Способ получения алюмосиликатных производных
Реферат
Способ получения аморфного алюмосиликатного производного включает реакцию твердого соответствующего исходного материала с МОН, где М - катион щелочного металла или аммония. Твердый соответствующий исходный материал может быть выбран из монтмориллонита, каолина, природного цеолита (например, клиноптилолит/гейландита), а также из иллита, палыгорскита и сапонита и дополнительного реагента MX, в котором Х - галогенид, может быть использован вместе с МОН. Изобретение также включает алюмосиликатные производные общей формулы MpAlqSi2Or(OH)sXtuН2О, а также алюмосиликатные производные общей формулы MpAlqSi2Or(OH)suH2O. Изобретение позволяет получить производные с преобладанием тетраэдрически координированного алюминия, что повышает число способных к обмену мест. 3 с. и 10 з.п. ф-лы, 16 ил., 11 табл.
Изобретение относится к образованию новых материалов в форме алюмосиликатных производных и способам получения этих новых материалов, которые получают химической модификацией глиняных минералов и других алюминийнесущих минералов.
Производные этих глин или алюминийнесущих минералов характеризуются преобладанием тетраэдрически координированного Al+3, который возникает при химической модификации октаэдрически координированного Al+3 в исходном минерале. Это превращение структуры в атомной шкале делает доступными большее число способных к обмену мест, чем было обычно доступно в исходной глиняной структуре. При модификации таких глин или алюминийнесущих минералов могут возникать два признака новых материалов: повышенная способность к обменным катионам из раствора (т.е. катионообменная способность) и/или увеличение доступной площади поверхности по сравнению со свойствами исходного начального минерала (например, глины или цеолита). Эти два признака весьма важны для эффективного по цене применения этих производных материалов в разных областях применения для катионного обмена (например, для удаления ионов токсичных металлов из водного и неводного растворов; удаления NH4+ из водного и неводного растворов, в качестве основных компонентов моющих средств и в качестве умягчителей воды), абсорбции (например, для удаления газов из окружающей среды, для абсорбции катионов из растворов), в качестве агентов для регулированного выделения нужных катионов в окружающую среду и в качестве субстратов для реакций катализа при модификации углеводородов и других химикатов. Глиняные минералы являются частью наибольшего семейства минералов, называемых филлосиликатами или "слоистыми" силикатами. Эти глиняные минералы типично характеризуются двухмерными расположениями тетраэдрических и октаэдрических слоев, каждый с характерным элементным составом и кристаллографическими соотношениями, которые определяют минеральную группу. Следовательно, тетраэдрический слой может иметь состав T2O5 (где T, тетраэдрический катион, представляет собой Si, Al и/или Fe), а октаэдрический слой может, как правило, содержать катионы, такие как Mg, Al и Fe, но может также содержать и другие элементы, такие как Li, Ti, V, Cr, Mn, Co, Ni, Cu и Zn (Brindley and Brown, 1980, Crystal structures of clay minerals and their X-ray identification, Mineralogy Soc. , London). Каждую из этих глиняных минеральных групп можно классифицировать далее на триоктаэдрическую и диоктаэдрическую разновидности в зависимости от заполненности (заселенности) октаэдра в соответствующем расположении (ях) слоя. Некоторые специфические виды минералов могут показывать заполненность катионами, промежуточную между двумя разновидностями. Тем не менее, относительное расположение этих тетраэдрических и октаэдрических слоев также определяет основные минеральные группы, в которых совокупность молекул, которая связывает один тетраэдрический слой с октаэдрическим слоем, известна как слоистый минерал типа 1:1. Совокупность молекул, которая связывает два тетраэдрических слоя с одним октаэдрическим слоем, известна как слоистый минерал 2:1. Эта основная классификация минеральных видов, основанная на кристаллографических соотношениях определенных субъячеек, хорошо известна специалистам в области минералогии глин и образует основу описания данного изобретения. Несмотря на кристаллографию этих субъячеек в глиняных минералах, алюмосиликатные производные настоящего изобретения также включают минералы, которые содержат тетраэдрический каркас атомов кислорода, окружающих либо кремний, либо алюминий, в расширенной трехмерной пространственной сетке. Например, разные цеолиты содержат различные комбинации связанных тетраэдрических колец, двойных колец или полиэдрических единиц, но они также ответственны за обеспечение алюмосиликатного производного изобретения ASD (далее называемого "АСП"). Получение аморфного производного, называемого "аморфное производное каолина" (АПК), из каолиновых глин, которые являются алюмосиликатами 1:1, описано в более раннем патенте (WO 95/00441). Это описание раскрывает получение АПК из исходного материала каолиновой глины реакцией каолиновой глины с галогенидом щелочного металла MX, где M - щелочной металл, и X - галогенид. В данном описании ссылка на MX была единственным примером подходящего реагента, который мог преобразовать большую часть октаэдрически координированного алюминия в минерале каолиновой группы в тетраэдрически координированный алюминий. Однако, не приведено сведений о каком-либо возможном механизме, посредством которого явление происходило. Однако, что удивительно, к настоящему времени обнаружено, что альтернативный реагент, такой как высокоосновный раствор в форме MOH, где M - катион щелочного металла, может обеспечивать подобный результат, при котором основная часть октаэдрически координированного алюминия может быть превращена в тетраэдрически координированный алюминий. Не желая быть связанными теорией, гипотетически полагают, что реагент, который может дать этот особенный результат, может содержать соединение, которое диссоциирует на катионные частицы и анионные частицы так, что гидроксил-ионы присутствуют в концентрации, избыточной по сравнению с концентрацией ионов водорода. В дополнение к этому признаку или альтернативно, соединение вызывает образование гидроксил-ионов в полученном растворе вследствие взаимодействия с алюмосиликатным минералом в избыточной концентрации по сравнению с концентрацией ионов водорода. При образовании избытка гидроксил-ионов, казалось бы, что такой избыток гидроксил-ионов приводит к перестройке связи катион-кислород в исходном материале так, что может быть образован стабильный аморфный материал с вышеупомянутыми желательными свойствами. Опять же, безотносительно к теории, эта химическая трансформация или превращение может быть представлено следующим примером, в котором каолинит, содержащий Al и Si в октаэдрических и тетраэдрических положениях в структуре каолинита, соответственно, взаимодействует с галогенидом щелочного металла, в котором катион - ион K+ или аммония, в водном растворе так, что избыток галогенида (например, X) способен к легкому обмену с доступными гидроксилгруппами (OH-) в структуре каолинита. Этот обмен приводит к образованию высокоосновного раствора с избытком ионов OH-, которые могут вызывать перегруппировку октаэдрически координированного алюминия под действием этих ионов OH- на атомы кислорода, связанные водородом. Эта перегруппировка координации алюминия приводит, главным образом, к тетраэдрически координированному алюминию в этом образующемся стабильном материале. Следовательно, это обеспечивает подходящее объяснение, почему MX был подходящим реагентом в случае патента WO 95/00441. Альтернативно, высокоосновный раствор можно получать, используя реагент, такой как соединение, диссоциирующее на катионные и анионные частицы. Анионы, присутствующие в избытке, могут вызывать также перегруппировку октаэдрически координированного алюминия в тетраэдрически координированный алюминий воздействием их на атомы кислорода, связанные водородом. Другие примеры такого типа химического превращения глин включают реакцию каолинита или монтмориллонита с каустическим (щелочным) реагентом (например, MOH, где M - катион, такой как K+, или Na+, или Li+), так что происходит перегруппировка октаэдрически координированного алюминия в тетраэдрически координированный алюминий при его действии на атомы кислорода, связанные водородом. Настоящее изобретение обеспечивает способ получения алюмосиликатного производного, который включает взаимодействие соответствующего твердого исходного материала с MOH, где M представляет собой щелочной металл, с образованием аморфного алюмосиликатного производного (АСП). Осуществление того, что можно использовать MOH в дополнение к MX, чтобы получить АСП, является полезным, поскольку в настоящее время понимают, что MOH может быть использован для получения АСП из любого соответствующего исходного материала. Это удивительно, поскольку аморфное производное сейчас может быть получено, например, из глин 2:1, включающих монтмориллониты и другие члены смектитной группы. Получение аморфного производного из глин 2:1 является удивительным, так как структура и химия этих минералов заметно отличаются от структуры и химии минералов каолиновой группы 1:1. Единичный слой глин каолиновой группы состоит из одного октаэдрического слоя и одного тетраэдрического слоя, так что оба слоя выходят в межслойное пространство - область, которая доступна для реагирующих частиц. Однако, глиняный минерал 2: 1 содержит один октаэдрический слой и два тетраэдрических слоя. Октаэдрический слой, содержащий октаэдрически координированный алюминий, размещается между тетраэдрическими слоями. Превращение этого октаэдрического слоя не является легко предсказуемым при использовании галогенидов металлов к подобным реагирующим частицам, так как межслойное пространство окружено тетраэдрическими слоями. Уместно также утверждать, что октаэдрический слой в глиняных минералах 2:1 не будет легко доступным для галогенида металла. По этой причине специалисты в данной области допускают, что частицы, реагирующие с глиняными минералами 2:1, будут давать продукты реакции, отличные от продуктов реакции, описанных в патенте WO 95/00441. Скорость реакции и предпочтительные формы этих алюмосиликатных производных с желательными свойствами будут зависеть от точной температуры реакции в заданный период времени. В общем можно использовать температуру реакции меньше 200oC в течение периода времени от одной минуты до 100 часов. Более предпочтительно, температура составляет 50-200oC и время реакции составляет менее 24 часов. Во взаимодействии с этой перегруппировкой координации атома или атомов алюминия, присутствие дополнительного катиона (из реагента) вызывает стабилизацию разупорядоченной структуры через "присоединение" катиона к центру обмена, образованному в результате этой перегруппировки. В течение всего химического превращения может происходить потеря алюминия (а также малых количеств кремния) из алюмосиликатной структуры в высокоосновный раствор. Предпочтительный pH этого высокоосновного раствора во время реакции и в конце ее составляет, как правило, > 12, хотя реакция образования предпочтительных АСП может протекать в растворах с pH > 7,0. Примеры алюмосиликатов, которые можно модифицировать способом или способами изобретения, включают монтмориллонит, каолин, природный цеолит (например, клиноптилолит/гейландит), а также иллит, палыгорскит и сапонит. АСП изобретения характеризуются преобладанием тетраэдрического Al+3, который был преобразован из исходного октаэдрически координированного состояния исходного минерала (например, глины). В случае, например, монтмориллонитовых глин, тетраэдрический Al+3 был преобразован из октаэдрически координированного Al+3 исходного минерала (например, глины). Дальнейшие разъяснения этого АСП, далее обозначенного M-АСП, где M - обмененный катион, полученный определенным способом образования, можно получить обычными методами исследования минералов, которые демонстрируют следующие свойства: (1) "аморфная" природа (к диффракции рентгеновских лучей), т.е. без какого-либо очевидного дальнего порядка повторяющихся единиц; (2) повышенная способность к обмену катионов (по сравнению с исходным начальным минералом) из раствора; (3) увеличение доступной площади поверхности минерала (по сравнению с исходным начальным минералом), измеренной обычной изотермой БЭТ; (4) повышенная способность (по сравнению с исходным начальным минералом) адсорбировать анионные частицы или сложные полианионы из раствора; и/или (5) повышенная способность (по сравнению с исходным начальным минералом) абсорбировать масло и/или органические молекулы. Что касается свойства (2), то его можно показать на примере АСП изобретения, обладающих катионообменной способностью 20-900 миллиэквивалентов на 100 г, измеренной путем обмена катионов аммония или металла из водного раствора. Наиболее предпочтительная катионообменная способность, измеренная посредством обмена аммония, составляет между примерно 300-450 миллиэквивалентов на 100 г. Что касается свойства (3), то его можно показать на примере АСП изобретения, обладающих площадью поверхности меньше чем 400 м2/г, измеренной по изотерме БЭТ, и которая выше, чем у исходного глиняного минерала. Наиболее предпочтительная площадь поверхности по методу БЭТ составляет между 25 и 200 м2/г. Свойства (4) и (5) демонстрируются далее в Примерах 15 и 16. В этих примерах адсорбция фосфат-ионов на M-АСП может быть увеличена больше чем в 2,5 раза, по сравнению с их содержанием в растворе. Это свойство можно применять для адсорбции многих других важных анионных частиц. Дополнительно, абсорбция масла на M-АСП, полученном таким образом, может быть выше по меньшей мере в два раза, чем абсорбция на начальном алюмосиликатном минерале. Одна форма АСП изобретения имеет химический состав МpAlqSi2Or(ОН)sXtuH2О, где M представляет собой катион аммония или способный обмениваться катион металла; X представляет собой галогенид; 0.5 p 2.0; 1.0 q 2.2; 4.5 r 8.0; 1.0 s 3.0; 0.0 t 1.0 и 0.0 u 3.0. В одной определенной форме АСП может содержать элемент калий, так что М = K. АСП, обладающие вышеуказанным химическим составом, могут быть получены реакцией алюмосиликатного исходного материала, такого как глиняный минерал и цеолит, со смесью МОН и MX. В особенно предпочтительной форме изобретения АСП имеют химический состав МpAlqSi2Or(ОН)sXtuH2О, где M представляет собой катион аммония или способный обмениваться катион металла; 0.5 p 2.0; 1.0 q 2.2; 4.5 r 8.0; 1.0 s 3.0 и 0.0 u 3.0. АСП указанного выше химического состава могут быть получены способом, где исходный начальный алюмосиликат, такой как глиняный минерал, взаимодействует с одним только MOH. В АСП, указанных выше, возможно обменивать, по меньшей мере частично, катион щелочного металла на любой катион, стабильный в водном растворе. Такие обменные катионы включают катионы других щелочных металлов, катионы щелочноземельных металлов, катионы переходных металлов, катионы лантанидов и актинидов, катионы тяжелых металлов и аммоний. В то время, как обмен не протекает полностью для всех катионов, есть много катионов переходных металлов (например, Mn+2, Cr+3, Co+2, Ni+2, Cu+2, Zn+2, Ag+), катионов лантанидов (например, La+3, Nd+3) и катионов тяжелых металлов (например, Pb+2, Cd+2, Hg+2), которые близки к этому. Для некоторых катионов обмен завершается через три часа при комнатной температуре (например, Pb+2, Cu+2, NH4+, Na+, Ca+2, K+, Mg+2, Li+), в то время, как другие требуют более длительного времени и более высоких температур. Такой катионный обмен по существу сохраняет аморфный для диффракции рентгеновских лучей (ДРЛ) характер необмененных АСП. Однако, удельная поверхность обмененных материалов, будучи все же выше удельной поверхности каолина, действительно увеличивается или уменьшается в зависимости от обменного катиона. Например, в случае обмена Cu+2 из водного раствора образуется новый материал, называемый Cu-АСП, который, например, обладает высокой площадью поверхности, определенной по обычной изотерме БЭТ. Для различения, в общих формулах между новыми материалами АСП, образующимися непосредственно через превращение глины или других алюмосиликатов (как в Примерах 1-8 ниже), и материалами АСП, образованными прямым катионным обменом с непосредственно производными АСП, в описании используют следующую терминологию: -M-АСП обозначает материал, непосредственно полученный посредством общих процессов, описанных в Примерах 1-8. -M-АСП обозначает материал, впоследствии образованный катионным обменом с материалом M-АСП. Описания этого типа материала и способы его получения даны в Примерах 8, 12 и 13. Ясно, что частично образованные АСП, в которых два катиона занимают центры (места) или в которых множество катионов обмениваются в результате ряда частичных реакций, являются возможными формами этого нового материала. Термин "АСП", как его используют далее, включает в свой объем только алюмосиликатные производные. Отношения реагентов, которые могут быть использованы в процессе, широко изменяются, как описано далее. Первичными кристаллографическими методами установления материала АСП являются порошковая дифракция рентгеновских лучей (ДРЛ) и спектроскопия ядерного магнитного резонанса в твердом состоянии с вращением под магическим углом (ВМУ ЯМР, MAS NMR). В случае порошковой ДРЛ, образование M-АСП, в качестве первичного компонента реакции, обозначается потерей острых дифракционных пиков, соответствующих исходному начальному минералу (например, Ca-монтмориллониту), и соответствующему увеличению интенсивности широкого "горба" между 22o и 32o 2 при использовании Cu K излучения (см., например, фиг. 2с). В некоторых условиях обработки могут образовываться побочные продукты, такие как содалит или калиофиллит (например, как на фиг. 1b или 2b), хотя преобладающей присутствующей фазой является алюмосиликатное производное. Примеры типичных рентгенограмм для исходного монтмориллонита (STx-1) и соответствующих материалов М-АСП, полученных двумя различными способами (Примеры 1 и 3 даны ниже), приведены на фиг. 1а-1с и фиг. 2а-2с, соответственно. В случае спектроскопии ЯМР твердого состояния сигнал ВМУ ЯМР для ядер 27Al в материале M-АСП дает доминирующий пик при ~58 ppm (частей на миллион) (полная ширина на уровне полумаксимума (ПШПМ) ~16 частей на млн), обусловленный тетраэдрической координацией алюминия (как показано в фиг. 3). Как известно специалистам в данной области, монтмориллониты, такие как STx-1 и SWy-1, содержат октаэдрически координированные ионы алюминия. Этот кристаллографический признак можно продемонстрировать рядом методов, включая перерасчет данных химических анализов в виде формулы минералов и распределение атомов алюминия к октаэдрическим центрам в структуре монтмориллонита. Указанные два первичных кристаллографических метода определяют расположение атомов решающих элементов в этом новом материале, названном алюмосиликатное производное, и образуют основу семейства минеральных производных, которые получают химической реакцией алюминийнесущих минералов, таких как глины и цеолиты. Существенными кристаллографическими признаками являются: - превращение дальнего порядка в "аморфную" структуру, показывающую в рентгенограмме широкий "горб" или пик между 22o и 32o 2 при использовании Cu K излучения; и - присутствие, главным образом, тетраэдрически координированного алюминия. Химический анализ можно проводить различными способами, но в этом описании иллюстрируется использование электронного микрозонда для определения количеств элементов с атомным номером больше чем 11 (т.е. Na или больше). Присутствие кислорода определяют согласно общим принципам микроанализа минералов, известным специалистам. В зависимости от природы реагента, катион, способный обмениваться, такой как Na или K, будет присутствовать в алюмосиликатном производном. Типичные примеры химических составов алюмосиликатных производных, полученных реакцией гидроксида калия с монтмориллонитом (полученным по методу Примеров 1 и 2), приведены в Таблице 1. Эти химические анализы показывают низкие суммарные величины, которые подразумевают присутствие воды гидратации, вероятность для материалов, полученных этими способами. В дополнение, типичные примеры химических составов алюмосиликатных производных, полученных реакцией гидроксида калия или гидроксида натрия с каолином (Примеры 5 и 6), приведены в Таблице 2. Предпочтительной формулой этого типа производного является MpAlqSi2Or(OH)sXt uH2O, в которой M представляет собой катион, обмененный из реагента (например, Na+, Li+ или K+), X представляет собой анион, происходящий из реагента (например, ОН-, или F-, или Cl- и т.д.). Относительное содержание этих элементов в М-АСП относительно друг друга включает следующие величины атомных соотношений, но не ограничивается ими: 0.2 p 2.0; 0.5 q 2.5; 4.0 r 12; 0.5 s 4.0; 0.0 t 1.0 и 0.0 u 6.0. На объемные физические свойства этих алюмосиликатных производных, такие как площадь поверхности по БЭТ, катионообменная способность (КОС), абсорбция масла, степень основности и т.д., влияет природа обработки, использованная для получения АСП. В другом аспекте изобретения, это соотношение показывает, что определенные АСП могут больше подходить для одного применения (например, удаление следовых количеств двухвалентного катиона), чем для другого (например, абсорбции газов или масел), но что при относительном сравнении с глиняным минералом, используемым для получения АСП, каждое АСП имеет свойства, более пригодные для применения, чем глина. Например, можно получить широкий интервал величин КОС и величин площади поверхности для АСП, образуемых из каолинита, в зависимости от условий, используемых для отработки. Как описано далее, высокая концентрация гидроксил-ионов, присутствующих во время реакции для образования АСП, может быть получена путем использования разных реагентов и реакционных условий. Соответственно, фиг. 5 показывает график зависимости величин КОС, полученных по методике для обмена NH4+ Примера 10, от величин площади поверхности для более 150 отдельных реакций, включающих глиняные минералы и реагент, такой как гидроксид металла, который может быть в сочетании с галогенидом металла. Данные для условий, при которых реакции(я) не идут до завершения (т.е., в основном, глиняный минерал в продукте) или при которых другие фазы могут образовываться в качестве вторичных компонентов (например, калиофиллит или цеолит K-F), также включены на фиг. 5. График приблизительно определяет уровень предпочтительных свойств, обеспечивающих преобладание М-АСП в конечном продукте. В патенте WO 95/00441 предпочтительную форму АСП называют каолиновое аморфное производное. Однако, другие каолиновые аморфные производные можно получать, используя реагенты, такие как гидроксиды щелочных металлов или комбинации галогенидов щелочных металлов и гидроксидов щелочных металлов. В этих примерах, предпочтительные признаки можно распространить на широкий интервал величин. Конечный продукт может включать различные побочные продукты в дополнение к продукту, описанному в WO 95/00441. Эти побочные продукты, такие как калиофиллит и цеолит K-F, встречаются в относительно низких отношениях с АСП и не влияют значительно на предпочтительные признаки полученного АСП. АСП, как получено, например, по реакции с КОН, будет содержать высокий процент ионов К+ на способных к обмену центрах этого нового материала. Например, Таблица 1 указывает на ~10 мас.% K2O в случае М-АСП - производного монтмориллонита. В Таблице 2 количество K2O составляет от ~13 до ~20 мас.% для М-АСП - производного каолина, полученного по методу Примера 6. Как показано в Примерах 9 и 10, катионы, такие как Cu+2, Li+ или NH4+, будут легко обмениваться с К+ или Na+ этих способных к обмену центров в М-АСП с образованием производного, богатого Cu, Li или NH4, соответственно. В этом примере Cu-АСП показывает высокую величину доступной площади поверхности (см. Таблицу 3), которая, при подходящей предварительной обработке, дает возможность использовать этот материал, например, в качестве катализатора реакций дегидрирования органических соединений. Так же, аммонийобмененный АСП или NH4-АСП обладает значительным потенциалом для использования в качестве удобрения или поставщика питательного вещества в сельском хозяйстве, садоводстве и сырьевой промышленности. Альтернативно, M-АСП (где M = K или Na) также можно использовать в сельском хозяйстве или садоводстве для обмена иона аммония на стабильном субстрате (например, с образованием NH4-АСП) для последующего легкого удаления или последующего использования. Другие использования аммонийобменной способности АСП, такие как экстракция иона аммония из промышленного выходящего потока или из отработанных продуктов, легко усматриваются специалистами. Общая диаграмма, показывающая состояние концентрации OH- (полученной предпочтительным методом, отмеченным выше) и температуры реакции, дана на фиг. 6. В этой диаграмме переход от одной формы продукта (например, АСП) к другой (например, цеолиту K-F) может не быть отмечен острыми границами, но переходная площадь означает изменение в относительном составе присутствующего продукта. Как отмечено, в диаграмме существует широкая область условий обработки, в которой преимущественно образуются АСП. Следовательно, изобретение в дополнительном аспекте включает АСП, попадающие в затененную зону фиг.6. В этой широкой области образования могут быть получены АСП с характерной комбинацией предпочтительных свойств (см. фиг. 5). Как отмечено выше, М-АСП могут быть получены рядом похожих процессов, которые включают следующие общие изменения структуры исходного минерала: - атаку анионом или катионом реагента (например, OH-, F-, Cl- или K+, Na+ или Li+) таким образом, что часть связей Al-O и/или Si-O в структуре минерала ослабевает или разрушается; - потерю периодичности дальнего порядка (иногда называемой "кристалличностью") в структуре минерала таким образом, что производный материал походит на исходную структуру только как разупорядоченный (с ближним порядком) ряд субъячеек (например, тетраэдр SiO4; тетраэдр AlO4 и вновь образующиеся "обменные центры", которые могут содержать или не содержать катион); - потерю части атомов алюминия (и/или меньшего количества атомов кремния) из первоначального исходного минерала или минералов; - добавление катиона реагента (например, K+, Na+ или Li+), а также, в меньшей степени, аниона реагента к структуре производного материала. По мере протекания любого из этих процессов получения М-АСП, также происходят следующие общие изменения объемных физических свойств: - реакция протекает с увеличением вязкости реакционной смеси до определенного максимального уровня, определяемого относительными составами и природой начальных реагентов; - увеличение "диспергируемости" индивидуальных частиц, образующихся во время реакции - это допустимо, в частности, вследствие уменьшения размера индивидуальных алюмосиликатных частиц - по сравнению с диспергируемостью и/или размером первоначального исходного минерала (например, глины или цеолита); - увеличение насыпного объема, занимаемого сухим порошком (например, "пушистый" или менее компактный порошок), по сравнению с объемом, занимаемым первоначальным исходным минералом (например, глиной или цеолитом). На основе указанных выше общих изменений в первоначальном минерале и не желая быть связанными теорией, показано, что следующие категории условий реакций приводят к получению алюмосиликатного производного (М-АСП): 1. Глина плюс щелочь (например, каолин + КОН или монтмориллонит + NaOH); 2. Глина плюс галогенид металла плюс щелочь (например, каолин + KCl + KOH или монтмориллонит + KCl + KOH); 3. Цеолит плюс щелочь (например, гейландит/клиноптилолит + NaOH). Обобщение этих категорий реакций, использующих различные комбинации концентраций реагентов, вместе с некоторыми свойствами продуктов приведены в Таблице 4. Во всех этих категориях реакций воду добавляют к реакционной смеси в различных количествах. Эти категории реакций перечислены для демонстрации разнообразия способов достижения образования алюмосиликатных производных с основными свойствами, указанными выше. Характерные примеры образования алюмосиликатных производных приведены ниже. Пример 1. Получение М-АСП из глины Ca-монтмориллонита 20 г источника глины монтмориллонита из Техаса (Образец N STx-1; van Olphen and Fripiat, 1979, Data handbook for clay materials and other non-metallic minerals, Pergamon Press, Oxford, 342 pp.) тщательно смешивают с 30 г гидроксида калия (KOH) и 40 мл дистиллированной воды в химическом стакане и затем нагревают при 80oC в течение 3 часов. Образующуюся суспензию промывают водой до тех пор, пока не будет удален любой избыток гидроксида калия. Порошок затем высушивают и подвергают ряду тестов для исследования, которые включают порошковую дифракцию рентгеновских лучей (фиг. 1с и 2с), спектроскопию твердого состояния ВМУ ЯМР (фиг.3), электронное микрозондирование (Таблица 1, колонка 1), аммонийобменную способность, обмен Cu+2 (Таблица 4), измерения площади поверхности по БЭТ (Таблица 4). Данные этих методов исследования указывают, что материал имеет расположение атомов (т.е. кристаллографические признаки), указанное выше. В общем, анализ ДРЛ показывает, что в этом типе реакций количество образующихся побочных продуктов является минимальным (иногда пренебрежимо малым) и что 90% продукта составляет материал М-АСП. Пример 2. Получение М-АСП реакцией щелочи с глиной Na-монтмориллонит 20 г источника глины монтмориллонита из Wyoming (Образец N SWy-1; van Olphen and Fripiat, 1979, Data handbook for clay materials and other non-metallic minerals, Pergamon Press, Oxford, 342 pp.) тщательно смешивают с 30 г гидроксида калия (КОН) и 40 мл дистиллированной воды в химическом стакане и затем нагревают при 80oC в течение 3 часов. Образующуюся суспензию промывают водой до тех пор, пока не будет удален любой избыток гидроксида калия. Порошок затем высушивают и подвергают ряду тестов для исследования, которые включают порошковую дифракцию рентгеновских лучей, спектроскопию твердого состояния ВМУ ЯМР (фиг.4), электронное микрозондирование (Таблица 1, колонка 2), обменную способность катиона аммония (Таблица 4), обмен Cu+2 (Таблица 4), и измерения площади поверхности по БЭТ (Таблица 4). Данные этих методов исследования указывают, что материал имеет расположение атомов (т.е. , кристаллографические признаки), указанное выше. В общем, анализ ДРЛ показывает, что в этом типе реакции количество образующихся побочных продуктов является минимальным (иногда пренебрежимо малым) и что 90% продукта составляет материал М-АСП. В обоих образцах глины монтмориллонита, указанных выше, присутствуют примесные минералы, такие как кварц, карбонаты и слабо определяемые минералы оксида кремния. Во всех случаях присутствие незначительных количеств примесных минералов существенно не влияет на природу этих реакций и/или образование алюмосиликатных производных. Пример 3. Получение М-АСП из Ca-монтмориллонита с использованием NaOH 20 г источника глины монтмориллонита из Техаса (Образец N STx-1; van Olphen and Fripiat, 1979, Data handbook for clay materials and other non-metallic minerals, Pergamon Press, Oxford, 342 pp.) тщательно смешивают с 60 г гидроксида натрия (NaOH) и 60 мл дистиллированной воды в химическом стакане и затем нагревают при 80oC в течение 3 часов. Образующуюся суспензию промывают водой до тех пор, пока не будет удален любой избыток гидроксида натрия. Порошок затем высушивают и подвергают ряду тестов для исследования, которые включают порошковую дифракцию рентгеновских лучей (фиг. 1b и 2b), аммонийобменную способность (Таблица 4) и измерения площади поверхности по БЭТ (Таблица 4). Данные этих методов исследования указывают, что материал имеет расположение атомов (т.е. кристаллографические признаки), как определено выше. В общем, анализ ДРЛ показывает, что в этом типе реакций количество образующихся побочных продуктов является несколько большим, чем в Примерах 1 и 2, и что значительная часть побочного продукта является минералом содалит. Как показано ниже в Примере 10, удаление примесных фаз, образующихся по этой реакции или подобным реакциям, можно осуществить промывкой продуктов кислотой. Пример 4. Получение М-АСП реакцией природного цеолита с NaOH Образец природного цеолита, который содержит две определенные разновидности минералов, клиноптилолит и гейландит, получали из действующей шахты в Восточной Австралии. Как клиноптилолит, так и гейландит являются алюмосиликатами на основе Ca-Na (например, с химическим составом (Ca, Na2)[Al2Si7O18] 6H2O). В этом случае 5 г природного цеолита (измельченного до фракции размером < 1 мм), 5 г NaOH и 20 мл дистиллированной воды тщательно смешивают в химическом стакане и затем нагревают при 80oC в течение 3 часов. Образующуюся суспензию промывают водой до тех пор, пока не будет удален любой избыток гидроксида натрия. Порошок затем высушивают и подвергают ряду тестов для исследования, которые включают порошковую дифракцию рентгеновских лучей (фиг. 7), аммонийобменную способность (Таблица 4), обмен Cu+2 (Таблица 4) и измерения площади поверхности по БЭТ. Данные этих методов исследования указывают, что материал имеет распределение атомов (т.е. кристаллографические признаки), как определено выше. Пример 5. Получение М-АСП реакцией каолина с NaOH 10 г каолина, поставляемого Коммершиэл Минирэлс ("Микро-уайт каолин"), 10 г гидроксида натрия (NaOH) и 20 мл дистиллированной воды тщательно смешивают в химическом стакане и затем нагревают при 80oC в течение 3 часов. Образующуюся суспензию промывают водой до тех пор, пока не будет удален любой избыток гидроксида натрия. Порошок затем высушивают и подвергают ряду тестов для исследования, которые включают порошковую дифракцию рентгеновских лучей (фиг. 8b), аммонийобменную способность, обмен Cu+2 (Таблица 4) и измерения площади поверхности по БЭТ (Таблица 4). Данные этих методов исследования указывают, что материал им