Способ и устройство для трансформации тепловой энергии
Реферат
Рабочая среда пониженного давления испаряется в испарителе при поглощении тепловой энергии низкотемпературного источника. Далее рабочая среда сжимается в компрессоре и подается в струйный аппарат, где смешивается с жидким потоком, поступающим из сепаратора, установленного после конденсатора. В конденсатор направляется поток рабочей среды из струйного аппарата, где он охлаждается при передаче тепла высокотемпературному приемнику. Использование изобретения позволит повысить энергетическую эффективность термотрасформации за счет снижения удельного потребления энергии. 2 с. и 10 з.п. ф-лы, 2 ил.
Изобретение относится к теплоэнергетике, в частности к процессам преобразования тепловой энергии сравнительно низкого температурного уровня в тепловую энергию повышенного температурного уровня, и может быть использовано для тепло- и холодоснабжения.
Широко известны парокомпрессионные способы термотрансформации [1] , включающие испарение рабочей среды при пониженном давлении, сопровождаемое поглощением тепловой энергии низкотемпературного источника, сжатие рабочей среды в парообразном состоянии с помощью компрессора, охлаждение и конденсацию рабочей среды с передачей выделяющейся при этом тепловой энергии более высокотемпературному приемнику и понижение давления рабочей среды (как правило, дросселированием) перед испарением. Известен пароструйный способ термотрансформации [2], выбранный в качестве аналога, наиболее близкого к предлагаемому изобретению по совокупности признаков (прототип), заключающийся в испарении части рабочей среды пониженного давления за счет поглощения тепловой энергии низкотемпературного источника, сжатие этой части рабочей среды в струйном аппарате смешением ее с другой частью рабочей среды, имеющей более высокое давление, охлаждение и конденсацию рабочей среды после струйного аппарата с передачей выделяющейся при этом тепловой энергии более высокотемпературному приемнику, разделение рабочей среды на части, понижение давления одной из частей рабочей среды (дросселированием или детандированием) и ее испарение при контакте с низкотемпературным источником, повышение давления другой части рабочей среды насосом и ее испарение с помощью высокотемпературного источника энергии. В этом способе в струйный аппарат подают два потока пара с различным давлением. Известно устройство для трансформации тепловой энергии (холодильник или тепловой насос), включающее циркуляционный контур с установленными в нем последовательно испарителем, струйным аппаратом, охладителем (конденсатором), дросселем или детандером, и дополнительный циркуляционный контур (коммуникации), содержащий насос и испаритель высокого давления и подключенный к основному контуру со стороны насоса между охладителем и дросселем, а со стороны испарителя высокого давления - к струйному аппарату. Струйный аппарат известного устройства является пароструйным эжектором, в котором смешиваются две струи пара разного давления [2]. Известный способ характеризуется рядом преимуществ, таких как простота реализации, надежность эксплуатации и сравнительно небольшая стоимость. Однако его энергетическая эффективность сравнительно мала и уступает эффективности парокомпрессионных способов. Целью предлагаемого изобретения является повышение энергетической эффективности термотрансформации за счет снижения удельного потребления в процессе механической работы или теплоты высокотемпературного источника. Указанная цель достигается тем, что в способе трансформации тепловой энергии, включающем испарение части рабочей среды пониженного давления с поглощением тепловой энергии низкотемпературного источника, смешение потоков частей рабочей среды в струйном аппарате, охлаждение потока рабочей среды с передачей тепловой энергии высокотемпературному приемнику, разделение рабочей среды на части и понижение давления одной из частей рабочей среды, в струйном аппарате смешивают потоки жидкой и парообразной частей рабочей среды, причем последнюю подают в струйный аппарат компрессором. Кроме того, особенностями предлагаемого способа, приводящими к получению технического результата, являются: - подача в струйный аппарат части жидкой рабочей среды после ее охлаждения; - подача в струйный аппарат дополнительно части нагретой жидкой рабочей среды; - снижение давления одной из частей рабочей среды путем дросселирования; - дополнительное охлаждение одной из частей рабочей среды перед ее дросселированием; - использование в качестве рабочей среды смесей жидкостей с различными температурами кипения; - дополнительное сжатие жидкой части рабочей среды перед ее подачей в струйный аппарат. В устройстве для трансформации тепловой энергии, включающем циркуляционный контур с установленными в нем последовательно испарителем, струйным аппаратом, подключенным с возможностью подачи в него потока пара, охладителем, дросселем или детандером и коммуникациями для подачи в струйный аппарат дополнительных потоков, коммуникации подключают струйный аппарат к циркуляционному контуру на участке между охладителем и дросселем (детандером) с возможностью подачи жидкости, а в циркуляционном контуре на участке между струйным аппаратом и испарителем установлен компрессор. Другими отличительными особенностями предлагаемого устройства являются: - дополнительное подключение струйного аппарата к циркуляционному контуру на участке между струйным аппаратом и охладителем; - включение в коммуникации насоса для перекачки жидкости; - установка между охладителем и дросселем разделительной емкости; - установка перед дросселем (детандером) дополнительного охладителя. Таким образом, в предлагаемом способе в отличие от известного процесс сжатия рабочей среды в пароструйном аппарате заменяется сжатием парообразной части рабочей среды первоначально компрессором, а затем в парожидкостном струйном аппарате. В струйном аппарате парожидкостная смесь достигает сверхзвуковых скоростей, при которых происходит скачок давления с одновременной конденсацией пара и повышением температуры. В предлагаемом способе в отличие от известного не требуется высокотемпературный источник энергии для получения пара повышенного давления, а возможные затраты механической энергии для промежуточного сжатия пара в первой ступени или сжатия жидкости, подаваемой в струйный аппарат, намного меньше, чем аналогичные затраты в парокомпрессионном способе при одинаковой степени сжатия. Поэтому энергетическая эффективность (или коэффициент термотрансформации) предлагаемого способа значительно выше не только по сравнению со способом прототипа, но также по сравнению и с парокомпрессионным способом. Сущность предлагаемого способа поясняется принципиальной схемой установки для его осуществления, представленной на фиг. 1, и условным изображением характерных процессов этого способа в координатах абсолютная температура T - классическая энтропия S на фиг. 2. Устройство на фиг. 1 включает циркуляционный контур 1, содержащий испаритель 2, компрессор 3, струйный аппарат 4, охладитель 5, разделительную емкость 6, дополнительный охладитель 7 и дроссельный вентиль 8. Для циркуляции жидкой составляющей рабочей среды имеется насос 9 и коммуникации 10, 11. Испаритель 2 подключен к низкотемпературному источнику теплоты 12, а охладитель 5 - к высокотемпературному приемнику теплоты 13. Дополнительный охладитель 7 также имеет внешнее охлаждение (показано стрелками). На фиг. 2 представлены следующие процессы изменения состояния рабочей среды: 1-2 - испарение части рабочей среды с поглощением тепловой энергии низкотемпературного теплового источника; 2-3 - сжатие пара рабочей среды до промежуточного давления с применением механического компрессора; 3-4-8-7 - смешение парообразной и жидкой частей рабочей среды в струйном аппарате; 4-5 - сжатие рабочей среды в струйном аппарате в результате скачков уплотнения; 5-6 - возврат части нагретой жидкой рабочей среды в струйный аппарат с увеличением ее скорости движения; 5-7 - изобарное охлаждение части жидкой рабочей среды с передачей тепловой энергии внешнему потребителю; 7-8 - истечение части охлажденной жидкой рабочей среды в струйный аппарат; 7-9 - дополнительное охлаждение оставшейся части рабочей среды; 9-1 - дросселирование испаряемой части рабочей среды. Изображение процессов предлагаемого способа на фиг. 2 является условным и служит для целей иллюстрации, т.к. достаточно точное изображение этих процессов весьма затруднительно из-за их нестационарности и переменной массы рабочей среды. Энергетический баланс предлагаемого способа, как обычно, отражает тот факт, что количество энергии, полученное в цикле рабочей средой, равно количеству энергии, отдаваемой внешнему приемнику тепловой энергии. В частности, сумма энергии, получаемая рабочей средой при испарении Q1-2 и сжатия Q2-3 (а возможно, и от других источников), равна сумме тепловой энергии Q5-7 и Q7-9, передаваемой различными составляющими рабочей среды внешнему потребителю. Эффективность предлагаемого способа термотрансформации обусловлена применением в качестве одной из ступеней сжатия в тепловом насосе или холодильном устройстве парожидкостного струйного аппарата. Предлагаемый способ может быть реализован с использованием традиционных для тепловых насосов и бытовых холодильников низкокипящих жидкостей, например R 12, R 22, R 134a и т.д., или их смесей между собой или другими жидкостями (минеральными или синтетическими маслами, водой и т.д.). Предлагаемый способ позволяет значительно улучшить достигнутые ранее технико-экономические показатели процессов термотрансформации. Использованные источники 1. Соколов Е. Я. , Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения. - М.: Энергоиздат, 1981, с. 14-66. 2. Теплофизические основы получения искусственного холода. Справочник. - М.: Пищевая промышленность, 1980, с. 50-51.Формула изобретения
1. Способ трансформации тепловой энергии, включающий испарение части рабочей среды пониженного давления, сопровождаемое поглощением тепловой энергии низкотемпературного источника, смешение потоков частей рабочей среды в струйном аппарате, охлаждение потока рабочей среды с передачей тепловой энергии высокотемпературному приемнику, разделение рабочей среды на части, понижение давления одной из частей рабочей среды, отличающийся тем, что в струйном аппарате смешивают потоки жидкой и парообразной частей рабочей среды, причем последнюю подают в струйный аппарат компрессором. 2. Способ по п.1, отличающийся тем, что в струйный аппарат возвращают часть жидкой рабочей среды после ее охлаждения. 3. Способ по пп.1 и 2, отличающийся тем, что в струйный аппарат подают часть нагретой жидкой рабочей среды. 4. Способ по пп.1 - 3, отличающийся тем, что снижение давления одной из частей рабочей среды проводят дросселированием. 5. Способ по пп. 1 - 4, отличающийся тем, что перед дросселированием одной из частей рабочей среды ее дополнительно охлаждают. 6. Способ по пп.1 - 5, отличающийся тем, что в качестве рабочей среды используют смеси жидкостей с различными температурами кипения. 7. Способ по пп.1 - 3, отличающийся тем, что жидкую часть рабочей среды перед подачей в струйный аппарат дополнительно сжимают. 8. Устройство для трансформации тепловой энергии, включающее циркуляционный контур с установленными в нем последовательно испарителем, струйным аппаратом, подключенным с возможностью подачи в него потока пара, охладителем, дросселем или детандером, и коммуникации для подачи в струйный аппарат дополнительных потоков, отличающееся тем, что коммуникации подключают струйный аппарат в циркуляционному контуру на участке между охладителем и дросселем (детандером) с возможностью подачи жидкости, а в циркуляционном контуре на участке между струйным аппаратом и испарителем установлен компрессор. 9. Устройство по п.8, отличающееся тем, что струйный аппарат имеет дополнительное подключение к циркуляционному контуру на участке между струйным аппаратом и охладителем. 10. Устройство по пп.8 и 9, отличающееся тем, что коммуникации содержат насос для перекачки жидкости. 11. Устройство по пп.8 - 10, отличающееся тем, что между охладителем и дросселем установлена разделительная емкость. 12. Устройство по пп. 8 - 11, отличающееся тем, что перед дросселем (детандером) установлен дополнительный охладитель.РИСУНКИ
Рисунок 1, Рисунок 2