Производные пролина, пригодные в качестве ингибиторов эластазы лейкоцитов человека

Реферат

 

Описываются новые производные пролина общей формулы I или его сольватированная форма, или его кеталь, или геми-кеталь в виде диастереомерной смеси, содержащей 50% или более диастереоизомера формулы Ia или его сольватированной формы, или его кеталя, или геми-кеталя. Соединения являются ингибиторами эластазы лейкоцитов человека. 6 с. и 10 з.п. ф-лы, 8 ил.

Изобретение относится к новым производным пролина, и, более конкретно к отдельным формам нового производного 1-замещенного N-[2-метил-1-(трифторацетил)- пропил]пирролидин-2-карбоксамида, которые являются ингибиторами эластазы лейкоцитов человека (ЭЛЧ), известной также как эластаза нейтрофилов человека (ЭНЧ), которые имеют важное значение, например, как средства научно-исследовательской работы в фармакологических, диагностических и связанных с ними исследованиях и при лечении заболеваний млекопитающих, к которым причастна ЭЛЧ. Например, ЭЛЧ является причиной патогенеза острого респираторного дистресс-синдрома (ARDS), ревматоидного артрита, атеросклероза, эмфиземы легких и других воспалительных заболеваний, включая воспалительные заболевания дыхательных путей, характеризуемые повышенной и аномальной секрецией в дыхательных путях, такие как острый и хронический бронхит и муковисцидоз. ЭЛЧ также является причиной некоторых сосудистых заболеваний и сопутствующих им состояний (и используется при их лечении), в которых принимают участие нейтрофилы или к которым причастны нейтрофилы, например кровотечение, связанное с острым лейкозом, не являющимся лимфолейкозом, а также реперфузионной травмы, связанной, например, с ишемией миокарда, и сопутствующими состояниями, связанными с заболеванием коронарной артерии, таким как стенокардия и инфаркт, цереброваскулярной ишемией, как например преходящее нарушение мозгового кровообращения или внезапный приступ нарушения мозгового кровообращения, периферическим обтурирующим сосудистым заболеванием, таким как перемежающаяся хромота и критическая ишемия конечности, венозной недостаточностью, такой как венозная гипертензия, варикозные вены и образование венозных язв, а также с ослабленными состояниями с реперфузией, такими как состояния, связанные с восстановительной хирургией на сосудах, тромболизом и пластической операцией на сосудах. Изобретение относится также к способам лечения одного или нескольких из этих состояний заболевания и к применению одной или нескольких отдельных форм нового производного при изготовлении лекарственного средства для применения в случае одного или нескольких указанных состояний. Изобретение, кроме того, относится к фармацевтическим композициям, содержащим одну или несколько отдельных форм нового производного в качестве активного ингредиента, а также к способам получения отдельных форм нового производного, к новым промежуточным продуктам, используемым в указанных способах, и к способам получения указанных промежуточных продуктов.

В связи с очевидной ролью эластазы лейкоцитов человека в последние годы имел место значительный объем исследовательских работ, направленных на разработку ингибиторов ЭЛЧ. В патенте США 4910190 описан ряд близких по структуре пептидоильных производных трифторметана, которые являются ингибиторами эластазы лейкоцитов человека. В настоящее время заявителями обнаружено, что определенные формы нового производного 1-замещенного N-[2-метил-1-(трифторацетил) пропил]пирролидин-2-карбоксамида формулы I (представлена в конце описания) являются неожиданно мощными ингибиторами ЭЛЧ.

Согласно одному аспекту изобретения предлагается соединение (S)-1-[(S)-2-(метоксикарбониламино)-3-метил-бутирил]-N-[2- метил-1-(трифторацетил) пропил] пирролидин-2-карбоксамид, или его сольват, оба в форме диастереомерной смеси (S)-1-[(S)-2- (метоксикарбониламино)-3-метилбутирил]-N-[(S)-2-метил-1- (трифторацетил) пропил]пирролидин-2-карбоксамида (или его сольвата) и (S)-1-[(S)-2-(метоксикарбониламино)-3-метилбутирил]-N-[(R)-2- метил-1-(трифторацетил) пропил]пирролидин-2-карбоксамида (или его сольвата) и в форме существенно или практически чистого диастереоизомера (S)-1-[(S)-2-(метоксикарбониламино)-3- метилбутирил] -N-[(S)-2-метил-1-трифторацетил)пропил] пирролидин-2-карбоксамида (или его сольвата).

Следует учесть, что соединение формулы I имеет три хиральных центра (обозначенных в формуле I как * и #) и, следовательно, может существовать в восьми различных стереомерных формах или в виде диастереомерной смеси двух или нескольких из этих форм. Например, соединение (S)-1-[(S)-2-(метоксикарбониламино)-3-метилбутирил]-N- [2-метил-1-(трифторацетил) пропил] пирролидин-2-карбоксамид является соединением формулы 1, в котором два хиральных центра, обозначенных как *, имеют S-конфигурацию, а третий хиральный центр, обозначенный как #, имеет RS-конфигурацию. Следовательно, соединение является диастереомерной смесью, содержащей диастереоизомер с хиральными центрами, обозначенными * и #, имеющими все S-конфигурацию, то есть (S)-1-[(S)-2-(метоксикарбониламино)-3-метилбутирил]-N- [(S)- 2-метил-1-(трифторацетил) пропил] пирролидин-2-карбоксамид (именуемый далее "SSS-диастереоизомер" формулы I, и который может также быть представлен как показано формулой Ia, приведенной в конце описания, в которой изображенная жирно связь обозначает связь, выступающую над плоскостью бумаги), и диастереизомер с хиральными центрами, обозначенными *, имеющими S-конфигурацию, и центром, обозначенным #, имеющим R-конфигурацию, то есть (S)-1-[(S)-2- (метоксикарбониламино)-3-метилбутирил]-N-[(R)-2-метил-1- (трифторацетил)пропил] -пирролидин-2-карбоксамид (именуемый далее "SSR-диастереоизомер" формулы I), или их сольваты. Такая диастереомерная смесь включает, например, смесь, содержащую приблизительно равные количества SSS- и SSR-диастереоизомеров, т.е. соотношение SSS:SSR составляет около 1:1. Например, получены диастереомерные смеси, содержащие SSS- и SSR-диастереоизомеры в соотношениях 53:47 и 47:53 (SSS:SSR). Отдельные формы соединения формулы I, которые являются предпочтительными, представляют собой диастереомерные смеси, которые обогащены SSS-диастереоизомером, т.е. соотношение SSS:SSR составляет более 1:1. Особенно предпочтительная форма соединения представляет собой существенно или практически чистый SSS-диастереоизомер, то есть SSS-диастереоизомер, содержащий менее 5% (более конкретно, менее 3% и предпочтительно менее 2%) других диастереоизомеров.

Следует учесть, что SSS-диастереоизомер формулы I может также образовывать диастереомерную смесь с одной или несколькими другими формами формулы I, например может быть получен (S)-1- [2-(метоксикарбониламино)-3-метилбутирил] -N-[(S)-2-метил-1- (трифторацетил) пропил] пирролидин-2-карбоксамид (диастереомерная смесь SSS- и RSS-форм формулы I) или I-[(S)-2-(метоксикарбониламино) -3-метилбутирил] -N-[(S)-2-метил-1- (трифторацетил) пропил] пирролидин-2-карбоксамид (диастереомерная смесь SSS- и SRS-форм формулы I). Эти конкретные диастереомерные смеси и другие диастереомерные смеси, содержащие около 50% или более SSS-диастереоизомера, совместно с одним или несколькими другими возможными диастереоизомерами с различными конфигурациями при хиральных центрах, обозначенных в формуле I как * и #, являются поэтому следующими аспектами настоящего изобретения.

Диастереомерная смесь SSS- и SSR-диастереоизомеров может существовать в аморфной, некристаллической форме или в кристаллической форме в зависимости от соотношения SSS: SSR присутствующих диастереоизомеров. Предпочтительная диастереомерная смесь представляет собой смесь, которая может быть выделена в кристаллической форме, которая особенно подходит при изготовлении соединения или составов на его основе, со степенью чистоты и однородностью, требуемыми для аттестации установленного образца. Следует учесть, что крайне сложно получить соединение, представляющее собой единственный диастереоизомер, полностью свободный от других возможных диастереомерных форм, в особенности соединение, которое имеет три хиральных центра. Поэтому настоящее изобретение включает кристаллическую форму SSS-диастереоизомера формулы I или его сольвата, который содержит другие возможные диастереомерные формы с различными конфигурациями при хиральных центрах, обозначенных в формуле I как * и # . Установлено, что может быть получена кристаллическая диастереомерная смесь SSS- и SSR-диастереоизомеров, или их гидратов, которая представляет собой по существу или практически диастереомерную смесь SSS- и SSR-диастереоизомеров в соотношении (SSS:SSR) 65:35 или более, т.е. она содержит 35% или менее SSR-диастереоизомера. Поэтому настоящее изобретение включает кристаллическую форму соединения формулы I или его сольват с содержанием SSS-диастереоизомера по меньшей мере 65%. Предпочтительно кристаллическая диастереомерная смесь имеет, например, соотношение SSS:SSR, которое составляет 80: 20 или более, например 95:5 или более, и в особенности 98,5:1,5 или более. Особенно предпочтительной формой соединения согласно изобретению является кристаллический SSS-диастереоизомер, который является существенно или практически чистым, т.е. он содержит менее 5% других диастереоизомеров, например менее 5% SSR-диастереоизомера, предпочтительно менее 3% SSR-диастереоизомера и более предпочтительно менее 2% SSR-диастереоизомера.

Аморфная или кристаллическая диастереомерная смесь SSS- и SSR-форм, либо существенно, либо практически чистый диастереоизомер, существует в форме, которая является существенно или практически свободной от растворителя (которая именуется ниже "кетонная форма" и которая иллюстрируется формулой Ia для чистого SSS-диастереоизомера), или в виде сольватированной, например, гидратированной формы, или в виде смеси кетонной и сольватированной (гидратированной) форм. Гидратированная форма может существовать, например, в виде гем-диола трифторкетонного радикала, то есть в виде соединения формулы Ib (представлена в конце описания) для существенно или практически чистого SSS-диастереоизомера, или в виде соединения формулы Ic (представлена в конце описания), или в форме, которая включает молекулу воды в качестве части кристаллической решетки, или смеси таких форм. Соединения формулы Ib или Ic, кроме того, могут быть, например, гидратированными.

Следует учесть, что степень гидратации диастереомерной смеси либо существенно, либо практически чистого SSS-диастереоизомера может быть выражена как отношение количества гидратной формы к количеству кетонной формы. Например, выделена аморфная, некристаллическая диастереомерная смесь SSS- и SSR-форм, в которой отношение гидратированной формы к кетонной форме изменяется, например, от около 30:70 (т.е. смесь, обогащенная кетонной формой) до около 95:5 или более (т.е. смесь по существу или практически в гидратированной форме), включая такие соотношения, как около 50:50 и около 60:40. Например, были получены кристаллические формы, которые имеют отношение SSS: SSR около 95:5 одновременно с отношением гидрат:кетон около 80:20, и которые имеют отношение SSS:SSR около 65:35 или более (как например 98,5:1,5) и находятся по существу или практически в гидратированной форме. Были также получены кристаллические гидраты существенно или практически чистого SSS-диастереоизомера, содержащего приблизительно 4,1% (по весу) и 7,8% (по весу) воды. Такие отдельные формы являются дальнейшими аспектами изобретения. Кроме того, следует учесть, что настоящее изобретение охватывает также любой кеталь или гемикеталь (или их смеси) диастереомерной смеси или формы SSS-диастереоизомера, или их сольвата, в отношении тех из них, которые превращаются в гем-диол in vivo, например, путем гидролиза или ферментативного расщепления (и у которых остаток является фармацевтически приемлемым). Настоящее изобретение включает также любой таутомер или пролекарство SSS-диастереоизомера или его сольвата.

Следует учесть, что соединение формулы Ib может обозначаться как гем-диольная форма соединения формулы Ia или при помощи химического наименования (S)-1-[(S)-2- (метоксикарбониламино)-3- (метилбутирил)] -N-[(S)-2-метил-1- (2,2,2-трифтор-1,1-дигидроксиэтил) пропил]пирролидин-2- карбоксамид. Следует также учесть, что альтернативным наименованием для соединения формулы Ia является метил-N-[(1S)-1- ((2S)-2-[N-((1S)-2-метил-1- (2,2,2-трифторацетил)-пропил) карбамоил]пирролидин-1-илкарбонил) -2-метилпропил]-карбамат, а альтернативным наименованием для соединения формулы Ib является метил-N-[(S)-1-((2S)-2-[N-((S)-3,3,3-трифтор-2,2-дигидрокси-1- изопропилпропил) карбамоил-пирролидин-1-илкарбонил) -2-метилпропил]карбамат.

Температура плавления кристаллического SSS-диастереоизомера, содержащего SSR-диастереоизомер, обычно зависит от уровня содержания присутствующего SSR-диастереоизомера и от степени сольватации (гидратации). Она может быть определена при помощи стандартных методик, хорошо известных в технологии, например при помощи дифференциальной сканирующей калориметрии (ДСК).

Предпочтительно кристаллический SSS-диастереоизомер находится в гидратированной форме. Например, были обнаружены гидратированные формы SSS-диастереоизомера, которые обладают таким положительным свойством, что они не являются гигроскопичными, например форма А и форма В, которые описаны ниже. Таким образом, предпочтительная форма SSS-диастереоизомера представляет собой кристаллическую форму, содержащую менее 5% (предпочтительно менее 3% и особенно предпочтительно менее 2%) SSR-диастереоизомера, и находится существенно или практически в гидратированной форме. Установлено, что такие кристаллические гидратированные формы, например форма A и форма B, обладают хорошей биологической пригодностью и хорошей растворимостью в водном буфере, и оба эти свойства являются положительными.

Особенно предпочтительная кристаллическая форма SSS-диастереоизомера формулы I, когда он является существенно или практически чистым и находится в гидратированной форме, имеет порошковую рентгенограмму, включающую два главных характерных пика приблизительно при 2 = 10,8 и 11,4o. Эта форма (называемая в настоящем описании форма A) содержит приблизительно 4,1% воды. Порошковая рентгенограмма включает также относительно менее интенсивные характерные пики, встречающиеся приблизительно при 2 = 15,4, 16,8, 18,2, 18,6, 20,6, 21,6, 21,9, 22,8 и 25,0o. Спектр порошковой дифракции рентгеновских лучей (XDS) типичного образца этой формы показан на фиг. 1 и 2, где на фиг. 2 показаны менее интенсивные пики в увеличенном масштабе. Дополнительные физические данные дают основание предполагать, что эта кристаллическая форма находится по существу или практически в форме диола формулы Ib.

Следующая предпочтительная кристаллическая форма SSS-диастереоизомера формулы I, когда он является существенно или практически чистым и находится в гидратированной форме, имеет порошковую рентгенограмму, включающую главный характерный пик приблизительно при 2 = 7,2. Эта форма (называемая в настоящем описании форма В) содержит приблизительно 7,8% по весу (например, 7,3-8,3% по весу) воды. Порошковая рентгенограмма включает также относительно менее интенсивные характерные пики, встречающиеся приблизительно при 2 = 7,4, 9,0, 10,8, 11,3, 14,5, 15,9, 17,8, 18,1, 19,7 и 22,5o. Спектр порошковой дифракции рентгеновских лучей типичного образца этой формы показан на фиг. 3. Дополнительные физические данные дают основание предполагать, что эта кристаллическая форма является существенно или практически моногидратом диола формулы Ib.

Когда он является существенно или практически чистым и существенно или практически свободным от растворителя (т.е. находится в "кетонной" форме), SSS-диастереоизомер формулы I имеет порошковую рентгенограмму, включающую главный характерный пик приблизительно при 2 = 12,1. Эта рентгенограмма включает также относительно менее интенсивные пики, встречающиеся приблизительно при 2 = 6,0, 16,8 и 17,7o. Спектр XDS типичного образца в "кетонной" форме показан на фиг. 4.

Спектры порошковой дифракции рентгеновских лучей определяли, например, используя рентгеновский дифрактометр Scintag XDS-2000 с твердофазным детектором фотонов EC& G, серия GLP (германий), управляемый компьютером Microvax, и используя программное обеспечение Diffraction Management System, поставляемое фирмой Scintag Inc., Sunnydale, California, USA. Использовавшаяся рентгеновская трубка представляла собой трубку Cu K-альфа с длиной волны при 45 кВ и 40 мА. Приемные щели были установлены на расстоянии 2 и 4 мм, а щели, осуществляющие дивергенцию, были установлены на расстоянии 0,2 и 0,5 мм по отношению к пути падающего луча. Спектры были получены в режиме непрерывного сканирования с приращением обтюратора (а chopper increment) 0,02. Каждый образец экспонировали при скорости 1 градус угла 2-тета в минуту (время прохода составляло 38 минут) и снимали показания от 2 до 40 градусов 2-тета с получением кривой параметра кристаллической решетки в зависимости от интенсивности для этого интервала.

Для проведения дифракционного анализа образцы упаковывали в круглые чашки для образцов из алюминиевого сплава диаметром 25 мм и высотой 2 мм. Порошкообразный образец помещали в чашку таким образом, чтобы вещество оказывалось в избытке по сравнению с объемом чашки, а затем выравнивали по краю чашки при помощи предметного стекла микроскопа. В качестве внешнего стандарта использовали кремний типа NBS 640b.

В альтернативном варианте использовали рентгеновский дифрактометр Siemens D5000, записывающий дифрактограмму в - режиме в интервале от 2 до 40 градусов 2-тета, с экспозицией в 4 секунды на приращение 2 в 0,02o.

Для типичного образца формы А был получен инфракрасный спектр. Инфракрасный спектр был получен при помощи методики заливки растворителя, хорошо известной в технологии, из ацетонитрильных заливок образца в соляное окно для анализа путем прямого пропускания. Инфракрасный спектр определяли в диапазоне волновых чисел от 4000 до 400 см-1. Инфракрасный спектр показан на фиг. 5. Спектр на фиг. 5 включает резкие пики приблизительно при 2968, 1762, 1721, 1690, 1632, 1525, 1447, 1207 и 1154 см-1.

Инфракрасный спектр был получен также для типичного образца формы A с использованием спектрометра Nicolet 20SXC FTIR. Спектр получали, используя 2% дисперсию образца в бромистом калии. Инфракрасный спектр показан на фиг. 6. Спектр на фиг. 6 включает резкие пики приблизительно при 3402, 3321, 3252, 3060, 2967, 2878, 1699, 1674, 1629, 1535, 1532, 1446, 1271, 1258, 1249, 1175, 1152, 1118, 1089, 1029, 1013, 1004, 635, 593 и 567 см-1. При использовании аналогичных условий был получен инфракрасный спектр для типичного образца формы В. Инфракрасный спектр показан на фиг. 7. Спектр на фиг. 7 включает резкие пики приблизительно при 3428, 3304, 2971, 2875, 1708, 1682, 1637, 1556, 1518, 1470, 1449, 1428, 1316, 1310, 1277, 1265, 1236, 1196, 1175, 1144, 1120, 1081, 1036, 1005, 928, 818, 790 и 727 см-1. При использовании аналогичных условий был получен инфракрасный спектр для типичного образца SSS-диастереоизомера в существенно "кетонной" форме. Инфракрасный спектр показан на фиг. 8. Спектр на фиг. 8 включает резкие пики приблизительно при 3415, 3300, 2967, 2876, 1764, 1723, 1711, 1695, 1686, 1634, 1527, 1445, 1356, 1286, 1234, 1213, 1139, 1105, 1061, 1020, 774, 774, 732 и 671 см-1.

Следует учесть, что значения 2 на порошковых рентгенограммах и длины волн инфракрасных спектров могут слегка изменяться от одного прибора к другому, и, таким образом, количественно определенные значения не должны рассматриваться как абсолютные. Например, два характерных специфичных пика, которые встречаются приблизительно при 2 = 10,8 и 11,4o, для типичного образца формы А в случае использования рентгеновского дифрактометра Scintag XDS-2000 встречаются приблизительно при 2 = 10,6 и 11,2o соответственно в случае использования рентгеновского дифрактометра Siemens D-5000 (с менее интенсивными пиками, также встречающимися при пропорционально более низких относительных значениях 2). Следует учесть, что атомы водорода гидроксильных групп форм, имеющих формулу Ib или Ic (или их гидрата), являются кислотными и что, следовательно, такие соединения могут образовывать кристаллические фарамацевтически приемлемые соли при использовании стандартных методик, например, с основаниями, дающими физиологически приемлемые катионы, например солями щелочного металла (такого как натрий или калий), щелочно-земельного металла или органического амина. Поэтому изобретение включает кристаллические фармацевтически приемлемые соли форм формулы Ib и Ic или их гидратов.

Различные формы соединения формулы I или их сольваты (гидраты) могут быть получены, например, при помощи следующих процессов, которые являются, далее, отдельными аспектами изобретения.

Некристаллическая (аморфная) диастереомерная смесь SSS- и SSR-диастереоизомеров может быть получена окислением соединения формулы II (представлена в конце описания) подходящим окислителем.

Подходящий окислитель представляет собой известный в технологии окислитель для превращения гидроксильной группы в кетонную группу. Подходящие окислители и условия включают, например, использование оксалилхлорида, диметилсульфоксида и третичного амина; использование уксусного ангидрида и диметилсульфоксида; использование пиридинового комплекса с трехокисью хрома в дихлорметане; использование реагента, содержащего гипервалентный йод, такого как 1,1,1-триацетокси-2,1-бензоксидол-3(3H)-он с трифторуксусной кислотой в дихлорметане; использование избытка диметилсульфоксида и растворимого в воде карбодиимида в присутствии дихлоруксусной кислоты; или перманганта щелочного металла в щелочном водном растворе, такого как щелочной водный раствор перманганата калия или перманганата натрия. Особенно подходящими окислителями являются два последних из названных, в особенности щелочной водный раствор перманганата калия или натрия, например смесь гидроксида натрия и перманганата калия или натрия.

Соединение формулы II может быть получено, например, как показано на схемах 1 и 2, приведенных в конце описания, с использованием стандартных методик или как проиллюстрировано в примерах. Стадии с (а) по (d) схемы 1 могут быть проведены как описано в патенте США 5194588 или Европейском патенте 189305. Стадию (е) проводят с использованием стандартных методик получения карбамата из первичного амина, например, с использованием метилгалогенформиата, такого как метилхлорформиат, в присутствии подходящего основания, такого как триэтиламин или N-метилморфолин, и в подходящем растворителе или разбавителе, например хлорированном углеводороде (таком как дихлорметан или хлороформ) или в растворителе типа простого эфира (таком как тетрагидрофуран или диоксан) и при температуре, например, в диапазоне от -10oC до 50oC, например от 0oC до 30oC. Стадии реакции согласно схеме 2 включают стандартные стадии защиты (стадия (10)), снятия защиты или избирательного снятия защиты (стадии (1), (3), (6), (8), (9) и (12)), сочетания (стадии (4), (5), (13) и (14)) и образования карбамата (стадии (2), (7) и (11)), хорошо известные в технологии.

Следует учесть, что диастереомерные смеси SSS- и RSS-диастереоизомеров и SSS- и SRS-диастереоизомеров могут быть получены с использованием аналогичных методик с соответствующим выбором L- или DL-валина или пролина (или их защищенных производных) в качестве исходных веществ и использованием (2R, 3S)-3-амино-4-метил-1,1,1-трифтор-2-пентанола на соответствующих стадиях сочетания.

Существенно или практически чистый SSS-диастереоизомер может быть получен, например, путем окисления (S)-1-[(S)-2-(метоксикарбониламино)-3-(метилбутирил)] - N-[(S)-2-метил-1-((R)-2,2,2-трифтор-1-гидроксиэтил)пропил] пирролидин-2-карбоксамида (формулы IIa, приведенной в конце описания) подходящим окислителем, таким как один из окислителей, описанных выше. Исходный спирт может быть получен как показано на схеме 2, приведенной в конце описания.

Кристаллические формы SSS-диастереоизомера, содержащие 35% или менее SSR-диастереоизомера, могут быть получены из некристаллической (аморфной) диастереомерной смеси SSS- и SSR-диастереоизомеров, содержащей SSS- и SSR-диастереоизомеры в приблизительно равных количествах (т.е. отношение около 1: 1, обычно 53:47 или 47:53), путем кристаллизации из подходящего неполярного растворителя, такого как смесь метил-трет-бутилового простого эфира и гексана, предпочтительно содержащего небольшое количество воды и необязательно содержащего небольшое количество соляной кислоты, например 0-0,2 мольных эквивалента 36% соляной кислоты, и 1-2,1 мольных эквивалента воды. Установлено, что является предпочтительным добавлять водную соляную кислоту к растворителю, из которого проводится кристаллизация, в том случае, когда используется некристаллическая диастереомерная смесь с отношением SSS:SSR, составляющим 47: 53. Чтобы инициировать кристаллизацию, является предпочтительным внесение затравки кристаллического SSS-диастереоизомера. Кристаллический продукт обычно выделяется в виде смеси гидратированной и кетонной формы, обычно в соотношении около 80:20 (гидрат:кетон) или более. Гидратированная форма или смесь кетонной и гидратированной форм может быть преобразована в существенно или практически "кетонную" форму путем сушки в вакуумной печи (например, при температуре около 50oC). Однако такая кетонная форма является гигроскопичной.

Существенно или практически чистые кристаллические формы SSS-диастереоизомера могут быть получены перекристаллизацией или повторной перекристаллизацией кристаллических форм SSS-диастереоизомера, содержащих SSR-диастереоизомер. Растворители или смеси растворителей, которые могут использоваться для этого, включают, например, бутилацетат, бутилацетат/гексан, ацетон/вода, ацетон/гексан, ацетон/фракция нефти с температурой кипения 100-120oC, 1,2-диметоксиэтан/гексан, 1,2-диметоксиэтан/вода/гексан, этилацетат/вода/гексан, этилацетат/гексан, вода, дибутиловый эфир/гексан, дихлорметан/гексан, 1,2-диметоксиэтан/вода, метанол/толуол, метил-трет-бутиловый эфир/гексан, изопропанол/гексан и тетрагидрофуран/гексан. Для получения формы A предпочтительными являются первые десять растворителей или смесей растворителей из перечисленных выше. Особенно пригодными растворителями или смесями растворителей для получения формы В являются 1,2-диметоксиэтан/вода и вода/метанол, хотя эта форма может быть также получена в случае использования смеси этилацетат/вода/гексан. В понятие "гексан", когда оно используется в настоящей работе, включаются изомеры гексана (как например изогексан) или их смеси.

Существенно или практически чистые кристаллические формы SSS-диастереоизомера могут быть также получены кристаллизацией существенно или практически чистого SSS-диастереоизомера, выделенного в некристаллической форме (например, путем окисления соединения формулы IIa), такой как масло, с использованием растворителей или смесей растворителей, подобных тем, что описаны выше, особенно смеси этилацетата, воды и гексана.

Кроме того, форма A может быть также получена из формы В путем перекристаллизации, например, как показано в примере 9. В дополнение к этому кристаллическая "кетонная" форма (которая является гигроскопичной) может быть получена из формы А, например, как показано в примере 10.

Получение кеталя или геми-кеталя из кетона хорошо известно в технологии.

3-амино-4-метил-1,1,1- трифтор-2-пентанол может быть получен как описано в патенте США N 4910190 или как показано в примерах.

Особенно удобным является способ получения (2R,3S)-3-амино-4-метил-1,1,1-трифтор-2-пентанола, который является следующим аспектом изобретения и включает (как показано на схеме 3, приведенной в конце описания): (1) взаимодействие (2RS,3SR)-3-амино-4- метил-1,1,1-трифтор-2-пентанола или его соли с трифосгеном или диметилкарбонатом в присутствии подходящего основания с получением (4RS,5SR)-4-изопропил-5-трифторметилоксазолидин-2-она; с последующим (2) взаимодействием (4RS,5SR)-4-изопропил-5- трифторметил-оксазолидин-2-она или его соли со щелочным металлом с (-)-ментилхлорформиатом с получением (4RS,5SR)-4-изопропил-3- [(1R,3R,4S)-3-п-ментил-оксикарбонил]-5-трифторметил- оксазолидин-2-она, и выделением изомера (4S,5R)-4-изопропил-3- [(1R, 3R,4S)-3-п-ментил-оксикарбонил]-5-трифтор- метилоксазолидин-2-он; с последующим (3) гидролизом изомера (4S, 5R)-4-изопролпил-3-[(1R,3R,4S)-3-п-ментилоксикарбонил]-5- трифторметилоксазолидин-2-он в щелочной среде с получением (2R,3S)-3-амино-4-метил-1,1,1-трифтор-2-пентанола.

На стадии (1) подходящим основанием является водный раствор гидроксида щелочного металла, например гидроксида натрия или калия. Реакция в целом проводится в подходящем инертном растворителе или разбавителе, например углеводороде, таком как толуол. Реакция является экзотермической и, таким образом, реакция в целом проводится в условиях внешнего охлаждения с поддержанием температуры приблизительно от 0oC до 50oC, например приблизительно при температуре окружающей среды.

На стадии (2) реакция проводится в подходящем растворителе или разбавителе, например в растворителе, имеющем эфирный характер, таком как тетрагидрофуран. Удобным образом перед добавлением (-)- ментилхлорформиата оксазолидинон преобразуют в его соль с щелочным металлом, например, используя бутиллитий при температуре около -78oC. В процессе обработки желаемый (4S,5R)-изомер кристаллизуется из смеси изомеров и собирается при помощи фильтрования.

На стадии (3) подходящие условия включают, например, использование водного раствора гидроксида щелочного металла (такого как гидроксид калия или натрия) в растворителе или разбавителе эфирного характера, таком как диоксан, при температуре в диапазоне, например, 60-130oC (таком, как например 90-120oC).

Полезность соединения согласно изобретению может быть продемонстрирована при помощи стандартных испытаний и клинических исследований, включая таковые, описанные ниже.

Количественные измерения торможения Способность соединения согласно изобретению (или его отдельной формы) действовать в качестве ингибитора эластазы лейкоцитов человека (ЭЛЧ) на пептидный субстрат метокси-сукцинил-аланил-аланил-пролил-валин-п- нитроанилид с низким молекулярным весом определяли как описано в патенте США 4910190. Способность соединения оценивали путем получения кинетической оценки константы диссоциации, Ki, комплекса, образуемого в результате взаимодействия ингибитора с ЭЛЧ. Было найдено, что соединение из примера 1 имеет Ki, равную 36 нМ. Было найдено, что соединение из примера 2 имеет Ki, равную 9 нМ.

Модель повреждения легкого в острой форме Модели эмфиземы на животных включали внутритрахеальное (i.t.) введение эластолитической протеиназы, чтобы вызвать медленно прогрессирующее поражение легких разрушительного характера. Обычно это поражение оценивали через промежуток времени, составляющий от нескольких недель до нескольких месяцев после исходного кровоизлияния. Однако эти протеазы вызывают также поражение, которое проявляется в первые несколько часов. Раннее поражение вначале является геморрагическим, прогрессирует в воспалительное поражение к концу первых 24 часов и устраняется в течение первой недели после кровоизлияния. Чтобы использовать преимущество этого раннего поражения, может быть использована следующая модель.

Хомячков вначале слегка анестезируют при помощи бревитала (Brevital). Затем непосредственно в трахею вводят физиологический раствор с фосфатным буфером (PBS) с pH 7,4, либо сам по себе, либо содержащий эластазу лейкоцитов человека (ЭЛЧ). Через двадцать четыре часа животных умерщвляют и легкие удаляют и тщательно срезают посторонние ткани. После определения массы сырых легких их (легкие) промывают PBS и определяют общее количество выделенных лаважируемых (способных к удалению из тканей и органов при промывании) красных и белых клеток. Значения масс сырых легких, общего количества лаважируемых красных клеток и общего количества лаважируемых белых клеток возрастают в зависимости от дозы последующего введения ЭЛЧ. Соединения, которые являются эффективными ингибиторами эластазы, могут предотвратить или уменьшить степень тяжести вызванного ферментом поражения, приводя к более низкому весу сырого легкого и снижая значения общего количества лаважируемых клеток, как красных, так и белых, по отношению к введению одной только ЭЛЧ. Провести оценку соединений можно путем их введения внутритрахеально в виде растворов или суспензий в физиологическом растворе с фосфатным буфером, либо одновременно, либо в различные моменты времени с тестовым введением ЭЛЧ (400 мкг), или путем их дозированного введения внутривенно или перорально в виде растворов в различные моменты времени перед тестовым введением ЭЛЧ (100 мкг), чтобы определить их полезность в предотвращении вызванного ЭЛЧ поражения. Раствор соединения согласно изобретению (или его отдельной формы) может быть удобным образом приготовлен с использованием 10% полиэтиленгликоля 400 в PBS.

Испытание на кровотечение в острой форме Это испытание основывается на наблюдении только за количественной характеристикой кровоизлияния в легкое после внутритрахеального введения эластазы нейтрофилов человека (ЭНЧ). Количественную характеристику кровоизлияния определяют путем разрушения эритроцитов, выделенных из использовавшейся промывной жидкости после лаважа легких, и проведения сравнения с разведением цельной крови хомячка. Порядок проверки, подобный порядку, описанному в работе Fletcher et al., American Review of Respiratory Disease (1990), 141, 672-677, состоит в следующем. Соединения, для которых показано, что они являются ингибиторами ЭНЧ in vitro, удобным образом готовят для дозированного введения как описано выше для модели повреждения легкого в острой форме. Самцов сирийских хомячков (голодавших в течение 16-128 часов перед использованием) слегка анестезируют при помощи бревитал-натрия (30 мг/кг внутрибрюшинно). Затем производят дозированное введение хомячкам соединений внутривенно или перорально за заданное время, как например 30 или 90 минут, до внутритрахеального введения ЭНЧ в 300 мкл физиологического раствора с фосфатным буфером с pH 7,4 из расчета 50 мкг/животное. Через четыре часа после введения фермента животных умерщвляют при помощи избыточной дозы пентобарбитал-натрия, вскрывают грудную клетку и удаляют легкие и сердце и очищают легкие от побочного материала. Иссеченные легкие промывают тремя сменами по 2 мл PBS через трахеотомическую трубку. Выделенные промывки объединяют, регистрируют их объемы (около 5 мл) и промывки сохраняют при 4oC до проведения анализа. Для расчета количества крови в каждом образце оттаявшие промывки и образец цельной крови хомячка обрабатывают ультразвуком, чтобы разрушить эритроциты, и соответствующим образом разбавляют в отдельных лунках 96-луночного титрационного микропланшета. Оптические плотности промывок и образцов крови, подвергшихся разрушению эритроцитов, определяют при 540 нм. Отношения (мкл эквивалентов крови)/(мл промывки) определяют путем сравнения оптической плотности испытуемых образцов с оптической плотностью калибровочной кривой, полученной на основе цельной крови хомячков. Общее количество выделенных эквивалентов крови в мкл определяют путем умножения объема выделенной промывки на отношение (мкл эквивалентов крови)/(мл промывки) для каждого образца. Результаты даются в виде % торможения вызванного ЭНЧ кровотечения по отношению к контрольным образцам, обработанным физиологическим раствором с фосфатным буфером, для испытуемого соединения, взятого в определенной дозе и с определенным временем введения до введения ЭНЧ. Было найдено, что для соединения согласно примеру 1 ED50 (эффективная доза, обеспечивающая торможение на 50%) составляет 4,5 мг/кг при пероральном дозированном введении. Для соединения согласно примеру 2 было найдено, что ED50 составляет 1,9 мг/кг при пероральном дозированном введении и 0,6 мг/кг при внутривенном дозированном введении.

Не наблюдалось явной токсичности в тех случаях, когда соединение согласно изобретению вводили в указанных выше испытаниях in vivo.

Следует понимать, что выводы об активности соединения в модели повре