Способ получения термоактивного связующего композита (варианты)
Реферат
Способ получения композитного продукта с термоактивным связующим осуществляют путем инжектирования горячего сухого газа для активации термоактивного связующего. В предпочтительном варианте горячим сухим газом является воздух. Способ особенно выгодно применять для получения термопластичных композитных продуктов, в частности композитов из термопластиков целлюлозы. Также частью настоящего изобретения является двухстадийный способ прессования, по которому горячий газ инжектируется во время первой стадии, и загрузка пресса предварительно прессуется. Загрузку пресса затем помещают во второй пресс отверждения, куда горячий газ уже не инжектируется, и ее отверждают и охлаждают. Оборудование для осуществления способа включает плиту с тигельным прессом, который включает верхнюю и нижнюю плиты со множеством сопел для инжектирования горячего воздуха, расположенных на поверхности каждой плиты. Плиты расположены на расстоянии друг от друга и окружены по сторонам воздухопроницаемой защитной оболочкой с образованием камеры сжатия для удерживания материала основы, который прессуют. Другое оборудование включает пресс отверждения. Технический результат - создание способа с использованием термоактивного связующего и крупных частиц наполнителя. 6 c. и 24 з.п. ф-лы, 10 ил.
Изобретение относится к новому способу и устройству получения композитных продуктов с использованием термоактивных связующих, в частности к новой технологии инжектирования горячего неконденсированного газа в рыхлый материал основания, включающий термопластичный или термореактивный компонент, посредством чего нагревают материал основания и склеивают композицию.
Два основных термоактивных связующих являются термореактивными и термопластичными соединениями. Таким образом область формирования композитных продуктов из термоактивного связующего и наполнителя может быть разделена на два основных направления, основанных на свойствах используемого связующего, например термопластичного или термореактивного. При производстве восстановленных целлюлозных продуктов используют термореактивные полимеры. Например, для изготовления панелей из восстановленной древесины, такой как слоистый картон или волокнистый картон средней плотности, термореактивное полимерное связующее смешивают с волокнами древесины или частицами древесины с образованием мата. Мат затем помещают между плитами и сжимают. Во время прессования к мату подводят тепло для его смягчения, за счет чего мат легче сжимается, а также вулканизируется термореактивное полимерное связующее. Время, потраченное на прессование/нагревание связующего для его смягчения и полной вулканизации, снижает производительность процесса изготовления композитных панелей и в большой степени это время зависит от механизма передачи тепла, используемого для подачи тепла к мату. Желательно довести до минимума время прессования, требуемое для получения продукта. С целью иллюстрации, каждая секунда уменьшения цикла прессования в крупномасштабном производстве древесно-стружечных плит (ДСП) приводит к увеличению годовых продаж на 35000 долларов США. В известном прессовании восстановленных древесных плит тепло передается к мату от нагретой поверхности плит пресса. Из-за плохой термопроводимости целлюлозы и термореактивного полимера этот способ требует, чтобы мат оставался в прессе довольно большое количество времени для того, чтобы повысить температуру тела мата до уровня, достаточного для вулканизации термореактивного полимерного связующего и завершения образования панели. Это особо проблематично с толстыми матами, потому что время прессования катастрофически увеличивается с увеличением толщины мата. Были сделаны попытки снизить время прессования путем увеличения температуры плит пресса. Однако было достигнуто только небольшое снижение времени прессования, а повышенная температура плит пресса приводила к повреждению панелей. Известные предложения снизить время прессования также заключались в том, чтобы использовать пар для передачи тепла к матам путем конвекции, за счет чего использовать природную пористость матов. Один хорошо известный способ с использованием передачи конвективного тепла включает технологию "парового удара" или "паровой струи", по которому маты, покрытые поверхностной влагой, контактируют с горячими плитами, которые упаривают воду. Полученный пар быстро продвигается к центру мата, за счет чего повышается температура тела. Можно использовать больше воды для увеличения полученной температуры тела. Однако такие предложения также страдают недостатками, так как требуется большее время прессования, чтобы избавиться от избытка влаги мата. Кроме того, поверхность панели часто пузырится из-за теплоты, образованной паром. Схожие смешанные результаты наблюдались при использовании других предложений, касающихся применения пара, таких систем, при которых направляют пар к мату через перфорированные плиты. Независимо от того, какой метод используется, следует достичь температуры тела, равной 150-350oF (65,6 - 176,7oC), для эффективной вулканизации термореактивных соединений. В общем, предпочтительными являются термореактивные соединения, которые вулканизуются при более низких температурах, из-за того, что требуется меньшее общее время цикла. Переходя от термореактивных к термопластичным связующим, общей идеей является связать частицы наполнителя, который может быть порошкообразным, или не порошкообразным, с термопластичными соединениями. В настоящее время имеется по крайней мере два известных способа смешения термопластичных соединений с частицами порошкообразного наполнителя. В соответствии с одним способом твердые термопластичные гранулы и частицы порошкообразного наполнителя предварительно смешивают и затем подают в нагретый экструдер для расплавления гранул. Гранулы и частицы затем перемешивают при помощи механического устройства и выводят из экструдера. В соответствии с другим способом для подачи смеси термопластичных гранул и частиц порошкообразного наполнителя через мундштук в пресс-форму используют тепло и чрезвычайно высокое давление. Примером коммерческого применения способа получения композита из термопластичного полимера и порошкообразного наполнителя является использование существующей технологии пластикового экструдера для переработки комбинации опилок и полиэтиленовой пленки в червячном экструдере. Однако эта технология имеет серьезные ограничения. Во-первых, допуски в червячном экструдере позволяют использовать только сортированные по размеру частицы целлюлозы. Это значительно снижает прочность и жесткость материала, так как длина и ориентация волокон вносят значительный вклад в механические свойства композитного материала. Этот способ также ограничен смесью около 50/50 термопластичного материала к целлюлозе из-за ограничений расплав/течение в экструдере. При количестве целлюлозы выше 50% получается неприемлемый продукт. Это ограничение имеет экономические последствия потому, что целлюлозу вводят прежде всего для снижения стоимости и веса конечного продукта. Существуют по крайней мере три известных способа смешения термопластичных полимеров с непорошкообразными наполнителями. В одном способе частицы наполнителя индивидуально окунают в горячую вязкую ванну с термопластиком и затем после охлаждения частицы наполнителя, покрытые окунанием, ткутся с получением ткани. Затем материал, полученный в виде ткани, помещают в пресс-форму с дополнительным термопластичным материалом. Затем подводят тепло, заставляя термопласты расплавляться во внутрь и вокруг площади тканеподобного материала с наполнением сухих мест, которые не были охвачены при покрытии окунанием. Второй способ включает использование чрезвычайно высокого давления при инжектировании термопластичного материала в пресс-форму для покрытия частиц наполнителя. Однако при этой технологии можно использовать только некоторые типы наполнителей. Кроме того, известен способ получения относительно тонкого композитного материала путем укладки слоями термопластичных гранул и наполнителя в пресс-форму с последующим нагревом пресс-формы. Еще один пример смешения термопластичных полимеров и не порошкообразных наполнителей приведен в патенте США N 5088910. В этом способе используют известный тигельный пресс и технологии прессования пластиков с получением термопластичного композита. В этом способе машина перемешивает свалявшиеся целлюлозные волокна, такие как соломка, и полоски полипропилена с получением рыхлого сплетенного мата. Мат затем помещают в известный тигельный пресс с плитами, которые можно нагревать или охлаждать. Полученный материал, который используют для изготовления отдельных частей автомобиля, достаточно прочен благодаря длине целлюлозных волокон и их ориентации. Он также дешевле и легче, чем такой же материал из пластика. Этот способ, однако, требует интенсивных затрат энергии, так как для каждого цикла прессования вся масса плит должна быть нагрета и охлаждена. Он также ограничен производством относительно тонкого материала из-за термических характеристик пластика и соответственно увеличения времени цикла, что происходит при попытке нагреть толстые участки поверхности. Другими словами, известные способы изготовления термопластичных композитов являются дорогими и ограниченными в возможностях по сравнению со способами получения термореактивных композитов. Главной причиной таких отличий являются относительно высокие вязкости, связанные с термопластиками, что затрудняет получение необходимого смачивания частиц наполнителя для получения однородного когезионного конечного продукта. Термопластики также типично имеют относительно высокую точку плавления и поэтому требуют высоких температур для образования жидкого адгезива. Температура сердцевины, требуемая для образования термопластичных композитов (примерно 380oF, 193,3oC) таким образом гораздо выше, чем требуется для вулканизации термореактивных композитов (диапазон примерно 200-350oF, 93-176,7oC). Кроме того, термопластики имеют очень низкий коэффициент термопроводности, что означает, что требуется много времени для расплавления пластика в сердцевине толстого мата, когда тепло подводится только к поверхности, как это происходит в известном тигельном прессе. Например, требуется примерно 20 минут для расплавления термопластика для получения панели из термопластичного композита толщиной 1/2 дюйма (12,7 мм) с использованием известного тигельного пресса с нагретыми плитами. Подводить тепло к композиту также возможно при помощи облучения микроволновой или радиочастотой. Хотя оба эти метода работают, они очень дорогостоящие и не очень надежные, если содержание влаги целлюлозного компонента изменяется. Несмотря на трудности в указанном выше способе, имеются существенные положительные моменты, связанные с использованием термопластичных полимеров для образования композитов. Прежде всего, последние тенденции, направленные на увеличение степени утилизации и сохранение природных ресурсов, привели к существенной потребности в способах повторного использования термопластиков. Существенная часть бытовых отходов включает термопластичные полимеры, которые могут быть повторно использованы для получения термопластиков при производстве композитов. Данные Агентства по Охране Окружающей Среды (ЕРА) показывают, что пластики составляют примерно 7,3% всех отходов в США. Только примерно 1% этого количества перерабатывается. Ожидается, что производство пластиков в США достигнет 76 миллиардов фунтов в год к 2000 году. Таким образом способ, который позволит положительно использовать любую часть этих отходов, внесет существенный социальный вклад. Термопластики также желательны, потому что они обычно дешевле термореактивных полимеров. Их можно также повторно использовать, так как их можно неоднократно повторно расплавлять в отличие от термореактивных полимеров, которые считаются неприемлемыми для использования, если их расплавлять после вулканизации. В некоторых случаях для получения желательных свойств композита требуется применение термопластичных полимеров вместо термореактивных полимеров. Таким образом целью настоящего изобретения является создание способа получения композита с использованием термоактивного связующего и крупных частиц наполнителя. Другой целью настоящего изобретения является создание способа получения термопластичного продукта с использованием термопластических отходов. Еще одной целью настоящего изобретения является создание способа и устройства для получения термопластических продуктов, используя термопластичные отходы, в которых возможно перерабатывать красители и загрязнения от инородных предметов, таких как метки, клей и остаточные органические вещества. Еще одной целью настоящего изобретения является получение композита с термоактивным связующим и с непрерывным армирующим материалом. Еще одной целью настоящего изобретения является возможность изменять свойства термоактивного связующего композита путем зонирования. Еще одной целью настоящего изобретения является обеспечение энергосберегающего процесса получения продукта с использованием термоактивного связующего. Дополнительной целью настоящего изобретения является обеспечение способа получения продукта с использованием термоактивного связующего и вторичных энергоресурсов от других промышленных производств для подвода тепла, необходимого для образования продукта. Еще одной целью настоящего изобретения является обеспечение способа образования продукта с термоактивным связующим, который можно применять для получения деталей глубокой вытяжкой. Еще одной целью настоящего изобретения является обеспечение способа получения продукта с термоактивным связующим, который можно применять для производства листовых продуктов. Еще одной целью изобретения является обеспечение способа получения продукта с термоактивным связующим, который можно применять для получения экструдированных продуктов. Еще одной целью настоящего изобретения является обеспечение способа получения продукта с термоактивным связующим, который имеет более короткое время цикла и более высокую производительность, чем известные технологии. Еще одной целью настоящего изобретения является обеспечение способа производства термопластичных деталей, который не требует дорогостоящего оборудования. Еще одной целью настоящего изобретения является обеспечение способа получения композита с термоактивным связующим с использованием стадии нагрева с последующим холодным отверждением. Дополнительной целью настоящего изобретения является обеспечение способа получения продукта с термоактивным связующим в тиглевом прессе с необогреваемыми плитами. Еще одной целью настоящего изобретения является создание плиты пресса, пригодной для инжектирования горячего газа в пресс. Еще одной целью настоящего изобретения является создание тиглевого пресса с плитами с изоляционной поверхностью для контакта с загрузкой пресса. Еще одной целью настоящего изобретения является обеспечение пресса для получения композита с термоактивным связующим, используя горячий газ в качестве источника тепла. Еще одной целью настоящего изобретения является обеспечение защитной оболочки для помещения рыхлой загрузки сырья в пресс во время инжектировании горячего газа и сжатия загрузки. Еще одной целью настоящего изобретения является обеспечение способа получения композита с термопластичным связующим и частицами наполнителя, где частицы наполнителя имеют длину между 1/4 и 6 дюймами (6,35 - 152,4 мм). Краткое изложение изобретения. Указанные выше цели изобретения достигаются при помощи способа подачи тепла для получения композита из термоактивного связующего и наполнителя путем инжектирования, введения или вдувания горячего воздуха в материал основы, который является рыхлой смесью кусков термоактивного связующего и частиц наполнителя. При инжектировании горячего воздуха связующий компонент эффективно нагревается и активируется - расплавляется в случае термопластичного связующего или ускоренно вулканизируется в случае термореактивного связующего. Горячий воздух эффективно поднимает температуру связующего и нет необходимости подводить дополнительное тепло через плиты. Согласно первому варианту воплощения данного изобретения способ получения композитного продукта с термоактивным связующим включает следующие стадии: - выбор материала основы, включающего термоактивное связующее; - формование материала основы в мат, имеющего, по крайней мере, одну открытую поверхность; - создание системы сопел для подачи горячего неконденсируемого газа под давлением к материалу основы и в него через открытую поверхность, причем система сопел включает множество сопел, расположенных в соответствии с предварительно определенным распределением над открытой поверхностью с множеством сопел, имеющих средний размер отверстий и отстоящих друг от друга на предварительно определенном среднем расстоянии, которое значительно больше, чем средний размер отверстий; - инжектирование горячего неконденсируемого газа через систему сопел в материал основы, при этом давление газа существенно падает при прохождении через сопла перед входом в материал основы, по крайней мере, во время части стадии инжектирования; - прессование материала основы до первой плотности. При осуществлении этого способа сопла расположены в контакте с открытой поверхностью материала основы или сопла отстоят от поверхности материала основы на короткое расстояние. Кроме этого способ включает следующие дополнительные стадии: - выбор материала основы, включающего частицы наполнителя, - выбора частиц наполнителя в основном в виде лент, - выбор частиц наполнителя из группы, включающей опилки, измельченную бумагу, древесную стружку, скорлупу орехов, стекловолокно, борные волокна или волокна Кевлар, - предварительного нагревания термопластичной части материала основы до соединения с частицами наполнителя, - формование материала основы в загрузку пресса, имеющую противоположные стороны, и стадию создания системы сопел, расположенных так, чтобы подавать газ к противоположным сторонам загрузки пресса и в них. Согласно второму варианту воплощения данного изобретения способ получения композитного продукта с термоактивным связующим включает следующие стадии: - выбор материала основы, содержащего термоактивное связующее; - создание тигельного пресса с парой противостоящих плит для сжатия загрузки пресса, полученной из материала основы; - выбор плит, имеющих изоляционную внутреннюю поверхность для контактирования с загрузкой пресса, за счет чего значительно ограничивают теплопередачу между плитами и загрузкой пресса; - инжектирование горячего сухого газа в загрузку пресса; - прессование загрузки пресса. Способ также включает следующие дополнительные стадии: - выбор горячего воздуха в качестве горячего газа для стадии инжектирования, - нагрев горячего воздуха до между 400 и 600oF (204,4 и 315,6oC) перед стадией инжектирования, - выбор термопластичных хлопьев в качестве термоактивного связующего. Согласно третьему варианту воплощения данного изобретения способ получения композитного продукта с термоактивным связующим включает следующие стадии: - выбор газопроницаемого материала основы, содержащего термоактивное связующее; - формование материала основы в загрузку пресса, имеющую противоположные стороны; - введение по существу сухого горячего газа в материал основы через первую область на одной из противоположных сторон и через вторую область другой из противоположных сторон одновременно, причем, по крайней мере, существенные части областей противоположны друг другу вдоль загрузки пресса в направлении, нормальном к сторонам, а температура газа выше, чем температура активации термоактивного связующего материала основы. Указанный способ включает дополнительные стадии: - создание системы сопел для введения по существу сухого горячего газа к материалу основы и в него через противоположные стороны, причем система сопел включает множество сопел, расположенных над обеими противоположными сторонами, - принудительная подача газа через сопла в количестве, достаточном для создания существенного падения давления в соплах перед тем, как газ войдет в материал основы. Согласно четвертому варианту воплощения данного изобретения способ получения композитного продукта с термопластичным связующим включает следующие стадии: - выбор газопроницаемого материала основы, включающего термопластичное связующее, где газопроницаемость материала основы меняется при активации термопластичного связующего; - ижектирование по существу сухого горячего газа в материал основы из множества дискретных мест, при этом температура газа выше, чем температура активации термопластичного связующего материала основы; - регулирование потока газа в множестве дискретных мест таким образом, что изменения проницаемости материала основы вблизи одного или более множества дискретных мест существенно не влияют на поток газа в материале основы от одного или более дискретных мест относительно другого множества дискретных мест. Этот способ дополнительно включает следующие стадии: - формования материала основы в загрузку пресса, имеющую противоположные стороны, а множество дискретных мест расположены на обеих противоположных сторонах загрузки пресса, - прессование материала основы по существу в компактный, твердый продукт, - выбор термопластичного материала основы в качестве термоактивного связующего, - выбор термореактивного материала в качестве термоактивного связующего, - прессование материала основы с получением по существу компактного, твердого продукта, - выбор по существу сухого газа для стадии инжектирования с температурой, по крайней мере, 400oF (204,4oC). Согласно пятому варианту воплощения данного изобретения способ получения композитного продукта из термоактивного связующего и целлюлозы включает следующие стадии: - выбор газопроницаемого материала основы, включающего термоактивное связующее и целлюлозу; - инжектирование по существу сухого горячего газа в материал основы, при этом температура газа выше, чем 400oF (204,4oC), а газ состоит в основном из воздуха; - ограничение площади материала основы, которая подвергается действию газа с температурой выше, чем 400oF (204,4oC) на стадии инжектирования, для избежания возгорания. Указанный способ дополнительно включает следующие стадии: - выбор температуры газа между 400 и 600oF (204,4 и 315,6oC), - выбор термопластичного термоактивного связующего, - доведение температуры до пика в течение предопределенного интервала времени, когда газ сначала инжектируют в мат, - выбор материала основы, содержащего термопластичные хлопья, - формование материала основы в мат перед стадией инжектирования и стадией сжатия мата до первой плотности не более чем 15 фунтов/фут3 (240 кг/м3), по крайней мере, во время части стадии инжектирования таким образом, что мат остается в основном пористым. Согласно шестому варианту воплощения данного изобретения способ получения термопластичного композитного продукта включает следующие стадии: - выбор материала основы, включающего термопластичное связующее; - формование материала основы в мат, имеющего, по крайней мере, одну открытую поверхность; - создание системы сопел для подачи горячего неконденсируемого газа под давлением к материалу основы и в него через открытую поверхность, причем система сопел включает множество сопел, расположенных в соответствии с предварительно определенным распределением над открытой поверхностью со множеством сопел, имеющих средний размер отверстий, и отстоящих друг от друга на предварительно определенном среднем расстоянии, которое значительно больше, чем средний размер отверстий; - инжектирование через систему сопел горячего неконденсируемого газа в материал основы; - выбор достаточно малого размера сопел, достаточно высокого давления газа и достаточно низкой плотности мата таким образом, что газ, выходящий из сопел, в основном сохраняет когерентность скорости при выходе из сопла и при входе в мат, куда его инжектируют. При осуществлении указанного способа газ имеет давление, по крайней мере, 5 фунтов/дюйм2 (34,5 кПа), и мат имеет плотность менее чем 15 фунтов/фут3 (240 кг/м3) в течение, по крайней мере, части времени стадии инжектирования. В соответствии с настоящим изобретением применяется тигельный пресс и способ его использования для производства плоских панелей, полученных глубокой вытяжкой (более чем 2 дюйма, 50,799 мм), деталей, (имеющих толщину 2 дюйма, 50,799 мм). Пресс включает верхнюю и нижнюю плиты со множеством сопел для инжектирования горячего воздуха, расположенных на поверхности каждой плиты. Плиты расположены на расстоянии друг от друга и окружены по бокам воздухопроницаемыми защитными оболочками, образуя таким образом камеру сжатия для помещения материала основы, который прессуют. Как только материал основы помещают в камеру для сжатия, в нее подают горячий воздух и плиты сводят вместе. Инжектирование горячего воздуха затем прекращают и материал основы слегка прессуют в предварительно формованную деталь. Полученную заготовку затем выгружают из пресса с горячим воздухом и прессуют с получением окончательной формы в прессе для отверждения. В соответствии с настоящим изобретением предлагается также новая конструкция плит, применяемых в различных способах, описанных в заявке. В частности, предлагается плита, обладающая значительными изоляционными свойствами для сведения до минимума абсорбции тепла от горячего воздуха или от смеси термоактивного связующего и наполнителя после инжектирования горячего воздуха. Другие характеристики конструкции плиты обеспечивают оптимальное распределение потока горячего воздуха в материал основы. Термин термоактивное связующее используется здесь со ссылкой на любое соединение, которое можно активировать нагреванием для того, чтобы оно действовало как связующее. Два основных примера - это термореактивные и термопластичные соединения. В результате того, что термопластичные соединения расплавляются при нагревании, они могут служить в качестве связующего, обволакивая частицы наполнителя и скрепляя их когезионно при охлаждении. Для термореактивных соединений связывание происходит при полимеризации сшиванием, обычно вызванной подводом тепла. Хотя термореактивные и термопластичные соединения являются основными примерами термоактивных связующих, любое другое вещество, которое может функционировать как связующее, активируемое теплом, может быть подходящим для использования в настоящем изобретении. Настоящее изобретение также можно использовать для получения продукта из 100% связующего, тогда связующее может склеиваться только само с собой и необязательно с наполнителем. Важно обеспечить тщательное смешение термоактивного связующего и наполнителя. Если используются дискретные кусочки связующего и частицы термоактивного наполнителя, они должны быть предпочтительно как правило одинакового размера и веса. Это помогает достичь адекватной суспензии кусочков и частиц в смеси и усиливает должное смачивание частиц наполнителя. Если жидкая термореактивная смола используется как термоактивное связующее, ее можно разбрызгивать над наполнителем с получением того же результата. Подобным образом, порошкообразные термоактивные связующие могут быть нанесены на частицы наполнителя с получением желаемой дисперсии. Если необходимо, на наполнитель можно разбрызгивать вещество, повышающее клейкость, такое как воск Eastman G0003, перед диспергированием порошкообразного связующего на наполнитель, для надежности крепления связующего к наполнителю. Во время переработки для придания желательных физических свойств конечному продукту желательно добавлять к композиту агент сочетания. Агент сочетания можно разбрызгивать на частицы для увеличения связи между термопластичным связующим и целлюлозным наполнителем, посредством чего увеличивается прочность конечного продукта. Можно также добавлять антипирен для получения дополнительной огнестойкости конечного продукта. Термоактивные связующие в виде гранул могут также применяться в настоящем изобретении, но они не являются предпочтительными из-за трудностей получения хорошей смеси и суспензии с наполнителем. Кроме того, конфигурации термоактивного связующего, имеющие относительно большие размеры, нагреваются значительно медленнее, что приводит к увеличению времени цикла и снижению производительности. Изобретение успешно применяется для получения композитов из пылеобразных термоактивных кусочков и частиц наполнителя. При меньших размерах кусочков и частиц сохранение требуемой газопроницаемости является критическим. Термопластик, используемый в данной заявке, означает полимер, который размягчается и становится текучим или липким при нагревании и возвращается в свое первоначальное состояние при охлаждении до комнатной температуры. Термопластичным материалом, используемым в настоящем изобретении, может быть любой формуемый или экструдируемый пластик. Примеры подходящих полимерных материалов включают, но не ограничены, полиамиды, такие как капролактам (Найлон 6), полигексаметиленадипамид (Найлон 66) и их сополимеры; полиолефины и сополимеры полиолефинов, такие как полиэтилен (низкой, средней и высокой плотности), полипропилен, полибутен-1, поли-4-метилпентен-1 и сополимеры этих и других олефиновых сополимеров (таких как винилхлорид, метилметакрилат, винилацетат, акриловая кислота); полистирол и сополимеры полистирола с другими сомономерами (такими как стиролакрило-нитрильные сополимеры, акрилонитрил-бутадиен-стирольные сополимеры, стирол-бутадиен-1-акрилонитрильные сополимеры); поликарбонаты, полисульфоны, полиэфиры, полиметакрилаты, поливинилхлорид, поливинилиденхлорид, и сополимеры винилхлорида и винилиденхлорида с другими сомономерами, такими как этилен, винилацетат, этилметакрилат и другие. Наиболее предпочтительно термопластичный компонент в настоящем изобретении состоит из термопластичной взбитой массы, определенной как любая смесь термопластика и наполнителя или одного термопластика, имеющей плотность менее чем или равную 15 фунтов на кубический фут (240,28 кг/м3). Это может включать непрессованные измельченные полиэтиленовые мешки, молочные пакеты или полипропиленовые участки пеленок. Особенно подходящие композици могут быть изготовлены в соответствии с патентами США NN 5155146 и 5356278 и заявкой с серийным номером 08/131204 на имя автора настоящей заявки, которые приведены здесь в качестве ссылок. Однако вообще в настоящем изобретении можно использовать любой состав термоактивного связующего, имеющего конфигурацию в основном неплотную, рыхлую или газопроницаемую для того, чтобы горячий газ мог втекать во внутрь и вокруг термоактивного связующего и обеспечивать необходимое тепло. Характеристики наполнителя могут быть подобраны таким образом, чтобы получить продукт с требуемыми свойствами. Например, можно обработать частицы наполнителя консервантом для предотвращения гниения конечного продукта. Такой же эффект может быть достигнут при измельчении предварительно обработанных, возможно утилизированных материалов, таких как железнодорожные шпалы. Предел прочности на разрыв и другие подобные свойства также могут быть подобраны для получения продуктов с желаемыми физическими параметрами. Термин термореактивный используется для определения соединений, обычно полимеров, которые отверждаются необратимо при нагревании. Примеры могут включать фенольные, алкидные, аминосмолы, полиэфиры, эпоксиды и силиконы, а также соединения, которые дополнительно требуют некоторого количества добавки, такой как органические перекиси, для отверждения. Термин сухой газ используется здесь для определения газа, в котором вода не является существенным компонентом. Это не исключает воздух, например, там, где водяной пар может присутствовать в небольших количествах. В частности, количество водяного пара предпочтительно не должно существенно превышать точку насыщения газа при комнатной температуре, в результате чего вода не будет конденсироваться при охлаждении объекта или на холодных деталях пресса. Термин неконденсируемый газ относится к элементу или соединению, которое остается в газообразной фазе при комнатной температуре. Примеры включают воздух, азот, двуокись углерода и т.д. Пар является примером конденсируемого газа, т. е. пар конденсируется при комнатной температуре и давлении до жидкости. В настоящем изобретении предпочтительным неконденсируемым газом является воздух. Одним из преимуществ использования неконденсируемого газа является то, что давление и температуру газа можно регулировать независимо. При использовании пара следует поддерживать высокое давление для получения высоких температур. Когда используют неконденсируемый газ, можно получать высокие температуры и поддерживать их даже при относительно низком давлении газа. Для упрощения сухой или неконденсируемый газ настоящего изобретения называется и будет далее называться просто воздухом или горячим воздухом потому, что воздух является предпочтительным газом. Нет никаких ограничений в понятии терминов сухой или неконденсируемый газ при использовании терминов горячий воздух или воздух. Обычно термореактивное связующее имеет температуру активации, при которой оно эффективно как связующее. Для термопластиков этой температурой является точка, при которой они становятся текучими, липкими или достаточно расплавленными для смачивания наполнителя и образования когезионного продукта. Переход в расплав происходит постепенно как функция температуры. Поэтому нет возможности точно определить температуру активации, до которой горячий воздух должен нагревать термопластик. Скорее, температура активации определяется как минимальная температура, при которой термопластик становится в основном невязким для смачивания наполнителя, если таковой имеется, и связывания его для получения твердого когезионного продукта при охлаждении. В зависимости от природы частиц наполнителя может возникнуть необходимость в различном снижении вязкости для смачивания и связывания частиц наполнителя с образованием когезионного конечного продукта. При грубых и неравномерных частицах наполнителя термопластичный компонент должен быть достаточно текучим. С другой стороны, если не используются частицы наполнителя, термопластик может образовать когезионный продукт, оставаясь довольно вязким, например, при низких температурах. Поэтому для некоторых типов термопластиков температура горячего газа может быть только в пределах 250oF (121,1oC), хотя от 400oF до 600oF (204,4 - 315,6oC) более типично. Активация термореактивных соединений относится к процессу вулканизации. Так как скорость вулканизации для термореактивных полимеров обычно увеличивается при повышении температуры, а не инициируется при определенной температуре, определенной температуры активации не существует. Таким образом температура активации для термореактивных соединений устанавливается таким образом, чтобы получить самую быструю вулканизацию без проведения локализованной неоднородной вулканизации. Для некоторых термореактивных композитов горячий воздух, имеющий температуру в пределах от 100oF до 200oF (37,8oC - 93oC), может ускорить вулканизацию до желательной скорости, в то время как для других термореактивных композитов потребуется более высокая температура. При условии, что термоактивное связующее д