Физиологически приемлемые эмульсии, содержащие гидриды перфторуглеродного эфира, и способы их использования

Реферат

 

Изобретение относится к области химико-фармацевтической промышленности и касается физиологически совместимых эмульсий, содержащих гидриды перфторуглеводородных эфиров. Изобретение заключается в том, что эмульсии имеют различные медицинские применения. В особенности они полезны как контрастная среда для таких способов медико-биологических исследований, как способы ядерного и 19F-магнитного резонансов, ультразвукового и рентгеновского способов, способа компьютерной томографии, в качестве переносчиков кислорода или "искусственной" крови при лечении болезней сердца и сосудистых заболеваний, в качестве адьювантов при коронарной ангиопластике и в лучевой и химиотерапии рака. Изобретение обеспечивает желаемый уровень переноса кислорода, достаточно стабильно в жидком или незамороженном состоянии, быстро выводится из организма, чтобы избежать токсикации. 13 з.п. ф-лы, 1 табл.

Настоящее изобретение относится к водным физиологически приемлемым эмульсиям гидридов перфторуглеродного эфира, имеющим от 8 до 12 атомов углерода. Рассматриваемые эмульсии имеют различное медицинское применение. С медицинской точки зрения они особенно перспективны в качестве контрастной среды в различных методах биологических исследований, таких как ядерный магнитный резонанс, 19F-магнитный резонанс, ультразвуковой, рентгеновский, компьютерной томографии, в качестве переносчика кислорода или заменителя крови - "искусственная кровь" при лечении сердечной недостаточности, сердечных приступов и других сосудистых заболеваний, в качестве адъювантов при коронарной ангиопластике и в лучевой и химиотерапии рака.

Хорошо известно, что сильно фторированные органические соединения и в особенности фторированные углеродные соединения, являются стабильными и химически инертными. В последние 25 лет особое внимание уделялось использованию таких соединений в биологических системах вследствие их способности растворять и транспортировать большое количество кислорода. Эти свойства обусловливают перспективность использования таких соединений в качестве контрастной среды, агентов по переносу кислорода или "искусственной крови" при лечении сердечных приступов, инсульта и других сосудистых заболеваний, в качестве адъювантов при коронарной ангиопластике и в лучевой и химиотерапии рака.

Сильно фторированными органическими соединениями, которые, как отмечалось, полезны в таких приложениях, являются перфторуглеродные соединения, например перфтордекалин, перфториндан, перфтортриметилбицикло [3.3.1]нонан, перфторметиладамантан, перфтордиметиладамантан, перфтор-2,2,4,4-тетраметилпентан; C9-C12 перфторамины, например перфтортрипропиламин, перфтортрибутиламин, перфтор-1- азатрициклические амины; бромфторуглеродные соединения, например перфтороктилбромид и перфтороктилдибромид; А-4- метилоктагидрохинолидизин и перфторэфиры, включая хлорированные полифторциклические эфиры. Подобные соединения описываются, например, в патентах США N 3, 962, 439; N 3, 493, 581; N 4, 110, 474; N 4, 186, 253; N 4, 187, 252; N 4, 252, 827; N 4, 423, 077; N 4, 443, 480; N 4, 534, 978; N 4. 686, 024; N 4, 865, 836; N 4, 866, 096; N 4, 868,318, в Европейских заявках N 80710 и N 158, 996, в описании к патенту Великобритании N 1, 549, 038 и в описании к выложенной заявке Германии N 2, 650, 586.

В публикации ЕР-А-307-087 приводятся эмульсии, включающие перфторуглерод, эмульгатор, преимущественно лецитин, и воду. В публикации описывается использование различных перфторуглеродов в эмульсии, включающей F[CF(CF3)CF2O] 2CHFCF3. В публикациях FR-A-2620445 и W092/02560 приводятся сведения об использовании для транспортировки газов различных сильно фторированных соединений, включая F[CF(CF3)CF2O] 2CHFCF3 и F[CF(CF3)CF2O] 3CHFCF3. В публикации W0 93/01798 описываются эмульсии, содержащие фторуглерод, поверхностно-активное вещество, лиофильное/фторофильное органическое соединение и водную фазу, в которых фторуглерод выбирается из различных соединений, включая F[CF(CF3)CF2O]2CHFCF3.

При внутривенном использовании высокофторированные органические соединения должны быть предварительно диспергированы как эмульсии. См., например, L. С. Clark, Jr. et al, "Emulsion Of Perfluorinated Solvents For Intravascular Gas Transport", Ped.Proc., 34(6), pp. 1468-77 (1975); К. Yokoyama et al. "A Perfluorochemical Emulsion As An Oxygen Carrier," Artif. Organs (Cleve). 8(1), pp. 34-40 (1984); и United States patents 4,110,474 и 4,177,252. Вкратце отметим, что высокофторированные органические соединения не смешиваются в крови.

В патенте США N 3, 991, 138 сообщается об использовании в качестве искусственной крови перфторуглеродных эмульсий, содержащих фторуглероды, которые могут быть выведены из организма животного в течение клинически допустимого периода времени. В патенте США N 3, 991, 138, например, было описано, что перфторциклоуглероды выводятся из организма животного быстрее, чем перфторуглероды. В противоположность этому было обнаружено, что когда в живой организм вводились перфторуглеродные простые эфиры, они оставались в печени и селезенке довольно долго. Совсем недавно в качестве синтетической кровяной эмульсии тестировался гидрофторалкиловый простой эфир F[CF(CF3)CF2O] 4CHFCF3, однако и он обнаружил тенденцию оставаться в организме, см. Chem. Pharm. Bull., 33, 1221 (1985). В общем считалось, что из-за тенденции слишком долго задерживаться в живом организме перфторуглеродные эфиры непригодны для использования их в качестве переносчиков кислорода и для медицинских целей.

Вследствие вышеизложенного, для эмульсий, содержащих перфторуглероды, продолжаются исследования эффективности их использования в качестве переносчиков кислорода и способов их выведения из организма в течение клинически допустимого периода времени. Такие эмульсии должны не только содержать достаточно высокую концентрацию высокофторированного органического соединения для того, чтобы обеспечить желаемый уровень переноса кислорода, но и быть восприимчивыми к стерилизации, преимущественно тепловой, должны быть достаточно стабильными в жидком или незамороженном состоянии, должны быть химически стойкими в потоке крови в течение достаточно длительного периода времени для того, чтобы доставлять необходимое количество кислорода, и должны достаточно быстро выводиться из организма с тем, чтобы избежать токсикации и задерживания в органах и частях тела.

Настоящая заявка относится к водным физиологически приемлемым водным эмульсиям гидридов перфторуглеродного эфира, в особенности к гидроперфторалифатически простым эфирам или к таким простым эфирам, замещенным перфторалициклической группой ("гидриды ПФУ эфира"). Было обнаружено, что эти гидриды ПФУ эфира очень эффективны в качестве носителей кислорода, кроме того, они отличаются удивительно коротким временем пребывания в организме. В действительности, было обнаружено, что эти гидриды ПФУ эфира оказываются химически стойкими в потоке крови в течение времени, достаточного для переноса необходимого количества кислорода, и быстро выводятся из организма, так что никаких следов в жизненно важных органах не наблюдается даже в течение нескольких дней после их введения. Эти гидриды ПФУ эфира являются превосходными кандидатами для использования в заменителях крови и в эмульсиях, применяемых для переноса кислорода.

Эмульсии в соответствии с настоящим изобретением могут быть использованы в различных медицинских целях, например в качестве контрастного вещества в различных способах биологических исследований, включая способ ядерного магнитного резонанса, 19F-магнитного резонанса, ультразвуковые, рентгеновские способы, способ компьютерной томографии, в качестве носителей кислорода или заменителей крови при лечении сердечной недостаточности, приступов и других сосудистых заболеваний, в качестве адъювантов в коронарной ангиопластике и в противораковой радиационной и химиотерапии.

Физиологически приемлемые эмульсии в соответствии с настоящим изобретением содержат C8-C12 насыщенный гидроперфторалифатический простой эфир или такой же простой эфир, имеющий в качестве заместителя перфторалициклическую группу, или смесь обоих эфиров. Алифатический простой эфир представляет прямую или разветвленную цепь атомов углерода. Другие компоненты эмульсии включают воду и поверхностно-активное вещество, причем количественное содержание таких компонентов в эмульсиях соответствует приемлемому физиологическому приему.

Особенно предпочтительными являются эмульсии, содержащие гидриды C9-C11 ПФУ эфира, которые, как было обнаружено, выводятся из таких жизненно важных органов, как печень, в течение исключительно короткого времени. Гидриды ПФУ эфира представляют новую возможность гибкого изменения при составлении рецептуры физиологически приемлемых эмульсий. Эти гидриды ПФУ эфира легко могут быть приготовлены и имеют более низкие плотности и точки кипения, что делает их очень удобными для приготовления, переноса кислорода и выведения из организма животного. Эти гидриды ПФУ эфира не оказывают никаких неблагоприятных воздействий на легкие при очистке организма. Кроме того, их летучесть, молекулярный вес, растворимость и озонные характеристики обусловливают их предпочтительность в медицинских приложениях. Сущность настоящего изобретения, его достоинства и возможности дальнейшего совершенствования станут понятны из последующего детального описания и примеров.

В настоящем описании термин "перфтор", так же как и термины "перфторалифатический", "перфторалициклический", "перфторалкиловый" или "перфтороалкиленовый" означают, что, за исключением случая, специально отмеченного префиксом "гидро", нет каких-либо связанных углеродов атомов водорода, замещенных фтором, нет никакой ненасыщенности. Так, термин "гидроперфторалифатический эфир" означает, что имеется по крайней мере один атом водорода, связанный с углеродом, а остальные атомы углерода в алифатической группе этого соединения связаны со фтором или кислородом. Такое соединение может также называться "гидрид перфторалифатического эфира". Префиксы "дигидро" и "тригидро" означают, что в соединении имеются, соответственно, два или три атома водорода, связанных с углеродом. Для упрощения, фраза "гидрид ПФУ эфира" иногда будет означать, что рассматриваются все формы соединений в соответствии с настоящим изобретением, в которых содержится от одного до трех атомов водорода, один или более атомов кислорода в простом эфире или углеродная группа является алифатической, алициклической или алициклическизамещенной алифатической либо с прямой, либо с разветвленной цепью. Также "1o водород" или 2o водород" далее означает, что атом водорода связан с первичным или вторичным атомом углерода соответственно.

Физиологически приемлемые водные эмульсии в соответствии с настоящим изобретением содержат гидриды С812 ПФУ эфира, воду и поверхностно-активное вещество, причем эти компоненты содержатся в эмульсии в количествах, соответствующих приемлемому физиологическому приему. Гидрид ПФУ эфира выбирается из группы насыщенного С812 гидроперфторалифатического эфира, гидроперфторалифатического эфира, замещенного насыщенной перфторалициклической группой и гидроперфторциклоалифатического эфира и смесей таких простых эфиров. Эти алифатические простые эфиры имеют прямые или разветвленные цепи атомов углерода. Термин "насыщенный" означает, что эти соединения не имеют ни одной двойной связи или не являются насыщенными в молекуле.

Предпочтительно эмульсии содержат гидриды С911 ПФУ эфира, так как такие соединения, как было обнаружено, наиболее эффективно выполняют в эмульсиях функцию переносчиков кислорода и одновременно лишь ненадолго задерживаются в организме. Как класс гидриды ПФУ эфира имеют точку кипения около 120oC, что делает их нетоксичными с удовлетворительной способностью выведения из организма.

Предпочтительный класс гидридов ПФУ эфира может быть представлен формулой I X-Rf-O(R'f)nR''f-H, где H - первичный атом водорода или 2o атом водорода на атоме углерода, смежном с атомом кислорода в простом эфире; X - атом фтора, первичный атом водорода или 2o атом водорода на атоме углерода, смежном с атомом кислорода в простом эфире; n - целое число от 0 до 4; Rf, R'f, R''f - независимо выбранные из неразветвленных или разветвленных групп, состоящих из перфторалкилена, перфторциклоалкилена или перфторциклоалкилена, содержащего один или более атомов кислорода в простом эфире. Соединения по формуле 1, в которых атомы водорода являются либо первичными, либо вторичными и присоединены к атому углерода, смежному с атомом кислорода в простом эфире, являются предпочтительными, потому что они легко приготовляются и являются более стабильными по отношению к нагреву, условиям окисления и щелочному воздействию. Следовательно, они более пригодны для того, чтобы противостоять тепловой стерилизации, и одновременно не являются биологически активными и не склонны к метаболизму.

Первая предпочтительная группа гидридов ПФУ эфира в соответствии с формулой 1 состоит из C9-C10 дигидроперфторуглеродных эфиров, в которых атомы водорода могут быть 1o или 2o на атоме углерода, смежном с атомом кислорода в простом эфире. Они могут быть представлены следующими соединениями, которые покидают организм либо в течение нескольких дни, либо в течение очень короткого времени. Далее следуют " цикло-C6F11" или "цикло-C6F10", которые представляют перфторциклогексиловую группу или перфторциклогексиленовую соответственно.

Н-С3F6OC4F8OC3F6-H; H-C2F4OCF2C(CF3)2CF2OC2 F2-H; HC2F4-O-(CF2)5-O-C2F4-H; H-C2F4-O-(CF2)6-O-C2F4-H; H-CF2O-(C2F4O)3CF2-H; H-CF2O-(C2F4O)4CF2-H; H-C2F4-O-cyclo-C6F10-O-C2F4-H Вторая группа предпочтительных гидридов ПФУ эфира в соответствии с формулой 1 состоит из гидридов C9-C11 перфторциклоалкил- или перфторциклоалкилзамещенных перфторалкиленовых эфиров, представляемых следующими соединениями, которые покидают организм в течение нескольких дней.

cyclo -C6F11-CF2OC2F4H; cyclo-C6F11-OC4F8H; cyclo-C6F11-C2F4OCF2-H; p-CF3O-cyclo-C6F10-C2F4-H; Третий класс гидридов ПФУ эфира предпочтительно включат C9-C10 гидроперфторалкиловые эфиры, в которых атом водорода является 1o или 2o, связанным с атомом углерода, смежным с атомом кислорода в простом эфире, либо связанным с конечным атомом углерода или промежуточным атомом углерода, смежным с простым эфиром; как представлено в следующих соединениях: C4F9OCF(CF3)CF2O-CFH-CF3; CF3(CF2)6O-CF2CF2-H; C8F17OCF2H; CF3(CF2)5- O-(CF2)2-O-CF2-H; C6F13-O- C4F8-H; C5F11-O-C5F10-H; C4F9-O-C2F4-O-C3F6-H; CF3O-C8F16-CF2H; C9F19-O-CF2-H.

Гидриды ПФУ эфира в соответствии с настоящим изобретением обычно содержат от одного до пяти атомов кислорода в простом эфире. Преимущественно один или два атомов кислорода в простом эфире входят в моногидриды и до пяти атомов кислорода входят в дигидриды. Хотя атом водорода может быть в принципе расположен на любом атоме углерода в соединении, мы считаем предпочтительным, когда имеется более чем один такой атом водорода, так что они находятся на различных атомах углерода (т.е. нет спаривания). В одной из наиболее предпочтительных форм гидридов ПФУ эфиров в соответствии с настоящим изобретением атом водорода располагается на противоположных концах углеродной цепи. Поэтому иногда они рассматриваются как "ди-омега-гидро" перфторалкиловые эфиры.

Следует особо подчеркнуть, что в соответствии с настоящим изобретением любые гидриды ПФУ эфиров могут смешиваться между собой и с другими хорошо известными высокофторированными органическими соединениями и использоваться в эмульсиях согласно данной заявке. При внутривенном использовании такие эмульсии могут содержать от 10% до 75% гидрида ПФУ эфира. В соответствии с настоящим изобретением эмульсии предпочтительно содержат от 10% до 50% (по объему) гидрида ПФУ эфира, а наиболее предпочтительное содержание - примерно 40% (по объему).

Если такие эмульсии используются как искусственная кровь или заменители красных кровяных телец, ПФУ присутствуют в них в наиболее высокой допустимой объемной концентрации, например часто предпочтительной оказывается 40% по объему, так как такая концентрация соответствует примерному содержанию кислорода во всем организме.

Эмульсии в соответствии с настоящим изобретением приготовляются общепринятыми способами и включают компоненты, общие для хорошо известных эмульсий высокофторированных органических соединений. Поверхностно-активными веществами, успешно используемыми в эмульсиях в соответствии с настоящим изобретением, являются любые из известных анионных, катионных, неионных и амфионных поверхностно-активных веществ. Предпочтительными являются неионные поверхностно-активные вещества, такие как алкиловые и ариловые соединения, гидрофильная часть которых состоит из полиоксиэтиленовых цепей, молекул сахаров, полиспиртовых производных или других гидрофильных групп, например любая из рецептур BASF Wyandotte оксидов полиоксиэтилена и полиоксипропилена, продаваемых под товарным знаком "Pluronic", например Pluronic F-68 или F-108 или амфионные поверхностно-активные вещества. В эмульсиях в соответствии с настоящим изобретением могут быть использованы фторированные поверхностно-активные вещества, например ATSURR F-31 (ICI, Wilmington, DE). См., например, Riess et al. , "Design, Synthesis And Evaluation Of Fluorocarbons And Surfactans For In Vivo Applications, New Perfluoroalkylated Polyhydrohylated Surfactans", Artif. Cells Artif. Organs. 16, pp.421-30 (1988). Комбинации этих поверхностно-активных веществ могут, конечно, использоваться в эмульсиях в соответствии с настоящим изобретением. Кроме того, смеси соединений, одно или более из которых не являются поверхностно-активными веществами, но совместные соединения которых действуют как поверхностно-активные вещества, также могут быть использованы в качестве поверхностно-активного компонента в эмульсиях в соответствии с настоящим изобретением.

Хотя подобные композиции могут в общем рассматриваться как эмульсии, необходимо отдавать себе отчет в том, что они могут быть растворами, мицеллярными растворами, микроэмульсиями, везикулярными суспензиями или смесями всех этих физических состояний. Соответственно, используемый здесь термин "эмульсия" включает все эти состояния и поверхностно-активное вещество или растворяющий агент используется для того, чтобы повысить стабильность смесей этих состояний и увеличить стабильность их водной и масляной фаз.

Поверхностно-активные вещества, используемые в эмульсиях в соответствии с настоящим изобретением, являются физиологически приемлемыми, например преимущественно используются одно или несколько из следующих веществ: яичный или соевый фосфатиды, лецитин, алкиловые соли олеиновой кислоты, такие как олеат натрия. Наиболее предпочтительным является лецитин. Хотя количество конкретного поверхностно-активного вещества, используемого в эмульсиях в соответствии с настоящим изобретением, зависит от количества и свойств других компонентов эмульсии, обычно мы используем от 0.5 до 10% поверхностно-активного вещества (от веса всей эмульсии). Преимущественно мы используем примерно от 1 до 4% (по весу).

Эмульсии в соответствии с настоящим изобретением могут также содержать масло, которое не обладает существенной поверхностной активностью и растворимостью в воде. Такие масла описаны, например, в ЕР 231, 091, WO 89/10118 и в U. S. Pat. 4,866,096. Они включают жидкие жирные масла, углеводороды, парафины, такие как сложные моноэфиры жирной кислоты и моногидроксид спирта, простые эфиры с длинными цепями, ди- и триглицериды, силиконовые масла и нитрилы. Наиболее полезными в этих классах маслами являются пальметиновый олеат, октилнитрил, додецилнитрил, соевое масло, сафлоровое масло, минеральное масло, гексадекан, ди- и триглицериды, имеющие C12-C18 углеродную цепь. Конечно, может быть использована любая смесь триглицеридов и/или масел, подобных триглицеридам в композициях с жирными кислотами. Эти масла могут использоваться в эмульсиях и способах в соответствии с настоящим изобретением как самостоятельно, так и в различных комбинациях. В тех случаях, когда наши эмульсии должны использоваться в медицинских целях, такое масло или их комбинация должны быть, конечно, биологически приемлемыми жидкими жирными маслами, такими как соевое и сафлоровое масла.

Количество масла или масел, если они присутствуют, в эмульсиях в соответствии с настоящим изобретением может варьироваться в достаточно широких пределах в зависимости от концентрации и свойств других компонентов эмульсии, причем принципиально оно определяется характеристиками эмульсии гидрида ПФУ эфира. Концентрацию масла, необходимую для приготовления эмульсии при любом заданном составе ее компонентов, легко определить в соответствии с настоящим изобретением, используя достаточно несложную технику приготовления эмульсий при различных концентрациях масла. В соответствии с нашими рекомендациями, мы обычно используем от 0.5 до 20% по объему масла или смеси масел. Преимущественно, мы используем от 1 до 5% по объему.

Кроме гидридов ПФУ эфиров, масел, поверхностно-активных веществ и воды, эмульсии в соответствии с настоящим изобретением могут также содержать другие компоненты, обычно используемые в искусственной крови или в заменителях крови, в носителях кислорода или в контрастных средах. Например, эмульсии в соответствии с настоящим изобретением содержат обычно изотонический агент, как правило, сахара, такие как глюкоза, манноза и фруктоза, глицерин или другие полигидридные спирты, позволяющие регулировать осмотическое давление в эмульсии приблизительно до уровня осмотического давления в крови. Осмотичность может также регулироваться после стерилизации с помощью буферов, таких как хлорид натрия, двууглекислый натрий, хлорид магния и им подобные, для того, чтобы уменьшить вероятность повреждения красных кровяных телец. Например, мы обычно используем примерно от 1% до 2,5% (по весу эмульсии) таких агентов. Однако могут быть также использованы другие количества и другое осмотическое давление контролирующих агентов, например раствора Tyrode. Кроме того, эти эмульсии могут смешиваться с 0.9% раствором поваренной соли, раствором лактата Рингера и сывороткой или ее продуктами, не оказывающими неблагоприятного действия на размер частиц эмульсии и ее стабильность. Эмульсии в соответствии с настоящим изобретением могут также включать другие компоненты, такие как осмотические агенты, например декстран или гидроксиэтиловый крахмал (HES), и антиоксиданты.

В эмульсиях в соответствии с настоящим изобретением наиболее предпочтительно используются гидрид C9-C10- эфира, лецитин яичного желтка как поверхностно-активное вещество и сафлоровое масло, если масло включается в состав эмульсии. Для регулирования изотоничности в эмульсию добавляют глицерин. Наиболее предпочтительно в эмульсиях в соответствии с настоящим изобретением гидриды ПФУ эфира составляют примерно 40% по объему, лецитин - примерно 2% по весу или объему и сафлоровое масло, если оно присутствует в эмульсии, составляет примерно 2% от объема эмульсии.

Как уже отмечалось, эмульсии в соответствии с настоящим изобретением могут успешно использоваться в качестве контрастного вещества при различных биологических визуально воспринимаемых способах воздействия, таких, например, как ядерный магнитный резонанс, 19F-магнитный резонанс, ультразвуковые и рентгеновские методы, способ компьютерной томографии. Кроме того, как контрастные агенты эмульсии полезны и для прямой визуализации в 19F-магнитном резонансе. При использовании в качестве контрастной среды эмульсии в соответствии с настоящим изобретением могут приниматься в виде пилюль, орально, подкожно, внутрибрюшинно, через синовиальное влагалище сухожилия или иными медицински допустимыми методами приема, например с помощью катетера, лишь бы эмульсии обеспечивали достаточно четкое выделение желаемой части или частей организма.

Эмульсии в соответствии с настоящим изобретением могут использоваться в качестве искусственной крови и вводиться внутривенно животным или человеку при малокровии или при недостатке кислорода в крови. Кроме этого, эти эмульсии могут использоваться в консервантах для сохранения внутренних органов вне организма при трансплантациях. Эффективность использования высокофторированных органических соединений, содержащих эмульсии, для сохранения органов вне организма человека или животного демонстрируется в публикациях Kawamura et al., "A New Simple Two Lauer (Euro-Collins' Solution/Perfluorochemical) Cold Storage Method For Pancreas Preservation", Transplantation Proc., pp. 1376-77 (1989); Segel and Ensunsa, "Albumin Improves Stability And Longevity Of Perfluorochemical-Perfused Hearts", Am. J. Physiol 254, pp.H1105-12 (1988); Segel et al. "Prolonged Support Of Working Rabbit Hearts Using Flusol-43 Or Erithrocyte Media", Am J. Physol. 252, pp. H349-59 (1987); Segal and Rending, "Isolated Working Rat Heart Perfusion With Perfluorochemical Fluosol-43", Am J. Physol 242, pp. H485-89 (1982). Эмульсии в соответствии с настоящим изобретением подобны по своим свойствам упоминаемым в этих публикациях.

Способность гидридов ПФУ эфиров, диспергированных как эмульсии, переносить кислород делают их полезными в лучевой и химиотерапии рака, в коронарной ангиопластике, при лечении сердечного приступа, мозгового удара и других сосудистых заболеваний. Публикации, демонстрирующие полезность таких эмульсий в лучевой и химиотерапии рака, включают работы Teicher and Rose, "Oxyden-Carrying Perfluorochamical Emulsion As An Adjuvant To Radiation Therapy In Mice", Cancer Res. 44, pp. 4285-88 (1984); Teicher and Rose, "Effects Of Dose And Scheduling On Growth Delay Of The Lewis Lung Carcinoma Produced By The Perfluorochemical Emulsion, Fluodol-DA", Int. J. Radiation Oncology Biol. Phys. 12, pp. 1311-13 (1986); Rockwell et al., "Reactions Of Tumors And Normal Tissues In Mice To Irradiation In The Presence And Absence Of A Perfluoerochemical Emulsion", Int. J. Radiation Oncology Biol Phys. 12, pp. 1315-18 (1986); Teicher and Rose, "Perfluorochemical Emulsions Can Increase Tumor Radiosensivity", Science, 223, pp. 934-36 (1984); Teicher et al., "Effect Of Various Oxygenation Conditions And Fluosol-DA on Cytotoxicity And Antitumor Activity Of Bleomycin In Mice", J. Nail. Cancer Inst. 80, pp. 599-603 (1988). Эмульсии в соответствии с настоящим изобретением подобны по своим свойствам, упоминаемым в этих публикациях. Эффективность использования эмульсий, содержащих высокофторированные органические соединения, для минимизации нежелательных эффектов при коронарной ангиопластике демонстрируется в публикациях "Virmani et al., "Myocardial Protection By Perfluorochamical Infusion During Transient Ischemia Produced By Balloon Coronary Occlusion", Am. Heart J. 116, pp. 421-31 (1988); Jaffe et al., "Preservation Of Left Ventricular Ejection Fraction During Percutanious Coronary Angioplasty By Distal Transcatheter Coronary Perfusion Of Oxygenated Fluosol DA 20%", Am. Heart J., 115, pp. 1156-64 (1988); Cleman et al., "Prevention Of Inchemia During Percutaneous Transluminal Coronary Angioplasty By Transcatheter Infusion Of Oxygenated Fluosol DA 20%", Circulation. 74, pp. 555-62 (1986); Anderson et al. "Distal Coronary Artery Perfusion During Percutaneous Transluminal Coronary Angioplasty", Am. Heart J., 110, pp. 720-26 (1984). Эмульсии в соответствии с настоящим изобретением применимы для аналогичных целей.

Эффективность использования эмульсий, содержащих высокофторированные органические соединения, при лечении сердечного приступа, мозгового удара и сосудистых заболеваний демонстрируется в публикациях Peerless et al. "Modification Of Cerebral Ischemia With Fluosol", Stroke, 16, pp. 38-43 (1985); Osterholm et al. "Severe Perfusion With An Oxygenated Fluorocarbon Emulsion", Neurosura, 13, pp. 381-87 (1983); Peerless et al. "Protective Effect Of Fluosol-DA In Acute Cerebral Ischemia", Stroke. 12, pp. 558-63 (1981); Forman et al. "Reduction Of Infarct Size With Intracoronary Perfluorochemical In A Canine Preparation Of Reperfusion", Circulation. 71, pp. 1060-68 (1985). Эмульсии в соответствии с настоящим изобретением также полезны для подобных целей.

Эмульсии в соответствии с настоящим изобретением могут быть приготовлены путем обычного смешивания фторированных компонентов гидридов перфторалкиловых эфиров (дисперсная фаза) с водной (непрерывной) фазой и поверхностно-активным веществом. Кроме того, эмульсии в соответствии с настоящим изобретением могут быть приготовлены смешением водной фазы с любым поверхностно-активным веществом и, по выбору, с осмотическими агентами, буферными агентами, электролитами, если необходимо другими эмульгаторами, дополнительными антиоксидантами и прочими компонентами, подобными им, в водную дисперсию. Гидриды перфторалкиловых эфиров могут быть затем смешаны с водной дисперсией так, чтобы получить эмульсию в соответствии с настоящим изобретением.

Эмульсии в соответствии с настоящим изобретением могут быть получены путем предварительного смешивания водной дисперсии с любым подходящим поверхностно- активным веществом (веществами) и по выбору с известными компонентами искусственной крови, например осмотическими агентами и им подобными. Масло, если оно присутствует, также может быть введено в определенном количестве в описанную выше водную дисперсию. Затем в эту водную дисперсию для получения эмульсии в соответствии с настоящим изобретением могут быть введены гидриды перфторалкиловых эфиров, Приготовленную эмульсию стерилизуют преимущественно при температурах выше 115oC, более предпочтительно при 121oC, и направляют для дальнейшего хранения и использования.

Смешение, предварительное смешение при желании и эмульгирование компонентов может быть выполнено с помощью любых стандартных смесителей, гомогенизаторов и диспергаторов, Например, могут быть использованы миксеры и диспергаторы фирмы Fisher и гомогенизаторы фирмы Gaulin. При приготовлении эмульсий в соответствии с настоящим изобретением мы предпочитаем использовать инертную атмосферу, например N2, для предотвращения распада поверхностно-активных веществ и жирных масел, при их наличии, при этом поддерживают температуру в пределах 45o-55oС.

Изобретение иллюстрируется далее следующими примерами, однако, конкретные материалы и их количество, а также конкретные условия и детали, приведенные в этих примерах, не должны сужать настоящее изобретение.

1. ПРИГОТОВЛЕНИЕ ГИДРИДОВ ПФУ ЭФИРОВ Пример 1. Приготовление C8F17-O-C2F4H из C8F12-O-C2F4CO2CH3 Исходный органический материал, C8H17-O-C2H4CO2CH3, был приготовлен по щелочному каталитическому способу Мишеля добавлением n-октанола к акрилонитрилу, после чего следовал кислотно-каталитический метанолиз. Метиловый сложный эфир был непосредственно фторирован F2 с получением фторированного сложного эфира C8F17-O-C2F4CO2CH3. Это фторирование проводили в 2-литровом реакционном сосуде из металла MonelTM с рубашкой, мешалкой с магнитным приводом, линиями подачи газа и органического реагента и парциальным конденсатором горячего орошения. Линия подачи газа представляла собой трубку диаметром 0.3 см, которая располагалась под крыльчаткой мешалки. Линия подачи реагента была выполнена в виде трубки диаметром 0.15 см, соединенной с впрыскивающим насосом. Парциальный конденсатор горячего орошения состоял из двух 6-метровых спиральных концентрических труб, причем диаметр внутренней трубы был 1.27 см, диаметр внешней трубы 2.54 см. Газы из реактора охлаждались во внутренней трубе хладагентом, водой с добавкой этиленгликоля, протекающим между двумя трубами. Реактор заполняли примерно 1.8 литрами хлорфторуглерода FreonTM 113 и очищали потоком азота со скоростью 650 мл/мин в течение 20 минут. Газовый поток заменяли затем потоком смеси 310 мл/мин фтора и 1100 мл/мин азота. Через 12 минут 100 г C8H17-O-C2H4CO2CH3, разбавленные до 260 мл хлорфторуглеродом FreonTM 113, подавали в реактор со скоростью 13 мл/ч (5 г/ч). В процессе фторирования в реакторе поддерживали температуру примерно 16-18oC. Температура конденсации составляла около -22oC. Подача фтора продолжалась еще в течение 10 минут после завершения подачи органического реагента. Затем реактор очищали азотом в течение одного часа. Раствор сырого перфорированного сложного эфира в FreonTM 113 обрабатывали 150 мл 14% BF3 в метаноле при интенсивном перемешивании в течение 24 часов. Смесь промывали водой, высушивали MgSO4 и перегоняли (точка кипения 40oC и давление 0,2 Торр. (2,2 мм рт. ст.)) до получения C8F17-O-C2F4CO2CH3 (47% выход). Для декарбоксилирования 39 г 85% КОН растворяли примерно в 300 мл этиленгликоля и в этот раствор добавляли при комнатной температуре по каплям при помешивании вышеописанный фторированный метиловый сложный эфир. После этого реакционная смесь имела pH от 8 до 9. Смесь медленно нагревали при помешивании и продукт декарбоксилирования, C8F17-O-C2F4H, перегоняли вместе с метанолом для предотвращения омыления его метиловым эфиром, водой из КОН и небольшим количеством этиленгликоля. Когда температура реакционной смеси достигала 170oC, нагревание прекращали. Более низкую фторированную фазу дистиллята отделяли, промывали водой, сушили и перегоняли на Snyder колонне, снабженной тремя тарелками. Основная фракция, кипящая при 146-150oC, давала выход 122 г конечного продукта. Газовая хроматография и масс-спектрометрия образца продукта показали, что чистота продукта составляет 94% и он соответствует структурной формуле C8F17-O-C2F4H.

Пример 2. Приготовление C8F17-O-C2F4H из C8F17-O-C2F4CO2H C8F17-O-C2-H4CO2CH3 был приготовлен по щелочному каталитическому способу Мишеля добавлением n-октанола к акрилонитрилу, после чего следовал кислотно-каталитический метанолиз. Сложный эфир карбоновой кислоты напрямую фторировали по существу тем же, описанным в примере 1 способом для получения при гидролизе соответствующей кислоты простого эфира, C8F17-O-C2F4COOH.

Раствор 116 г 85% КОН в 800 мл этиленгликоля получали в 3 л колбе с круглым дном. 1000 г C8F17-O-C2F4CO2H добавляли по каплям в раствор КОН. После этого добавляли дополнительно 10 г КОН и смесь нагревали. Фторированный продукт декарбоксилирования перегоняли совместно с небольшим количеством воды, чтобы предотвратить нейтрализацию кислоты. Более низкую фторированную фракцию дистиллята отделяли, промывали подсоленной водой, сушили с помощью Na2SO4 и перегоняли аналогично примеру 1 с получением 817 г C8F17-O-C2F4H.

Пример 3. Получение C7F15-C2F4H из C7F15-O-C2F4CO2CH3 C7H15-O-C2H4CO2CH3 был приготовлен по щелочному каталитическому способу Мишеля добавлением n-гептанола к акрилонитрилу, после чего следовал кислотно-каталитический метанолиз. 550 г соответствующего метилового эфира, C7F15-O-C2F4COOCH3, полученного аналогично примеру 1, добавляли по каплям в раствор, содержащий 166.5 г КОН и 880 мл этиленгликоля. Фторированный продукт (выход 440 г) получали аналогично, перегоняли на Snyder колонне с шестью тарелками и фракцию с температурой кипения от 130 до 131oC отбирали. Эту фракцию смешивали с 8.5 г MnO4 и с примерно 350 г ацетона и нагревали. Через 4 часа добавляли дополнительно 5 г MnO4, и полученную смесь нагревали в течение 3 часов. Затем смесь фильтровали, осадок промывали ацетоном и к фильтрату добавляли воду для образования более низкой фторированной фазы, которую затем промывали водой, концентрированной H2SO4, снова водой и затем фильтровали через двуокись кремния. Исследования способами 1H и 19F-ядерного магнитного резонанса подтвердили, что продукт реакции имеет соответствующую структуру, C7F15-O-C2F2H. Газожидкостная хроматография образца показала, что он имеет чистоту 98.7%.

Пример 4. Получение C6F13-O-C2F4-O-CF2H из C6F13-O-C2F4-OCF2CO2CH3 Исходный материал, C6H13-O-C2H4-O-C2H4-O-COCH3, получили с помощью ацетилирования гексилоксиэтоксиэтанола с ацетилхлоридом. Ацетат затем превратили в C6F13-O-C2F4-OCF2CO2CH3 с помощью по существу тех же процессов фторирования и мета