Составы, изделия и методы с применением вспененной структурной матрицы с крахмальным связующим
Реферат
Изобретение относится к методам для изготовления составов на основе крахмала с равномерно распределенными волокнами, которые могут быть использованы для изготовления тарных изделий и упаковочных материалов. Изделия повышенной прочности, достаточной гибкости и ударной вязкости, обладающие ячеистой структурной матрицей с крахмальным связующим, армированной практически равномерно диспергированными волокнами, изготавливают из составов с крахмальным связующим и волоконным наполнителем, имеющих высокий предел текучести за счет наличия в составе жидкой фракции. При двухступенчатом процессе смешивания предварительно замешанная смесь готовится посредством желатинирования части связующего на крахмальной основе или другого загустителя в воде. Волокна предпочтительно должны иметь среднюю длину, превышающую примерно 2 мм, и соотношение длины и диаметра, превышающее примерно 25:1. В предварительно замешанную смесь добавляют оставшуюся порцию связующего на крахмальной основе, воду и другие желательные добавки, такие как средства для смазки технологической формы, неорганические заполнители, пластификаторы, внутренние материалы для образования покрытия или внутренней герметизации и диспергаторы для получения формоустойчивых изделий, обладающих избирательно регулируемой вспененной структурной матрицей. Такие изделия могут заменить изделия, которые в настоящее время изготавливаются из традиционных материалов, таких как бумага, картон, полистирол, пластмасса или другие материалы на органической основе. 5 с. и 85 з.п. ф-лы, 40 ил., 34 табл.
Настоящее изобретение относится к усовершенствованным методам и составам для изготовления составов на основе крахмала с равномерно распределенными волокнами, которые могут использоваться для изготовления изделий со вспененной ячеистой структурной матрицей на крахмальном связующем с волоконным армированием. Более конкретно, настоящее изобретение относится к применению жидкофазной системы, обладающей достаточно высоким пределом текучести и большой вязкостью, чтобы обеспечить однородное распределение волокон, в частности удлиненных волокон (т. е. волокон со средней длиной свыше 2 мм), в крахмальных составах по настоящему изобретению. Однородно распределенные волокна армируют образуемую структурную матрицу с крахмальным связующим, что обеспечивает формоустойчивость и прочность отформованных изделий непосредственно после их извлечения из технологической формы, даже несмотря на то, что во вспененной матрице остается достаточное количество свободной воды, обеспечивающей ее достаточную гибкость и вязкость для использования по назначению без необходимости в выполнении обычных операций кондиционирования. Кроме того, хорошо распределенные волокна существенно повышают конечную прочность, ударную вязкость и гибкость изделий с крахмальным связующим, что дает возможность изготавливать изделия с уменьшенной площадью поперечного сечения и повышенной прочностью. В составы с крахмальным связующим при желании можно включать неорганический (или природный минеральный) заполнитель и другие добавки, предназначенные для улучшения формуемости и снижения себестоимости отформованных изделий. Получаемые изделия можно изготавливать способами массового производства, которые будут более экономичными и безвредными для окружающей среды, чем способы изготовления изделий из традиционных материалов, таких как бумага, стекло, металл, пластмасса, пенополистирол или другие материалы с органическими связующими.
Применяемая технология A. Традиционные материалы. Такие материалы, как бумага, картон, пластмасса, полистирол и даже металлы в настоящее время применяются в огромных объемах для изготовления таких изделий, как тара, перегородки, разделители, крышки, пробки, банки и прочие упаковочные материалы, которые позволяют хранить, паковать и транспортировать самые разнообразные жидкие и твердые товары. Тара и другие упаковочные материалы защищают товар от влияния окружающей среды и повреждений при прохождении по товарораспределительной сети, в частности от воздействия газов, влаги, света, микроорганизмов, паразитов, физических ударов, раздавливания, вибрации, утечки или разлива. Некоторые упаковочные материалы также являются средством распространения полезной или рекламной информации для потребителей, такой как наименование предприятия-изготовителя, описание содержимого, реклама, инструкции по пользованию, товарные знаки и цена. Большинство традиционных тарных изделий и другие упаковочные материалы (включая одноразовую тару) изготавливаются из бумаги, картона, пластмассы, полистирола, стекла или металлических материалов. Ежегодно для хранения и раздачи безалкогольных напитков, соков, готовой пищи, круп, пива и других продуктов используют свыше ста миллиардов алюминиевых банок, миллиарды стеклянных бутылок и тысячи тонн пластмасс и бумаги. Кроме того, огромные объемы розничных товаров продаются или распространяются с применением упаковочных материалов того или иного типа. Только в Соединенных Штатах Америки на изготовление упаковочных материалов ежегодно расходуется около 5,5 миллионов тонн бумаги, изготавливаемой в основном из древесной целлюлозы. Этот огромный объем потребления представляет собой лишь около 15% от ежегодного объема выпуска бумажной продукции в стране. Недавно по инициативе организаций по охране окружающей среды широко обсуждался вопрос о том, какие применяемые при изготовлении тары и других изделий материалы (например, бумага, картон, пластмасса, полистирол, стекло или металлы) наносят наибольший вред окружающей среде, и какие из них обеспечивают "более правильное" отношение к окружающей среде. Однако в ходе этого обсуждения часто упускается из виду тот факт, что каждый из этих материалов обладает своими специфичными экологически "слабыми сторонами". Какая-либо группа зачастую может пропагандировать какой-либо конкретный материал, который может казаться лучше другого в свете одной конкретной экологической проблемы, если при этом по незнанию (или даже заведомо) игнорировать другие, зачастую более серьезные проблемы, связанные с использованием якобы "экологически безвредного" материала. В действительности, такую дискуссию следовало бы ориентировать не на выявление тех материалов, которые в большей или меньшей степени опасны для окружающей среды, а в направлении поиска ответа на вопрос: можем ли мы открыть или создать альтернативный материал, который позволил бы решить большинство различных экологических проблем, связанных с каждым из традиционно используемых материалов, а возможно и все такие проблемы. B. Альтернативные материалы. Из-за достигнутого в последнее время понимания последствий огромного экологического воздействия бумаги, картона, пластмасс, полистирола, стекла и металлов, используемых для разнообразных одноразовых и выбрасываемых после использования изделий, таких как тара и другие упаковочные материалы (не говоря уже о все нарастающем политическом давлении), существует насущная необходимость (уже давно осознаваемая специалистами в данной отрасли) найти экологически безвредные или улучшенные заменяющие материалы. Одним из альтернативных вариантов является изготовление одноразовой тары для пищевых продуктов и напитков из испеченных съедобных листов типа вафель или кексов. Хотя из съедобных листов можно изготавливать подносы, конусы и стаканы, легко подвергающиеся разложению, их применение связано с рядом ограничений. Съедобные листы изготавливаются в основном из смеси воды, муки и разрыхлителей, которая запекается в нагретой технологической форме с целью придания ей требуемой формы. В смесь часто добавляют масла или жиры, облегчающие извлечение листа из пекарной формы. Однако окисление этих жиров может придать таким съедобным листам прогорклый вкус. С механической точки зрения получаемые съедобные листы являются весьма хрупкими и недостаточно прочными для того, чтобы заменить большинство изделий, изготавливаемых из обычных материалов, присущая низкая прочность обычно требует существенного увеличения поперечного сечения съедобных листов по сравнению с аналогичными изделиями из обычных материалов, что сводит к нулю практически все экологические и экономические преимущества. Кроме того, под действием влаги такие изделия легко могут изменить форму или разложиться еще до их использования по назначению или во время использования, что делает их непригодными для многих областей применения, в которых их замена оказалась бы желательной. Предпринимались попытки изготовления изделий из органических материалов, таких как крахмал, который относится к числу природного, широко распространенного и возобновляемого сырья. Например, изготавливались изделия из смеси крахмала, воды и состава для смазки формы. Смеси на основе крахмала обычно запекаются в нагретой форме в течение 2-3 минут или более, до тех пор пока крахмал не загустеет, не вспенится и не схватится до почти полного застывания формуемой смеси на основе крахмала, придавая требуемую форму изделию. Такие изделия обладают относительно низкой плотностью и, как правило, подвергаются биоразложению. Однако изготовление изделий на основе крахмала и качество самих таких изделий сопряжены с рядом недостатков. Изготовление таких изделий ранее известными методами было связано с длительным временем изготовления, относительно высокой концентрацией крахмала, дорогостоящим оборудованием, требующим больших затрат времени "этапом кондиционирования" либо с добавлением синтетического полимера, что необходимо для обеспечения в формованном изделии требуемого баланса влаги, а также обязательного нанесения покрытия для сохранения необходимого баланса влаги. В результате стоимость производства изделий на основе крахмала известными методами была намного выше стоимости изготовления изделий из традиционных материалов. Более того, изделия на основе крахмала являются весьма ломкими и хрупкими (т. е. они имеют недостаточную ударную вязкость и изгибную прочность, являющиеся важнейшими характеристиками большинства упаковочных материалов), в особенности после удаления из технологической формы, что ограничивает возможность их использования. Повышенная хрупкость изделий, только что удаленных из технологической формы, обусловлена необходимостью удаления практически всей свободной воды из ячеистой матрицы на крахмальной основе, чтобы предотвратить порчу или разрушение, связанное с расширением изделия после извлечения из технологической формы. Это объясняется тем фактом, что у таких изделий ячеистая матрица на крахмальной основе является слишком мягкой и не в состоянии выдерживать внутреннее давление, возникающее и действующее внутри ячеек в силу испарения свободной воды, оставшейся внутри "недопеченного" изделия. С другой стороны пересушивание изделий за счет их чрезмерно длительной выдержки в горячей технологической форме может привести к карамелизации, образованию усадочных трещин и потере связывающей способности крахмального материала. Эти противодействующие факторы оставляют лишь очень узкие временные рамки для формования таких изделий на крахмальной основе без появления многочисленных дефектов, что, естественно, повышает себестоимость изготовления. Более того, эти факторы приводят к практической невозможности изготовления изделий с переменным сечением, так как не представляется возможным одновременно удалить достаточное количество воды из толстостенного участка, что необходимо для предотвращения повреждения изделия, и предотвратить перегрев тонкостенного участка. Для повышения гибкости и снижения хрупкости только что отформованных изделий с крахмальным связующим ранее требовалось осуществлять их "кондиционирование" за счет помещения извлеченного из формы изделия в условия повышенной влажности и температуры на длительный срок, чтобы снизить хрупкость и повысить ударную вязкость изделий. Этот "этап кондиционирования" часто занимает несколько минут или даже часов, в зависимости от условий обработки, что еще более замедляет и без того низкопроизводительный технологический процесс. Кроме того, для поддержания у кондиционированных изделий критически необходимого уровня влажности ячеистой матрицы на крахмальной основе или для придания изделиям свойства водостойкости требуется еще одна дополнительная операция нанесения покрытия. Как и их аналоги на основе съедобных листов, такие изделия на крахмальной основе не обеспечивают возможность получения требуемых характеристик, свойственных традиционным материалам (даже при условии "кондиционирования") без существенного увеличения толщины и массы изделий, изготавливаемых из таких материалов (при этом требуется толщина, составляющая не менее 2 мм и обычно достигающая 5 мм). Такая большая толщина, естественно, обуславливает существенное увеличение общего объема материала, требуемого для формовки приемлемого изделия. Кроме того, такие изделия подвержены порче под воздействием чрезмерной влажности, что обуславливает критические условия в отношении влажности: недостаток влаги приводит к чрезмерной хрупкости и (или) ломкости изделий, что не позволит использовать их по назначению, а избыток влаги приведет к их порче или гниению. Отсюда следует, что такие изделия имеют низкий срок хранения. Кроме того, такие изделия на крахмальной основе обычно имеют низкое качество поверхности, что обусловлено плохой вентиляцией, недостаточной вязкостью и пределом текучести, а также неоптимизированной динамикой течения материала. Для маскировки поверхностных дефектов такие изделия часто изготавливались с вафельной или текстурированной поверхностью, причем вафельные технологические формы одновременно служили и для достижения второй цели: улучшение текучести смесей, которые уже имели склонность к расслоению. Предпринимались попытки заполнить такие материалы на крахмальной основе волокнами, для чего обычно использовались короткие волокна и (или) волокна с низким отношением длины к диаметру (например, менее 25:1). Однако такие волокна не обеспечивали существенное повышение прочности и ударной вязкости получаемых изделий на крахмальной основе. Более того, хотя любой специалист в данной отрасли техники мог бы предположить, что включение более длинных волокон (например со средней длиной свыше 2 мм) или волокон с увеличенным соотношением длины и диаметра (например, свыше 25: 1) обеспечит улучшение механических характеристик изделий на крахмальной основе, на практике имели место противоположные последствия. Было установлено, что добавление волокон обычно не улучшало характеристик или даже приводило к ослаблению изделий из-за ухудшения дисперсии образования комков и (или) сепарации волокон от жидкофазных компонентов исходного состава на крахмальной основе. Невозможность обеспечения адекватной дисперсии волокон была обусловлена непониманием связи между реологическими характеристиками (в частности пределом текучести) жидкофазного компонента и способностью этого компонента диспергировать волокна и предотвращать образование комков или узлов и отделение волоконных компонентов от жидкой фазы. На практике, традиционным способом улучшения дисперсии волокон служило увеличение концентрации воды. Ярким примером является производство обычной бумаги на древесной основе, для чего используется волокнистая пульпа, содержащая до 99,5% воды. Однако даже добавление большого количества воды в вышеупомянутые материалы на крахмальной основе (в некоторых случаях концентрация воды доходила до 80%) не приводило к адекватной дисперсии волокон любой длины. Более того, включение в состав большого количества воды с целью обеспечения дисперсии волокон, даже в случае коротких волокон приводило к повышению себестоимости производства из-за увеличения расхода времени и энергии на удаление дополнительной воды из отформованного изделия. И наконец, предпринимались попытки включения в крахмальные составы небольшого количества инертных неорганических заполнителей, чтобы снизить затраты на сырьевые материалы; однако максимальная концентрация таких заполнителей была ограниченной (на уровне не свыше примерно 10% от объема состава) из-за резкого ухудшения механических характеристик и снижения прочности отформованного изделия по мере увеличения концентрации таких заполнителей. Попытки введения в крахмальные составы большого количества неорганических заполнителей до сих пор не приводили к получению изделий с прочной структурной матрицей, обладающих хотя бы минимальными требуемыми механическими характеристиками. Даже в случае успешного включения в состав неорганических заполнителей в концентрации до 10%, результаты снижения затрат на материалы и повышения эффективности производства оказывались незначительными. В целом, в данной отрасли промышленности неоднократно предпринимались попытки разработки материалов с повышенной концентрацией неорганических заполнителей, пригодных для массового производства разнообразных изделий разового назначения. Такие неорганические материалы как глина, природные минералы и камень являются легкодоступными, неистощимыми, недорогими и экологически безвредными. Однако, несмотря на экономическое и экологическое давление, интенсивные исследовательские и опытные работы и давно ощущаемую потребность в таких материалах, до сих пор практически не существовало технологии для экономически эффективного изготовления материалов с высокой концентрацией неорганических заполнителей, которыми можно было бы заменить бумагу, картон, пластмассу, полистирол, металлы и другие изделия на органической основе. В свете вышеизложенного можно заявить, что требуются новые составы и методы изготовления материалов с крахмальным связующим, которые позволили бы заменить бумагу, картон, металл, пластмассу, полистирол или другие органические материалы, традиционно используемые для изготовления тарных и других изделий. Значительным достижением в данной отрасли техники явились бы составы и методы, обеспечивающие улучшение дисперсии волокон внутри упомянутых материалов на крахмальной основе без применения большого количества воды. Еще одним значительным усовершенствованием явится возможность более тщательного распределения волокон, в частности относительно длинных волокон (например, со средней длиной свыше 2 мм) и (или) волокон с повышенным соотношением длины и диаметра (например, как минимум, около 25: 1), внутри материалов на крахмальной основе, используемых для изготовления упомянутых тарных или других изделий. Еще одним достижением в данной отрасли явится возможность заполнения упомянутых составов с крахмальным связующим относительно большим количеством неорганических заполнителей, в частности заполнителей, совместимых с составом земли и обычно присутствующих в земле, при сохранении структурной целостности и требуемых механических характеристик изделий, изготавливаемых из таких составов. Значительным достижением в данной отрасли техники будет обеспечение возможности использования таких составов и методов для получения изделий с высокой концентрацией неорганических заполнителей и крахмальным связующим, обладающих такими же характеристиками, как изделия из бумаги, картона, металла, полистирола, пластмассы или других органических материалов, либо еще более высокими характеристиками. Другим достижением в данной отрасли техники явилась бы возможность применения таких составов и методов для получения тарных и иных изделий, которые можно изготавливать без длительного кондиционирования в условиях высокой влажности для обеспечения требуемой гибкости или ударной вязкости. Еще одним достижением в данной отрасли техники явились бы составы и методы для изготовления изделий с крахмальным связующим, для которых не требовалось бы нанесение покрытий, предотвращающих высыхание ячеистой структурной матрицы или поглощение ею влаги из атмосферы. Дополнительным усовершенствованием в данной отрасли будут составы и методы, пригодные для получения тарных и иных изделий, которые имели бы более гладкую и однородную поверхность в сравнении с существующими изделиями на крахмальной основе. Еще одним достижением явились бы составы и методы, позволяющие получать изделия с крахмальным связующим, имеющие переменную толщину поперечного сечения в пределах одного изделия. Другим достижением в данной отрасли техники будет возможность формования таких изделий с помощью существующего оборудования и методов, которые в настоящее время применяются для формования изделий из бумаги, картона, металлов, полистирола, пластмассы или других органических материалов. Еще одним достижением явились бы такие методы и составы, которые не приводили бы к вырабатыванию тех сопутствующих отходов, которые обычно возникают при производстве изделий из традиционных материалов. Еще одним достижением в данной отрасли техники будут такие составы и методы, которые требовали бы введения меньшего объема воды, подлежащей удалению в ходе технологического процесса (в сравнении с процессом изготовления бумаги или других материалов на органической основе), чтобы сократить время обработки и снизить начальные капитальные затраты на приобретение оборудования. С практической точки зрения, существенным достижением явилась бы возможность применения таких составов и методов для изготовления тарных и иных изделий, себестоимость которых не превышала бы себестоимость изделий, получаемых с помощью существующих методов изготовления тарных или иных изделий из бумаги, картона, металла, пластмассы, полистирола или других органических материалов. В частности, достижением в данной области техники явилась бы возможность сократить потребление энергии, сберечь ценные природные ресурсы и снизить первоначальные капитальные затраты, требуемые в настоящее время для изготовления изделий из обычных материалов, таких как бумага, металлы, полистирол, пластмасса или иные органические материалы. Дальнейшим усовершенствованием в данной отрасли стала бы возможность применения таких составов и методов для получения тарных и иных изделий, обладающих аналогичным поперечным сечением и сопоставимыми основными механическими характеристиками, требуемыми для конкретного назначения (такими как, например, теплоизоляционные свойства, прочность, ударная вязкость и т. п.), в сравнении с бумагой, картоном, полистиролом, пластмассой или другими органическими материалами. С точки зрения производственной технологии, существенным достижением в данной отрасли послужила бы возможность применения таких составов и методов для массового производства изделий с крахмальным связующим и с высокой концентрацией неорганических заполнителей, которые поддавались бы быстрой формовке и были бы готовы к употреблению через несколько минут после начала процесса изготовления. Еще одним значительным достижением в данной отрасли техники будет наличие таких составов и методов, которые обеспечили бы получение изделий с крахмальным связующим и с высокой концентрацией неорганических заполнителей, обладающих повышенной гибкостью, прочностью на изгиб, ударной вязкостью, формуемостью (удобоукладываемостью), технологичностью для массового производства, долговечностью и пониженным экологическим воздействием в сравнении с обычными материалами на крахмальной основе. Такие составы, методы и изделия описаны и заявлены в данной заявке и являются предметом настоящего изобретения. Настоящее изобретение относится к новым составам на крахмальной основе и методам получения составов на крахмальной основе, снабженных практически однородно распределенными волокнами, а также к методам применения таких составов для изготовления изделий с армированной волокнами вспененной структурной матрицей с крахмальным связующим. Предлагаемые составы на основе крахмала являются уникальными в том смысле, что они включают значительное количество тщательно перемешанных волокон, в качестве которых предпочтительно применять волокна с высоким соотношением длины и диаметра и с повышенной длиной. Это позволяет получать изделия с практически единообразными показателями количества, концентрации или распределения волокон по всей связующей матрице, что позволяет изготавливать разнообразные изделия, достигающие практически полной конечной прочности, гибкости, ударной вязкости или других важных характеристик сразу же или вскоре после извлечения из технологической формы, без необходимости в выполнении последующей операции кондиционирования. Для передачи усилия сдвига, развиваемого смесителем, на уровень волокон, что требуется для однородного распределения волокон в составе, применяется жидкофазная система, обладающая псевдопластическими или примерно Бингхамовскими характеристиками течения (т.е. жидкость, обладающая достаточно высоким пределом текучести). Предлагаемые составы на основе крахмала включают загуститель, обеспечивающий повышение предела текучести жидкой фракции, что способствует практически однородному распределению волокон, нежелатинированного связующего на крахмальной основе, воды и (при желании) неорганических заполнителей, составов для смазки технологической формы, внутренних материалов для образования покрытия, увлажнителей, пластификаторов, внутренних уплотняющих (герметизирующих) материалов, красителей и других добавок. В качестве загустителя предпочтительно применять предварительно желатинированный крахмал. В состав формовочной смеси включается вода, которая служит для обеспечения дисперсии компонентов, желатинизации связующего на крахмальной основе, а также в качестве испаряющегося пенообразующего средства. Вода, остающаяся в ячеистой матрице конечного изделия с крахмальным связующим, также способствует повышению пластичности структуры изделия, которая в ином случае была бы чрезмерно хрупкой, что обеспечивает внутреннюю гибкость и ударную вязкость. Настоящее изобретение также предусматривает усовершенствованные методы для применения составов на крахмальной основе с целью формования изделий, обладающих ячеистой структурной матрицей с крахмальным связующим. Процесс формования обычно включает помещение формуемого состава в нагретую технологическую форму, что обеспечивает желатинирование связующего на крахмальной основе, а также испарение и увеличение объема растворителя на водной основе, что позволяет получить вспененную ячеистую матрицу с крахмальным связующим. Было установлено, что однородно распределенные в составе на крахмальной основе волокна с высоким соотношением длины и диаметра (например, порядка 25: 1 и более) и предпочтительно с относительно большой длиной (например, не менее примерно 2 мм) выполняют, как минимум, две важные функции. Первой и, вероятно, наиболее важной функцией является армирование (т.е. упрочнение) образующейся вспененной матрицы формуемого состава с желатинированным крахмальным связующим, что позволяет извлекать отформованное изделие из технологической формы при сохранении в структуре изделия достаточного количества свободной воды, требуемой для придания пластичности матрице с крахмальным связующим. Это позволяет получать изделия, которые сразу же или вскоре после извлечения из технологической формы будут иметь достаточную ударную вязкость и прочность для их употребления по назначению без необходимости в обычно применяемом процессе кондиционирования или в использовании масел, пластификаторов или сополимеров, которые ранее требовались при изготовлении вспененных изделий на крахмальной основе. Без операции кондиционирования, требуемой для повторного увлажнения матриц с крахмальным связующим, вспененные изделия на крахмальной основе, даже снабженные значительным количеством коротких волокон (т. е. со средней длиной порядка 0 - 1,5 мм), обычно нельзя было использовать по назначению из-за чрезмерной хрупкости и ломкости, преимущественно обусловленной невозможностью обеспечения достаточной дисперсии волокон. Кроме того, такие изделия не поддавались извлечению из технологической формы без пересушивания, поскольку в противном случае в ячеистой структуре извлеченного из формы изделия оставалось бы значительное количество воды, находящейся под высоким давлением и приводящей к разрушению структуры свежеформованного изделия. Обычная ячеистая матрица на крахмальной основе не обладала достаточной прочностью, чтоб выдерживать нарастание внутреннего давления, обусловленное процессом горячего формования. Другое важное преимущество включения в отформованные изделия тщательно перемешанных, предпочтительно длинных волокон с высоким соотношением длины и диаметра заключается в резком увеличении ударопрочности, прочности на растяжение и изгиб, ударной вязкости, гибкости и других соответствующих характеристик конечного отформованного изделия в сравнении с ранее изготавливавшимися изделиями на крахмальной основе. Это повышение механических характеристик становится еще более значительным в случае добавления большого количества неорганических заполнителей, что в прошлом приводило к существенному снижению прочности отформованных изделий. Именно практически однородное распределение волокон придает предлагаемым материалам характеристики, по меньшей мере не уступающие характеристикам традиционных материалов при примерно такой же толщине поперечного сечения или массе. Это позволяет изготавливать тонкостенные изделия, обладающие характеристиками, которые превышают характеристики ранее изготавливавшихся толстостенных аналогичных изделий на крахмальной основе, что обеспечивает существенное снижение массы, себестоимости, продолжительности формования и экологического воздействия материалов, применяемых для изготовления таких изделий. Более того, сокращение продолжительности формования и исключение ранее требовавшейся операции кондиционирования приводит к резкому сокращению производственных расходов, благодаря снижению трудозатрат, а также затрат труда, времени и энергии. Предпочтительный формовочный состав на крахмальной основе получают посредством двухступенчатого процесса. Первая операция заключается в смешивании волокон (часто состоящих из волокнистого материала в виде путанки или пучка волокон), а также части связующего на крахмальной основе и воды с последующим желатинированием связующего на крахмальной основе с целью получения "предварительно замешанной" смеси, в которой жидкая фракция обладает достаточно высокими характеристиками предела текучести и вязкости, чтобы обеспечить достаточную дисперсию волокон, и в перемешивании волоконного материала посредством приложения достаточных усилий сдвига к предварительно замешанной смеси. В ходе второй операции к предварительно замешанной смеси добавляются остальные компоненты, включая оставшееся нежелатинированное связующее на крахмальной основе и дополнительное количество воды, а также другие (необязательные) компоненты, такие как неорганические заполнители, средство для смазки технологической формы, пластификаторы, реагенты для модификации реологических характеристик, материалы для образования внутреннего покрытия и любые другие желательные добавки. Однако после того, как волокна будут диспергированы в смеси, поддержание высокого предела текучести утрачивает значение. На практике, снижение вязкости и предела текучести конечной смеси часто способствует повышению технологичности процесса формообразования за счет повышения текучести смеси. В альтернативном варианте реализации настоящего изобретения волокна диспергируются в формуемом составе на крахмальной основе с применением только одной операции смешивания, для чего вязкость и предел текучести жидкой фракции смеси (за исключением твердых составляющих, таких, как волокна, нежелатированные гранулы крахмала, неорганические заполнители и т.п.) на начальной стадии должны быть достаточно высокими, чтобы обеспечить требуемое усилие сдвига на уровне волокон. Это можно осуществить, например, за счет введения в начальный состав на крахмальной основе как предварительно желатинированного связующего на крахмальной основе (или иного аналогичного загустителя), так и нежелатинированного связующего на крахмальной основе, причем предварительно желатинированный крахмал или другой загуститель повышает вязкость и предел текучести жидкой фракции смеси до минимального требуемого уровня. Важно понять, что возможность однородного распределения волокон в составе на крахмальной основе определяется в первую очередь реологическими свойствами жидкой фракции, а не свойствами смеси в целом. Действительно, известно, что добавление в смесь таких твердых компонентов, как волокна и заполнители, приводит к повышению предела текучести и вязкости смеси. Однако простое повышение предела текучести и вязкости смеси не обеспечивает столь же высокой степени дисперсии волокон, какая достигается за счет применения жидкой фракции, обладающей высоким пределом текучести; этим объясняется важность добавления желатинированного крахмала или другого приемлемого водорастворимого загустителя в жидкую фракцию смеси. После обеспечения однородной дисперсии волокон, будь то одноступенчатым или двухступенчатым методом, вязкость и предел текучести состава на крахмальной основе можно менять по мере необходимости для получения желательного формуемого состава. Как правило, добавление оставшихся компонентов приводит к повышению вязкости и предела текучести всего формуемого состава (но не его жидкой фракции), что во многих случаях является желательным. Однако часто бывает желательно вместо этого снизить вязкость жидкой фракции формуемого состава, например, за счет добавления воды и (или) диспергатора, чтобы повысить текучесть состава в формовочном устройстве. Это, в свою очередь, способствует улучшению качества поверхности отформованных изделий в сравнении с изделиями, изготовленными из смесей с более высокой вязкостью. Однако предел текучести жидкой фракции следует поддерживать на достаточно высоком уровне, чтобы сохранить когезию (связность) и пластичность состава. Было установлено, что предел текучести жидкой фракции, используемой для первоначальной дисперсии волокон в составе предварительно замешанной смеси, должен составлять примерно не менее 10 Па и до 5000 Па, предпочтительно - примерно от 20 Па до 2000 Па, более предпочтительно - примерно от 50 Па до 1000 Па и наиболее предпочтительно - примерно от 100 Па до 500 Па. Было установлено, что между пределом текучести жидкой фракции и возможностью однородного и гомогенного распределения волокон в смеси существует более прямая корреляция, чем между вязкостью и дисперсией волокон. На практике, даже весьма вязкие смеси, как правило, не обеспечивают возможности адекватного и однородного распределения волокон, если такие смеси обладают низким или нулевым пределом текучести. Тем не менее, хотя вязкость жидкой фракции имеет меньшее значение, чем поддержание требуемого предела текучести, следует указать, что вязкость жидкой фракции, как правило, должна составлять примерно не менее 3 Пас, вплоть до 3000 Пас, предпочтительно - примерно от 5 Пас до 1000 Пас, более предпочтительно - примерно от 10 Пас до 500 Пас и наиболее предпочтительно - примерно от 30 Пас до 200 Пас. Вышеуказанные и все последующие значения вязкости (если не оговорено иное) представляют собой значения "кажущейся вязкости", замеряемые в вискозиметре типа Paar-Physica при скорости сдвига 5 с-1. Однако "пластическая вязкость" той же жидкой фракции предварительно замешанной смеси