Способ эксплуатации сборного кристаллизатора для непрерывной разливки стали
Реферат
Изобретение относится к металлургии, конкретнее, к непрерывной разливке стали, в частности, к подготовке к разливке кристаллизаторов, состоящих из отдельных рабочих стенок. Технический эффект заключается в повышении качества непрерывнолитых слитков, производительности процесса непрерывной разливки стали и в повышении стойкости кристаллизатора. Способ эксплуатации сборного кристаллизатора для непрерывной разливки стали включает нанесение на рабочие стенки кристаллизатора (К) обмазки, последующую подачу в К стали, подачу на мениск стали в К в процессе разливки шлакообразующей смеси и вытягивание из кристаллизатора слитка. Перед разливкой в стыки между рабочими стенками (К) подают обмазку, состоящую из 10-20% фосфата алюминия, 60-85% глинозема и 5-20% шлакообразующей смеси, предназначенной для подачи на мениск стали в (К) в процессе разливки. Обмазку подают в стыки на длине, равной 0,4-0,6 высоты рабочих стенок со стороны верхнего торца (К). После подачи обмазки в стыки между рабочими стенками ее удаляют с поверхности участков стенок, прилегающих к стыкам стенок. 1 з.п.ф-лы, 1 табл.
Изобретение относится к металлургии, конкретнее, к непрерывной разливке стали, в частности, к подготовке к разливке кристаллизаторов, состоящих из отдельных рабочих стенок.
Наиболее близким по технической сущности является способ эксплуатации сборного кристаллизатора для непрерывной разливки стали, включающий нанесение на рабочие стенки кристаллизатора обмазки, последующую подачу в кристаллизатор металла, подачу на мениск металла в кристаллизаторе в процессе разливки шлакообразующей смеси и вытягивание из кристаллизатора слитка. Обмазка состоит из смеси дисульфида молибдена, парафина и воска. Удельный расход дисульфида молибдена составляет 5 10-3 кг/т стали. Эффективность обмазки сохраняется в течение пяти плавок после ее нанесения на рабочие стенки кристаллизатора. Под влиянием высокой температуры стали в процессе разливки дисульфида молибдена диффундирует в медные стенки, в результате чего образуется поверхностный слой, снижающий силы трения и препятствующий прилипанию к стенкам разливаемой стали (см. Лейтес A.B. Защита стали в процессе непрерывной разливки.- М.: Металлургия, 1984, c. 142). Недостатком известного способа является невозможность заделки щелей в угловых участках кристаллизатора в местах стыка рабочих стенок. Это объясняется химическим составом обмазки и способом ее нанесения на рабочие стенки. В результате вследствие наличия зазоров между рабочими широкими и узкими стенками в них заходит жидкая сталь и кристаллизуется в зазорах. Вследствие этого при вытягивании слитка образуются надрывы и трещины в его угловых участках, что приводит к прорывам металла под кристаллизатором и как следствие к снижению производительности непрерывной разливки стали и к выходу кристаллизатора из работы. Технический эффект при использовании изобретения заключается в повышении качества непрерывнолитых слитков, производительности процесса непрерывной разливки стали, а также в повышении стойкости кристаллизатора. Указанный технический эффект достигают тем, что способ эксплуатации сборного кристаллизатора для непрерывной разливки стали включает нанесение на рабочие стенки кристаллизатора обмазки, последующую подачу в кристаллизатор стали, подачу на мениск стали в кристаллизаторе в процессе разливки шлакообразующей смеси и вытягивание из кристаллизатора слитка. Перед разливкой в стыки между рабочими стенками кристаллизатора подают обмазку, состоящую из 10-20% фосфата алюминия, 60-85% глинозема и 5-20% шлакообразующей смеси, предназначенной для подачи на мениск стали в кристаллизаторе в процессе разливки. Обмазку подают в стыки на длине, равной 0,4-0,6 высоты рабочих стенок со стороны верхнего торца кристаллизатора. После подачи обмазки в стыки между рабочими стенками ее удаляют с поверхности участков стенок, прилегающих к стыкам стенок. Повышение качества непрерывнолитых слитков будет происходить вследствие устранения затекания жидкой стали в щели, имеющиеся в местах стыка рабочих стенок кристаллизатора. Повышение производительности процесса непрерывной разливки стали будет происходить вследствие сокращения прорывов металла под кристаллизатором из-за устранения трещин и надрывов в угловых участках слитков. При этом повышается стойкость кристаллизации вследствие устранения прогрессирующего разрушения стыков рабочих стенок в процессе эксплуатации кристаллизаторов. Диапазон значений количества фосфата алюминия в пределах 10-20% объясняется необходимыми физико-механическими свойствами обмазки. При меньших и больших значениях обмазка не будет обладать необходимыми связующими свойствами. В последнем случае будет происходить перерасход фосфата алюминия. Указанный диапазон устанавливается в обратной зависимости от скорости вытягивания слитка из кристаллизатора. Диапазон значений количества глинозема в пределах 60-85% объясняется термостойкими свойствами обмазки при больших температурах. При меньших значениях обмазка не будет обладать необходимыми термостойкостью и прочностью. При больших значениях обмазка будет хрупкой с низкой стойкостью. При этом будет происходить перерасход кремнезема. Указанный диапазон устанавливается в прямой зависимости от скорости вытягивания слитка из кристаллизатора. Диапазон значений количества шлакообразующей смеси в обмазке в пределах 5-20% объясняется физико-химическими и теплофизическими закономерностями затвердевания обмазки и ее износа в процессе разливки стали и контакта с поверхностью угловых участков слитка, разливаемого под слоем шлакообразующей смеси на мениске стали в кристаллизаторе. При меньших и больших значениях будет снижаться износ и стойкость обмазки, находящейся в стыках рабочих стенок, в процессе непрерывной разливки. Указанный диапазон устанавливается в прямой зависимости от значения основности шлаковой смеси и содержания в ней углерода. Диапазон значений длины стыков рабочих стенок, на которой подают обмазку, в пределах 0,4-0,6 высоты кристаллизатора объясняется закономерностями формирования оболочки слитка, разливаемого под слоем шлакообразующей смеси, величины ее основности и содержания в смеси углерода. При меньших значениях возможно затекание стали в стыки рабочих стенок. При больших значениях будет происходить перерасход обмазки вследствие ее подачи в нижней части кристаллизатора. Указанный диапазон устанавливают в обратной зависимости от длины кристаллизатора. Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень". Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения. Способ эксплуатации сборного кристаллизатора для непрерывной разливки стали осуществляют следующим образом. Пример. Перед началом непрерывной разливки стали марки 08пс в сборный кристаллизатор слябового сечения в стыки медных рабочих стенок подают обмазку, состоящую из 10-20% фосфата алюминия (Al(H2PO4)2, 60-85% глинозема Al2O3 и 5-20% шлакообразующей смеси, предназначенной для подачи на мениск стали в кристаллизаторе в процессе разливки. Химический состав разливаемой стали следующий, мас.%: C = 0,05 - 0,11; Si = 0,05 - 0,17; Mn = 0,35 - 0,45; S 0,025; P 0,025; Cr = 0,10; Ni 0,30; Cu 0,030; Al = 0,01. Химический состав шлакообразующей смеси следующий, мас.%: C = 7 - 10; Al2O3 = 7 - 10; F = 7 - 10; CaO = 30; SiO2 = 30; остальное - сопутствующие элементы MgO, FeO, Na2O, Ka2O и др. Основность шлакообразующей смеси составляет CaO/SiO2 0,8 - 1,3. Обмазку подают в стыки на длине 0,4-0,6 высоты рабочих стенок со стороны верхнего торца кристаллизатора. Обмазку наносят вручную с помощью, например, скребка. После подачи обмазки в стыки между рабочими стенками ее удаляют с поверхности участков стенок, прилегающих к стыкам стенок, с помощью того же скребка и начинают процесс разливки стали под слоем шлакообразующей смеси указанного выше состава. В процессе подачи обмазки возможные щели в стыках рабочих стенок заполняют обмазкой, что впоследствии после начала непрерывной разливки устраняет затекание жидкой стали в стыки рабочих стенок. При этом состав обмазки обеспечивает ее прочность и износостойкость в процессе непрерывной разливки. В таблице приведены примеры использования способа с различными технологическими параметрами. В первом примере вследствие малой длины участка подачи в стыки рабочих стенок обмазки и отсутствия необходимого состава обмазки не происходит надежного заделывания щелей в стыках рабочих стенок, что приводит к снижению качества угловых участков слитков, к прорывам металла под кристаллизатором и к снижению стойкости кристаллизатора. В пятом примере вследствие отсутствия необходимого содержания компонентов в обмазке не обеспечивается надежная заделка стыков рабочих стенок. Большая длина участка заполнения стыков рабочих стенок приводит к перерасходу обмазки. В оптимальных примерах 2-4 вследствие необходимого состава обмазки и длины участков стыков, на которые подается обмазка, повышается стойкость кристаллизатора на 5-10%, а также снижаются прорыва металла под кристаллизатором на 2-3%.Формула изобретения
1. Способ эксплуатации сборного кристаллизатора для непрерывной разливки стали, включающий нанесение на рабочие стенки кристаллизатора обмазки, последующую подачу в кристаллизатор металла, подачу на мениск металла в кристаллизаторе в процессе разливки шлакообразующей смеси и вытягивание из кристаллизатора слитка, отличающийся тем, что перед разливкой в стыки между рабочими стенками кристаллизатора подают обмазку, состоящую из 10 - 20% фосфата алюминия, 60 - 85% глинозема и 5 - 20% шлакообразующей смеси, предназначенной для подачи на мениск стали в кристаллизаторе в процессе разливки, при этом обмазку подают в стыки на длине, равной 0,4 - 0,6 высоты рабочих стенок со стороны верхнего торца кристаллизатора. 2. Способ по п. 1, отличающийся тем, что после подачи обмазки в стыки между рабочими стенками ее удаляют с поверхности участков стенок, прилегающих к стыкам стенок.РИСУНКИ
Рисунок 1