фиг. 28 - диск с отверстиями в виде сверху с асимметричным распределением зон отверстия, на фиг. 29 и 30 - две центральные зоны дисков с отверстиями с асимметричным распределением зон отверстия, на фиг. 31 - центральная зона диска со сплошными круглыми отверстиями, на фиг. 32 - центральная зона диска с отверстиями с шестнадцатью серповидными впускными отверстиями и на фиг. 33 - центральная зона диска с приблизительно полукруглым впускным отверстием и серповидными выпускными отверстиями.

Описание примеров выполнения На фиг. 1 в качестве примера выполнения частично изображен клапан в форме клапанной форсунки для систем впрыска топлива двигателей внутреннего сгорания со сжатием рабочей смеси и с принудительным зажиганием. Клапанная форсунка имеет трубообразную опору 1 седла клапана, в которой концентрично относительно продольной оси 2 клапана выполнено удлиненное отверстие 3. В удлиненном отверстии 3 размещена, например, трубообразная игла 5 клапана, которая на своем расположенном по течению потока конце 6 соединена, например, с шарообразным закрывающим клапан телом 7, по периметру которого предусмотрены, например, пять лысок 8.

Управление клапанной форсункой происходит известным образом, например с помощью электромагнита. Для аксиального перемещения иглы 5 клапана и, тем самым, для открытия против усилия неизображенной возвратной пружины или для закрытия клапанной форсунки служит обозначенная электромагнитная цепь с магнитной катушкой 10, якорем 11 и сердечником 12. Якорь 11 соединен с концом иглы 5 клапана, обращенным от закрывающего клапан тела 7, например, сварным швом, выполненным лазером, и ориентирован на сердечник 12.

Для направления закрывающего клапан тела 7 во время аксиального движения служит направляющее отверстие 15 тела 16 седла клапана. В расположенный вниз по потоку, обращенный от сердечника 12 конец опоры 1 седла клапан в проходящем концентрично относительно продольной оси 2 клапана продольном отверстии 3 с помощью сварки плотно установлено имеющее цилиндрическую форму тело 16 седла клапана. На своей нижней торцевой стороне 17, обращенной от закрывающего клапан тела 7, тело 16 седла клапана концентрично и жестко соединено с выполненным, например, чашеобразно опорным диском 21, который непосредственно прилегает к телу 16 седла клапана. При этом опорный диск 21 имеет форму, аналогичную уже известным чашеобразным дискам с распылительными отверстиями, причем средняя зона опорного диска 21 снабжена ступенчатым сквозным отверстием 22 для крепления в нем диска 23 с отверстиями согласно изобретению.

Соединение тела 16 седла клапана и опорного диска 21 осуществляется, например, посредством проходящего вокруг, герметичного, выполненного с помощью лазера первого сварного шва 25. Посредством такого вида монтажа предотвращается опасность нежелательной деформации опорного диска 21 в его средней зоне со сквозным отверстием 22 и с встроенным в него диском 23 с отверстиями. Опорный диск 21 соединен, далее, со стенкой продольного отверстия 3 в опоре 1 седла клапана, например, сквозным и герметичным вторым сварным швом 30.

Глубина вдвигания блока седла клапана, состоящего из тела 16 седла клапана и чашеобразного опорного диска 21, в продольное отверстие 3 определяет величину хода иглы 5 клапана, поскольку одно концевое положение иглы 5 клапана при невозбужденной магнитной катушке 10 определяется прилеганием закрывающего клапан тела 7 к плоскости 29 седла клапана тела 16 седла клапана. Другое концевое положение иглы 5 клапана определяется при возбужденной магнитной катушке 10, например, прилеганием якоря 11 к сердечнику 12. Путь между этими обоими концевыми положениями иглы 5 клапана представляет собой, таким образом, ход.

Шарообразное закрывающее клапан тело 7 взаимодействует с поверхностью 29 седла клапана тела 16 седла клапана, которая сужается в направлении течения потока в форме усеченного конуса и которая выполнена в аксиальном направлении между направляющим отверстием 15 и нижней торцевой стороной 17 тела 16 седла клапана.

Диск с отверстиями 23, размещенный в сквозном отверстии 22 опорного диска 21 и удерживаемый за счет опорного диска 21 непосредственно на торцевой стороне 17 тела 16 седла клапана, изображен на фиг. 1 лишь упрощенно и в качестве примера и описывается более подробно на приведенных ниже чертежах. Установка диска 23 с отверстиями в опорный диск 21 и зажим 31 в качестве крепления является возможным вариантом установки диска 23 с отверстиями в направлении по течению потока поверхности 29 седла клапана. Подобный зажим в качестве косвенного крепления диска 23 с отверстиями на теле 16 седла клапана имеет преимущество, состоящее в том, что предотвращается зависимая от температуры деформация, которая, при известных обстоятельствах, могла бы иметь место в случае таких способов, как сварка или пайка. Опорный диск 21 ни в коем случае не представляет собой, однако, исключительное условие для крепления диска 23 с отверстиями. Так как возможности крепления не являются существенными для изобретения, то здесь можно сделать лишь ссылку на известные традиционные способы стыкования, такие как сварка, пайка или склеивание.

На фиг. 2 изображен диск 23 с отверстиями на виде снизу. Диск 23 с отверстиями выполнен в виде ровного, плоского, кругового и многослойного диска, почему его и можно назвать полислойным диском с распылительными отверстиями. В опорном диске 21 присутствует диск 23 с отверстиями, который, например, сцентрирован. Благодаря способу изготовления диска 23 с отверстиями согласно изобретению возникает структура, состоящая из множества слоев. Эта многослойность диска 23 с отверстиями четко просматривается на фиг. 3, которая представляет собой вид в соответствии с разрезом по III-III на фиг. 2. Короче говоря, здесь было бы уместно назвать уже некоторые существенные признаки, которые, кроме всего прочего, касаются также и способов, причем более подробная ссылка на способы по изобретению дается ниже.

Изображенный на фиг. 2 и 3 диск 23 с отверстиями имеет структуру из трех металлических слоев, созданную путем гальванического осаждения. На основе глубинного литографического, гальванотехнического изготовления имеют место особые признаки при задавании контура: - слои с постоянной толщиной, которая не имеет отклонений по поверхности диска, - за счет глубокого литографического структурирования вертикальные надрезы в слоях, которые образуют соответствующие полости, по которым проходит поток, - желательные подрезы и перекрытия надрезов за счет многослойной структуры в отдельности структурированных металлических слоев, - надрезы с любыми формами поперечного сечения, имеющими осепараллельные стенки, как, например, прямоугольник, многоугольник, скругленный прямоугольник, скругленный многоугольник, эллипс, круг и т.д.

Отдельные слои гальванически осаждаются друг за другом, так что последующий слой вследствие гальванического сцепления прочно соединяется с расположенным под ним слоем.

Таким образом, в первом примере выполнения три круговых слоя, например, с одинаковым наружным диаметром, образуют диск 23 с отверстиями. Верхний слой 35 имеет, например, четыре прямоугольных, выполненных соответственно на одинаковом расстоянии относительно продольной оси 2 клапана или же относительно средней оси диска 23 с отверстиями впускных 36 отверстия, смещенные друг относительно друга на 90 град. Впускные 36 отверстия размещены по сравнению с диаметром диска 23 с отверстиями очень близко к продольной оси 2 клапана. На существенно большем расстоянии от продольной оси 2 клапана и, тем самым, при радиальном смещении относительно впускных 36 отверстий в нижнем слое 37 предусмотрены также четыре прямоугольных выпускных 38 отверстия. Выпускные 38 отверстия имеют, например, несколько меньшую ширину отверстия, чем впускные 36 отверстия. Две проходящие перпендикулярно друг другу и пересекающиеся у продольной оси 2 клапана оси 39 диска 23 с отверстиями делят впускные 36 отверстия, а также выпускные 38 отверстия где-то посередине, так что обе оси представляют собой оси симметрии имеющего симметричную структуру диска 23 с отверстиями. Вдоль осей 39 в среднем, расположенном между верхним и нижним слоем 35 и 37 слое 40 простираются радиальные каналы 42, которые образуют непосредственное соединение впускных 36 отверстий и выпускных 38 отверстий. Каналы 42, имеющие слегка трапецеидальную форму, имеют, например, такой размер, что они в проекции как раз перекрывают впускные 36 и выпускные 38 отверстия. Все четыре канала 42 расположены в этом примере выполнения отдельно друг от друга. На фиг. 2 и 3 штрихпунктирными линиями обозначены другие возможные варианты, при которых каналы 42 имеют разные, четко большие радиальные размеры, так что затем каналы 42 через выпускные 38 отверстия нижнего слоя 37 четко выходят наружу в радиальном направлении (см. фиг. 5 и 6).

При диаметре 4-5 мм диск 23 с отверстиями имеет, например, толщину 0,5 мм, причем верхний и нижний слой 35 и 37, например, имеет толщину соответственно 0,1 мм, а толщина среднего слоя 40 составляет 0,3 мм. Эти величины, касающиеся размеров диска 23 с отверстиями, а также все другие указанные в описании размеры служат лишь для лучшего понимания и ни в коей мере не ограничивают изобретения. Также и относительные отклонения размера отдельных структур диска 23 с отверстиями даны на всех фигурах необязательно в масштабе.

Благодаря уже имеющемуся радиальному смещению выпускных отверстий 38 относительно впускных 36 отверстий получают S-образное направление потока среды, например горючего. На основании фиг. 4, которая еще раз выделяет зону прохождения потока диска 23 с отверстиями в аксиальном сечении с впускным 36 отверстием, каналом 42 и выпускным 38 отверстием, поясняются принципиальные условия обтекания. Стрелки, характеризующие направление прохождения потока, четко показывают S-образную форму, поэтому также и в случае дисков 23 с отверстиями по изобретению речь идет о дисках типа S. Таким образом, через диск 23 с отверстиями поток проходит от впускного 36 отверстия до соответствующего ему выпускного 38 отверстия. Исходя от впускного 36 отверстия, поток направляется в каждом впускном 36 отверстии через соответствующий проходящий горизонтально канал 42 наружу в радиальном направлении. В конце канала в примере по фиг. 4 находится выпускное 38 отверстие.

Через радиально проходящий канал 42 среда получает радиальную составляющую скорости. Быстро проходя через аксиальное выпускное отверстие, поток неполностью теряет свою радиальную составляющую скорости. Более того, он выходит из диска 23 с отверстиями при одностороннем отрыве у стенки выпускного 38 отверстия, обращенной к впускному 36 отверстию, под углом к продольной оси клапана или же к средней оси 2. Комбинация множества, например, ориентированных асимметрично друг другу отдельных струй, которые можно получить благодаря соответствующему расположению и ориентации множества конструктивных единиц из впускных и выпускных отверстий 36 и 38 и каналов 42, позволяет создавать совершенно новые, индивидуальные, комплексные общие формы струй с различным распределением количеств.

С помощью так называемого S-образного витка внутри диска 23 с отверстиями со множеством сильных отклонений потока поток проявляет сильную турбулентность, способствующую распылению. В результате этого особенно четко обрисован перепад скоростей поперек потока. Он выражает изменение скорости поперек потока, причем скорость в середине потока четко больше, чем вблизи стенок. Вытекающие из разницы скоростей повышенные напряжения сдвига слоев жидкости в текучей среде способствуют распаду на мелкие капельки вблизи выпускных 38 отверстий. Поскольку поток на выходе отрывается в одностороннем порядке, то из-за отсутствующего направления по контуру он не получает успокоения. Особенно высокую скорость текучая среда имеет на стороне отрыва, в то время как скорость текучей среды падает на направлению к стороне выпускного 38 отверстия с прилегающим потоком. Таким образом, завихрения, способствующие распылению, и напряжения сдвига слоев жидкости на выходе не уничтожаются.

На фиг. 5 и 6 представлены примеры выполнения дисков 23 с отверстиями, у которых каналы 42 в среднем слое 40 проходят не только от впускных 36 отверстий вплоть до выпускных 38 отверстий, но и через выпускные 38 отверстия наружу в направлении наружного ограничения дисков 23 с отверстиями. Эти удлинения каналов 42 обозначаются ниже как продолжения 43 каналов (cavities). Что касается принципа направления потока и воздействия на формообразование струи и распыление, то здесь действуют в принципе уже сделанные высказывания. Жидкость, текущая в выпускное 38 отверстие, проскальзывает, далее, мимо продолжения 43 канала (cavity) и создает в продолжении 43 канала завихрение потока. Взаимодействие между завихрением и образующимся потоком приводит к временной нестабильности в зоне взаимодействия. Периодически завихрение изменяет свою величину и, нарастая, вытесняет скользящий мимо поток (соответственно при уменьшении завихрения происходит обратный процесс). Таким образом, выходящий поток периодически отклоняется от заданного направления я побуждает образование колебаний. Частота и амплитуда осциллирующих колебаний в выходящем потоке зависят при этом от формы выполнения продолжения 43 канала, а именно от радиальной глубины "c" и высоты "h", которая получается за счет толщины среднего слоя 40. В показанном на фигуре 5 примере выполнения имеет силу, например, равенство c = h, в то время как в примере по фигуре 6 для величины продолжения 43 канала имеет силу равенство c = 2 h. Геометрия показанного на фиг. 6 продолжения 43 канала ведет к тому, что возникает двойное завихрение, причем оба завихрения приводятся в действие за счет обмена импульсами и имеют противоположное направление.

За счет осциллирующих колебаний в отдельных выходящих струях колебательные узоры создаются как в отдельных струях, так и в общем спрее. С помощью этих колебательных узоров можно получать самые разные, необычные формы поперечного сечения струи (например, прямоугольник, треугольник, крест, окружность). Без таких колебаний струй эти формы поперечного сечения получить было бы нельзя, в остальном существует тенденция к круговым формам поперечного сечения отдельных струй. Любые узоры или же формы поперечных сечений отдельный струй или же всего спрея целиком как суммы всех отдельных струй, которые за счет обмена импульсами находятся в постоянном взаимодействии друг с другом, можно получить, в частности, тогда, когда осциллирующие колебания в жидкой среде имеют высокую частоту. К тому же за счет изменения направления спрей распределяется более равномерно по поперечному сечению струи. Благодаря этому спрей становится более гомогенным и еще лучше перемешивается с потоком воздуха выпускного газопровода для образования смеси, уменьшающей количество выхлопных газов.

Существующие за счет турбулентности поперечные импульсы, направленные поперек потока, приводят, кроме всего прочего, к тому, что плотность распределения капелек в разбрызгиваемом спрее имеет большую равномерность. Отсюда вытекает уменьшение вероятности коагуляций капелек, а именно, объединения капелек с образованием больших капель. Следствием предпочтительного сокращения среднего диаметра капельки в спрее является относительно гомогенное распределение спрея. За счет S-образного витка в текучей среде создается высокочастотная турбулентность, что можно определить по шкале точной настройки, которая позволяет струе распадаться непосредственно после выхода из диска 23 с отверстиями в соответствующие мельчайшие капельки. Чем больше напряжения сдвига слоев жидкости, являющиеся следствием турбулентности, тем больше является также разброс векторов потока. Напряжения сдвига слоев жидкости обеспечивают положение, когда во всех плоскостях текучей среды господствует "хаотическое состояние", так что возникает желаемая разводка струй или же спрея, которая может привести к возникновению различных форм или узоров поперечного сечения.

На фиг. 7, 8 и 9 изображены отдельные примеры выполнения, имеющие некоторые отклонения относительно друг друга, которые отличаются от предшествующих примеров выполнения прежде всего тем, что они имеют более трех слоев и продолжения 43' каналов не только в радиальном направлении, в виде удлинения канала 42. На фиг. 7 показан пятислойный диск 23 с отверстиями, в котором наряду с тремя известными слоями 35, 37 и 40 выполнены еще два других средних слоя 40'. Эти два дополнительных слоя 40' расположены соответственно между средним слоем 40 и верхним или нижним слоем 35 или 37. Для обеспечения прохождения текучей среды через диск 23 с отверстиями от впускного 36 отверстия до выпускного 38 отверстия оба слоя 40' имеют также соответствующие зоны 45 открытия, которые создают соединение с предусмотренным в слое 40 каналом 42. Наряду с этими зонами 45 открытия в слоях 40' выполнено соответственно, по меньшей мере, одно продолжение 43' канала, которое имеет, например, аксиальную высоту слоя 40'. Если смотреть в радиальном направлении, то продолжения 43' каналов располагаются, например, между впускным 36 отверстием и выпускным 38 отверстием. Поток текучей среды опять же приводит в движение завихрение потока в продолжениях 43' канала. Дополнительно к расположенным с аксиальным смещением относительно канала 42 продолжениям 43' канала могут быть предусмотрены также примыкающие радиально к каналу 42 продолжения 43 канала.

Фиг. 8 изображает вариант диска 23 с отверстиями с четырьмя слоями, т.е. только с дополнительным средним слоем 40'. В зависимости от расположения слоя 40' выше или ниже слоя 40 слой 40' должен иметь опять же зону 45 раскрытия, а здесь на фиг. 8 - зону 45 открытия, выполненную непосредственно у выпускного 38 отверстия. В слое 40' находятся дополнительно продолжения 43' каналов, которые представляют собой смещенные аксиально относительно канала 42 камеры, в которых возникают завихрения потока. Например три продолжения 43' канала в слое 40' могут распределяться на одинаковом расстоянии друг от друга или же произвольно. Схематичный вид сверху на часть диска 23 с отверстиями показан на фиг. 9. При этом становится ясно, что продолжения 43' каналов могут выполняться не только в аксиальном направлении диска 23 с отверстиями, то есть в глубину, но и могут быть выполнены непременно по ширине канала 42, выступая за его пределы. Таким образом, продолжения 43, 43' каналов могут быть отформованы на канале 42 во всех трех направлениях, то есть по длине, ширине и глубине.

Все предшествующие примеры могут быть снабжены признаком наличия задерживающей ловушки граничного слоя, как это показано на фиг. 10. Диск 23 с отверстиями в этом конкретном случае выполнен четырехслойным. Между обоими верхними и нижними слоями 35 и 37 находятся, например, два средних слоя 40 и 40'. Дополнительный средний слой 40', который следует непосредственно за нижним слоем 37, выполнен таким образом, что поперек направлению потока в зоне канала 42 располагается, например, прямоугольное, с острыми кромками, возвышение, а именно задерживающая ловушка 50. Возможно также и размещение задерживающей ловушки 50 в среднем слое 40, так что тогда задерживающая ловушка 50 вдавалась бы сверху в канал 42. Исходя из геометрии задерживающая ловушка 50 должна быть выполнена с радиальным смещением относительно впускного 36 отверстия. Канал 42 проходит между слоями 35 и 37 как в слое 40, так и в слое 40'.

Основной поток текучей среды скользит через задерживающую ловушку 50 граничного слоя. На задней, расположенной по течению кромке 51 препятствия поток открывается от задерживающей ловушки 50 и вследствие неожиданного расширения поперечного сечения - по течению потока - задерживающей ловушки 50 происходит повышение давления (превращение кинетической энергии в энергию давления - эффект рассеивания). Это увеличение давления приводит к интенсивным завихрениям в граничном слое в зоне позади задерживающей ловушки 50.

Позади задерживающей ловушки 50 возникает постоянно увеличивающийся вихревой шлейф с сильными поперечными импульсами, который достигает выпускного 38 отверстия. Вихревой шлейф протягивается через основной поток в виде "турбулентного жгута". Турбулентность в вихревом шлейфе может иметь высокую частоту - что может быть считано по точной шкале - и иметь большую амплитуду. Согласование по частоте и амплитуде происходит через высоту задерживающей ловушки 50 и скорость скользящего мимо основного потока, то есть через площадь поперечного сечения канала выше задерживающей ловушки 50.

Вихревой шлейф может уменьшать потери протекающей среды, так как в ней происходит высокий турбулентный импульсный обмен поперек основного потока в направлении стенок. Отсюда вытекает, что основной поток за задерживающей ловушкой 50 менее склонен к отрыву от стенок канала 42 и в результате этого лучше использует имеющиеся в распоряжении поперечные сечения протекающей среды. Отрыв потока от стенок мог бы привести к потере давления. Также и задерживающая ловушка 50 служит для того, чтобы разбрызгивался гомогенный спрей, который распадается на очень мелкие капельки, причем опять же можно получать самые разные узоры разбрызгивания.

В предшествующих примерах каждая пара впускных/выпускных отверстий 36, 38 имела сепаратный канал 42 в качестве соединительного элемента этих отверстий 36, 38. В противоположность этому на фиг. 11 и 12 представлен пример выполнения, который имеет лишь один единственный взаимосвязанный канал 42' в диске 23 с отверстиями. Все четыре впускных 36 отверстия выходят в этот канал 42', имеющий, например, квадратную форму, а все четыре выпускных 38 отверстия выходят опять же из канала 42'. При использовании прямоугольных или квадратных выпускных 38 отверстий появляется возможность выполнять наружный контур канала 42' в среднем слое восьмиугольным, а за счет близости расположения каждых двух углов - почти квадратным, как это представлено на фиг. 11. По направлению внутрь канал 42' ограничен, например, выполненным из материала, квадратным островком 53 среднего слоя 40. Этот внутренний, выполненный из материала островок 53 имеет приблизительно такой размер в поперечном сечении, какой имеет зона между впускными 36 отверстиями в верхнем слое 35. Слой 40 состоит, таким образом, из двух участков, а именно из выполненного из материала островка 53, полностью окруженного каналом 42', и из наружной зоны 54, опять же полностью окруженной каналом 42'. Фиг. 12 представляет собой вид на диск 23 с отверстиями в соответствии с разрезом по XII-XII на фиг. 11.

Благодаря возникновению дополнительных соединительных объемов имеет место увеличение количества так называемых зон застоя воды, мимо которых проскальзывает основной поток. В этих зонах застоя воды возникает колебательное возбуждение основного потока по принципу "cavityp" с продолжениями 43, 43' каналов. Соответственно воздействие на формообразование струи и распыление являются идентичными, как и в предшествующих примерах с продолжениями каналов 43, 43' (cavities).

Смещение выпускных 38 отверстий относительно впускных 36 отверстий ни в коем случае не должно проходить в радиальном направлении, как это имело место в предшествующих примерах, а может быть предусмотрено в любых желаемых направлениях. Два примера выполнения для другого вида смещения показаны на фиг. 13 и 14 как вид снизу или вид сверху соответственно на один диск 23 с отверстиями. При этом становится ясно, что выпускные 38 отверстия прежде всего смещены в окружном направлении относительно впускных 36 отверстий, то есть повернуты, например, на 90o по сравнению с примерами с радиальным смещением. Канал 42' в среднем слое 40 диска 23 с отверстиями по фиг. 13 имеет, например, восьмиугольный, но в грубом приближении квадратный наружный контур, причем углы стенок канала 42' расположены всегда вблизи впускных и выпускных отверстий 36 и 38. Выполненный из материала островок 53 среднего слоя 40 ограничивает канал 42' по направлению вовнутрь контуром, имеющим также почти квадратную форму, который имеет, правда, восемь углов. Наружная и внутренняя ограничительная стенка канала 42' выполнены, например, с поворотом на 45o относительно друг друга. Таким образом, наружная зона 54 и выполненный из материала островок 53 не имеют параллельно проходящих стенок.

Показанный на фиг. 14 и 15 (разрез по XV-XV по фиг. 14) диск 23 с отверст