Композиции, включающие биологический агент

Реферат

 

Изобретение может быть использовано в медицине для лечения опухолей. Заявлена композиция, содержащая антираковый агент и полиэфирный блоксополимер, который способен образовывать жидкую композицию при смешении с водой. Блоксополимер включает множество линейных полимерных сегментов с молекулярной массой 30-500. При этом не менее 80% связей, соединяющих повторяющиеся звенья каждого сегмента, являются простой эфирной связью. Блоксополимер имеет критическую концентрацию мицеллообразования (ККМ) от 0,000001 до 0,5% (вес/об. ) или менее 37oС в изотоническом водном растворе. Вторая композиция содержит указанные выше компоненты, при этом блоксополимер имеет весовой процент гидрофобной части не менее 50% и имеет молекулярный вес не менее 900, или ККМ около 0,5% (вес/об.) или менее при указанных выше условиях. Заявлены: способ лечения объекта, обладающего устойчивостью к биологическому агенту, способ лечения рака (животных), способ лечения микробной инфекции, способ ингибирования или предотвращения роста раковых метастаз, способ лечения рака и способ преодоления множественной лекарственной устойчивости раковых клеток. Все эти способы осуществляются введением первой заявленной композиции. Изобретение позволяет получить препараты, эффективно доставляющие лекарственное вещество к опухоли, и восстанавливать чувствительность опухолей к лекарственному воздействию. 8 с. и 49 з.п. ф-лы, 9 ил., 29 табл.

Настоящая заявка является частичным продолжением заявки США N 08/374406, поданной 17 января 1995 г. под названием "усовершенствованные химиотерапевтические композиции", которая, в свою очередь, является продолжением заявки США N 07/957998, поданной 8 октября 1992 г.

Настоящее изобретение относится, среди прочих, к (1) фармацевтическим композициям и способам получения химиотерапевтических агентов и (2) к фармацевтическим композициям, включающим биологические агенты, в особенности к тем, которые нацелены на клетки и ткани, устойчивые к действию биологического агента.

Ряд химиотерапевтических агентов обладает низкой растворимостью и низкой стабильностью в физиологических жидкостях. Зачастую химиотерапевтические агенты плохо проходят через клеточные мембраны. Кроме того, многие из таких агентов связываются с белками плазмы, а также вступают в другие неспецифические взаимодействия в кровотоке, прежде чем достигают пораженной раком мишени.

Помехой эффективной химиотерапии является устойчивость к биологическим агентам, которую развивают многие опухоли и микробные инфекции. Чувствительность опухолевых клеток к противораковым средствам может снижаться до 103 раз в ходе химиотерапии. И когда такая устойчивость развивается в отношении одного агента, часто такие подлежащие лечению клетки становятся устойчивыми и к множеству других биологических агентов, действию которых они ранее не подвергались (см. Goldstein et al., Crit. Rev. Oncol. Hematol., 12: 243-253, 1992; Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th Ed., McGraw-Hill, New-York, 1994). Считается, что один из механизмов, посредством которого развивается такая устойчивость, включает мембранный насасывающий белок gp-170 (гликопротеина P или P-gp белка). (См. Goldstein et al., Crit. Rev. Oncol. Hematol., 12: 243-253, 1992).

Было обнаружено, что такие трудности могут быть преодолены введением биологического агента в состав композиции, содержащей мицеллы одного или более блоксополимеров с описанными ниже характеристиками. Кроме того, было показано, что определенный набор таких блоксополимеров может особенно эффективно доставлять лекарственное средство и восстанавливать чувствительность к биологическому агенту.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ В одном своем аспекте изобретение относится к фармацевтической композиции, включающей: (а) биологический агент; и (б) полиэфирный блоксополимер, включающий линейный полимерный сегмент типа А, соединенный одним концом с линейным полимерным сегментом типа В, при этом сегмент типа А имеет относительно гидрофильный характер, повторяющиеся звенья которого вносят вклад в среднее значение фрагментальной константы Хэнша-Лео (Hansch-Leo fragmental constant) на уровне примерно -0,4 или меньше и вносят вклад в молекулярный вес на уровне от 30 до 500, тогда как сегмент B-типа имеет относительно гидрофобный характер, повторяющиеся звенья которого вносят вклад в среднее значение фрагментальной константы Хэнша-Лео на уровне примерно -0,4 или больше и вносят вклад в молекулярный вес на уровне от 30 до 500, и при этом по меньшей мере 80% связей, соединяющих повторяющиеся звенья каждого из полимерных сегментов, включает эфирную связь. В предпочтительном варианте реализации изобретения полиэфирный блоксополимер выбирают из группы, состоящей из полимеров следующих формул: A-B-A'(I), A-B (II), B-A-B' (III), или L(R1)(R2)(R3)(R4) (IV) где A и A' обозначают линейные полимерные сегменты типа A, B и B' обозначают линейные полимерные сегменты типа B и R1, R2, R3 и R4 представляют собой или блоксополимеры формул (I), (II) или (III) или водород, a L является связующей группой, при условии, что не более чем два из R1, R2, R3 и R4 являются водородом.

В предпочтительном варианте осуществления изобретения композиция включает мицеллы блоксополимера или приводит к образованию мицелл блоксополимеров в процессе введения композиции или впоследствии. Предпочтительно, по меньшей мере около 0,1% биологического агента включается в мицеллы, более предпочтительно - по меньшей мере около 1 % биологического агента, и еще более предпочтительно - около 5 % биологического агента.

В предпочтительном варианте осуществления изобретения гидрофобная доля сополимера в настоящей композиции составляет по меньшей мере около 50%, более предпочтительно - по меньшей мере около 60%, и еще более предпочтительно - 70%.

В другом предпочтительном варианте осуществления изобретения вес гидрофобной части составляет по меньшей мере около 900, более предпочтительно, по меньшей мере около 1700, и еще более предпочтительно, по меньшей мере около 2300.

В еще одном предпочтительном варианте осуществления изобретения вес гидрофобной части составляет по меньшей мере около 2000, а гидрофобная доля составляет по меньшей мере около 20%, предпочтительно 35%; или вес гидрофобной части составляет по меньшей мере около 2300, а гидрофобная доля составляет по меньшей мере около 20%, предпочтительно 35%.

В еще одном предпочтительном варианте осуществления изобретения сополимер или сополимеры, входящие в состав настоящей композиции, характеризуются значениями критической концентрации мицеллообразования [ККМ(СМС)] не более чем 0,5% (вес/объем) при температуре 37oC в изотоническом водном растворе, предпочтительно, не более чем примерно 0,05% (вес/объем), более предпочтительно, не более чем примерно 0,01% (вес/объем) и еще более предпочтительно, не более чем примерно 0,003 % (вес/объем).

Предпочтительно, сополимеры по настоящей композиции соответствуют формуле (V), которая приведена ниже в тексте. Особенно предпочтительными среди них являются такие, которые имеют вес гидрофобной части от примерно 1500 до примерно 2000, предпочтительно, от примерно 1710 до примерно 1780, а процентную долю гидрофобной части - от примерно 85% до примерно 95%, предпочтительно, от примерно 88% до примерно 92%. К числу наиболее предпочтительных среди указанных сополимеров относятся также такие, которые имеют вес гидрофобной части от примерно 3000 до примерно 3500, предпочтительно, от примерно 3200 до примерно 3300, а процентную долю гидрофобной части - от примерно 15% до примерно 25%, предпочтительно, от примерно 18% до примерно 22%. Кроме того, в дополнение к числу наиболее предпочтительных среди указанных сополимеров относятся также такие, которые имеют вес гидрофобной части от примерно 3500 до примерно 4000, предпочтительно, от примерно 3700 до примерно 3800, а процентную долю гидрофобной части - от примерно 25% до примерно 35%, предпочтительно, от примерно 28% до примерно 32%.

В предпочтительном варианте композиция включает химиотерапевтический агент.

Во втором своем аспекте изобретение относится к фармацевтической композиции, включающей цитотоксичное лекарственное средство, растворимое в полимерных мицеллах.

В другом аспекте изобретение относится к способу лечения микробной инфекции или опухоли посредством введения фармацевтической композиции по первому или второму варианту настоящего изобретения.

В еще одном аспекте изобретение относится к способу лечения пораженной ткани, проявляющей устойчивость к биологическому агенту в курсе лечения этим или другим биологическим агентом, при этом указанный метод включает введение композиции, включающей (а) второй биологический агент, который может быть тем же самым или отличным от биологического агента, в отношении которого ткань демонстрирует устойчивость, и (б) композицию с мицеллообразующим сополимером, описанную для первого или второго вариантов осуществления изобретения.

В другом своем варианте изобретение относится к методу профилактики или ограничения образования метастаз посредством введения одной из противораковых композиций по настоящему изобретению.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ Фиг. 1 иллюстрирует цитотоксичность для SK-устойчивых клеток или SK-клеток, подвергшихся обработке даунорубицином в свободной или мицеллярной форме.

Фиг. 2 демонстрирует кинетику накопления даунорубицина SK-устойчивыми клетками или SK-клетками, соответственно, подвергшимися обработке даунорубицином в свободной или мицеллярной форме.

Фиг. 3А и 3Б иллюстрирует ингибирование MCF7-ADRc клеток, инкубированных различными концентрациями доксорубицина и Плуроника L61 (Pluronic L61).

Фиг. 3В иллюстрирует цитотоксичность Плуроника L61 в отношении MCF7-ADRc клеток.

Фиг. 4 показывает период наступления клиренса крови от [3H]-Плуроника Р85 и накопления его в печени.

На фиг. 5 приведены сравнительные данные по концентрации в крови [3H]-Плуроника Р85 при введении его, соответственно, в/в или перорально.

На фиг. 6А приведены данные по концентрации даунорубицина в печени.

На фиг. 6Б приведены данные по концентрации в крови даунорубицинола в течение периода времени после его инъекции.

На фиг. 6В приведены данные по концентрации в крови даунорубицина в течение периода времени после его инъекции.

Фиг. 7 показывает изменения в ходе лечения в объекте миеломных опухолей с множественной лекарственной устойчивостью Sp2/Odnr у мышей линии BALB/c. Объем определяют как среднее значение отношения объема опухоли в данный день (V) к среднему значению в первый день лечения (Vo).

Фиг. 8 показывает изменения в ходе лечения в объеме миеломных опухолей с множественной лекарственной устойчивостью Sp2/0dnr у мышей линии BALB/c.

Фиг. 9 показывает ингибирование метастаз опухоли у мышей, которым вводили доксорубицин в сочетании с Плуроником Р85, в сравнении с мышами, которым вводили только доксорубицин.

ОПРЕДЕЛЕНИЯ: Термины и фразы, перечисленные ниже, имеют следующие значения в контексте настоящего описания: биологический агент - агент, используемый для диагностики или получения снимков, который может действовать на клетку, орган или организм, включая, но не ограничиваясь ими, те лекарственные средства (фармацевтические), которые приводят к изменениям в функционировании клетки, органа или организма. Такие агенты включают, не ограничиваясь ими, нуклеиновые кислоты, полинуклеотиды, антибактериальные средства, антивирусные средства, противогрибковые средства, противопаразитарные средства, средства, уничтожающие опухоли, или противораковые средства, белки, токсины, ферменты, гормоны, нейротрансмиттеры, гликопротеины, иммуноглобулины, иммуномодуляторы, красители, радиоактивные метки, рентгеноконтрастные вещества, флуоресцентные вещества, полисахариды, молекулы, связывающиеся с клеточными рецепторами, противовоспалительные средства, противоглаукомные средства, мидриатические средства и местные анестетики.

химиотерапевтическое средство - биологический агент, который ингибирует рост или снижает уровень выживания опухолевых или патогенных микробных клеток или ингибирует размножение (что включает неограниченную репликацию, сборку вирусов или клеточную инфекцию) вируса.

цитотоксичное лекарственное средство - химиотерапевтическое средство, используемое для лечения рака, которое является цитотоксичным, в частности для быстро делящихся клеток.

гидрофобный процент - процентная доля по молекулярному весу блоксополимера, который построен из блоков B-типа. Эта величина обозначается также как "гидрофобный весовой процент".

гидрофобный вес - вклад в значение молекулярного веса блоксополимера, содержащего блоки типа В. Эта величина обозначается также как "гидрофобный молекулярный вес".

ИК50 - концентрация, при которой достигается 50% цитотоксичность. Значение цитотоксичности может быть измерено по методу Alley et al., Cancer Res. , 48: 589-601, 1988 или Scudiero et al. Cancer Res., 48: 4827, 1988. В частности, оно может быть определено на основании той концентрации лекарственного средства, при которой наблюдается 50% снижение активности митохондриальных ферментов.

липофильная часть - липофильный заместитель, который присоединен к целевой части и который распределяется в липофильной части сополимерных мицелл для связывания целевой части с такими мицеллами.

микроб - бактерия, микоплазма, дрожжи или грибы, вирус или паразит (такой, например, как малярийный паразит).

МЛУ (MDR) - клетки обладают множественной лекарственной устойчивостью, если они устойчивы к биологическим агентам, которые действуют на клеточные линии, которые являются родительскими по отношению к МЛУ клеткам.

целевая часть - молекулярная структура, которая распознается клетками, тканями, вирусными или субстратными компонентами, такими, например, как рецептор клеточной поверхности или акцепторная молекула.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ Было показано, что эффективность блоксополимеров по настоящему изобретению по повышению действенности химиотерапевтических средств и обратимости МЛУ в высшей степени зависит (а) от процента гидрофобной части и (б) от веса гидрофобной части. При этом указанная эффективность повышается либо с увеличением процента (а), либо с увеличением веса (б), либо при повышении значения обоих факторов. Отмеченное повышение процента гидрофобной части и веса гидрофобной части коррелирует также с улучшением мицеллообразующих свойств, в соответствии с чем образование мицелл для таких сополимеров происходит при более низких концентрациях. (См. Hurter et al. Macromolecules 26:5030; Hurter et al. Macromolecules 26: 5592, 1993; Alexandris et al., Maromolecules 27: 2414, 1994). He желая ограничиваться какой-то определенной теорией, можно только отметить, что образующиеся мицеллы выполняют роль суррогата, пригодного для измерения физических свойств, которые ведут к улучшению свойств биологического агента, важных для его доставки организму. И снова, не ограничиваясь конкретной теорией, следует отметить, что повышение эффективности биологического агента и обратимость множественной лекарственной устойчивости не связаны с мицеллами как таковыми. Если, используя в качестве модельного биологического агента доксорубицин, нанести на график коэффициент отношения (а) при ИК50 (как меру эффективной цитотоксичной концентрации) для содержащей сополимер композиции к (б) при ИК50 для свободного доксорубицина против концентрации сополимера, получится двухфазный график, с быстрым снижением коэффициента, наблюдаемым по мере повышения концентраций сополимера, но которая остается в пределах значения ККМ для сополимера. Выше значения ККМ происходит быстрое падение коэффициента. См. фиг. 6Б. Максимальное повышение активности биологического агента происходит при значениях концентрации выше ККМ, хотя повышение активности отмечается уже при таких низких концентрациях, например, сополимера Плуроника L61, как 0,0001 % (вес/объем) и ниже. Наличие мицеллярной формы рассматривается в качестве важного фактора в использовании сополимеров для доставки лекарств по организму также и по другим причинам, которые будут обсуждены далее в описании.

Схема, приведенная в конце описания, позволяет понять связь, существующую между процентом гидрофобной части и весом гидрофобной части сополимера с различными аспектами настоящего изобретения. На схеме значения веса гидрофобной части (поли(оксипропилена)) и сополимера приведены непосредственно под каждым обозначенным сополимером. Рядом со значениями гидрофобного веса для каждого сополимера даются значения гидрофобного процента.

Было показано, что Плуроник F68 обладает умеренной активностью повышения действия биологических агентов. Плуроник L61, который имеет тот же самый вес гидрофобной части, что и Плуроник F68, но более высокий гидрофобный процент, представляет собой наиболее эффективный блоксополимер из указанных на схеме. Плуроник F108, который имеет тот же самый процент гидрофобной части, что и Плуроник F68, но более высокий гидрофобный вес, является также эффективным сополимером, хотя и менее эффективным, чем Плуроник L61. Плуроник Р85 имеет более высокий гидрофобный вес и более высокий гидрофобный процент, чем Плуроник F68, но различия по каждому из факторов здесь ниже, чем в случае Плуроников F108 и L61 соответственно. Эффективность Плуроника Р85 повышения действия биологических агентов является средней по значению между эффективностью Плуроника F108 и Плуроника L61. Указанные различия по эффективности хорошо видны, когда различные сополимеры при концентрации выше ККМ и доксорубицина инкубируют in vitro с клетками, обладающими лекарственной устойчивостью. Значение коэффициента ИК50 для доксорубицина в отсутствие сополимера к соответствующему коэффициенту в присутствии сополимера характеризует "индекс обратимости устойчивости". В табл. 1 приведены значения индексов устойчивости к обратимости для различных сополимеров.

Значение мицеллярной формы для доставки лекарственных средств выявляется также в экспериментах in vivo. В мицеллярной форме биологические агенты локализованы в гидрофобном ядре мицелл, закрытые таким образом гидрофильной пленкой (состоящей из сегментов типа А), которая окружает мицеллы. Такая защита снижает взаимодействия с белками печени, плазмы, другими нецелевыми тканями и другими молекулами, которые могут связывать или инактивировать агент или превращать его в токсичный метаболит. Так, например, быстрый метаболизм антрациклиновых антибиотиков в печени ведет к образованию кардиотоксичных метаболитов, которые несут модификацию в положении C13 (Cм. Mushlin et al., Br.J. Pharmacol. 110: 975-982, 1993). При использовании в качестве модельного лекарственного средства доксорубицина было показано, что наличие мицеллярной формы снижает его поглощение печенью, снижает уровень превращения в доксорубицинол и снижает тот его уровень, при котором происходит снижение концентрации доксорубицин в крови. См. фиг. 4 и 5.

Эффективность сополимеров (а) при образовании мицелл (где большая эффективность определяется в пониженной ККМ) и (б) при способствовании распределению биологических агентов скорее в мицеллярной форме, чем в свободном виде, возрастает в том же порядке (т.е. с увеличением гидрофобного веса или гидрофобного процента). Таким образом, иерархия эффективностей выглядит снова следующим образом: L61 > Р85 > F108 > F68. Наличие мицелл в низких концентрациях дает основание считать, полагая, что биологический агент остается в контакте с мицеллами, что биологический агент и сополимер вместе достигают целевой ткани. Коэффициенты распределения, соответствующие мицеллярной форме, действительно дают основание считать, что биологический агент будет оставаться связанным с мицеллами. Считается также, что мицеллярная форма биологического агента защищает биологический агент от поглощения нецелевыми тканями, которые могут метаболизировать биологический агент до неактивного или токсического метаболита, а также от неспецифической адсорбции компонентами крови, клеточными компонентами и др.

Тот же самый характер эффективности сополимеров применим, как это видно из примеров, и к обработке экспериментальных опухолей противораковыми средствами.

При высоких концентрациях блоксополимеры могут становиться токсичными для печени, почек или других клеток организма (Cм. BASF Corp., Pluronic Material Safety Data Sheet and Drug Master Files). Было показано, что токсичность блоксополимеров повышается в соответствии с параметрами гидрофобности блоксополимеров при повышении эффективности потенцирования биологических агентов. К счастью, уровень повышения действенности при изменении параметров гидрофобности значительно превосходит уровень повышения токсичности сополимера. Так, например, как показано, в Примере 8, значение ЛД50 для L61 у мышей линии BALB/c в 10 раз ниже, чем значение ЛД50 для Плуроника F108. Однако различие в терапевтической дозе в 100 раз более благоприятно у Плуроника L61, чем у Плуроника F108 (см. Пример 9Б). Таким образом, диапазон концентраций, при которых эффективность потенцирования активности биологического агента может поддерживаться без сопутствующей, связанной с полимером токсичности, больше для Плуроника L61, чем для Плуроника F108.

Считается, что за множественную лекарственную устойчивость многих опухолей ответственны представители семейства гликопротеинов P мембранных протеинов, чью устойчивость можно реверсировать с использованием композиции по настоящему изобретению (См. Goldstein et al. Cancer Treatment Res., 57: 101-119, 1991). Предполагается, что указанные белки функционируют в качестве насосов, которые выкачивают биологический агент, в отношении которого опухоли приобретают устойчивость. Предполагается также, что представители того же семейства белков оседают на мембранах эндотелиальных клеток, выстилающих кровеносные сосуды мозга, определяя существование гематоэнцефалического барьера (ГЭБ), который исключает попадание многих биологических агентов в мозг. (См. , например, Tatsuta et al., J. Biol. Chem., 267: 20383-20391). Композиции по настоящему изобретению могут использоваться для усиления проницаемости лекарства в мозг, что рассматривается более детально в заявке на Патент США, поданной одновременно с настоящей 7 июня 1995 г., и озаглавленной "Композиции, содержащие биологические агенты для целевого воздействия" ("Compositions for Targeting Biological Agents"), досье поверенного N 313257-103A, полное описание которой приведено в настоящей работе в качестве ссылки. Кроме того, представители указанного семейства белков отвечают, по всей видимости, за появление лекарственной устойчивости у некоторых представителей Candida, возбудителей малярии и других микробных инфекций. Не ограничивая свое описание какой-либо конкретной теорией, следует отметить, что композиции по настоящему изобретению реверсируют механизмы, способствующие выбросу представителей семейства гликопротеинов P, а также другие механизмы, имеющие отношение к лекарственной устойчивости.

Изобретение описывается далее со ссылками на фрагментарные константы, разработанные Хэншем и Лео (Hansch and Leo). (См. Hansch and Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979; James, Solubility and Related Properties, Marcel Dekker, New York, 1986, pp. 320-325). Указанные константы были разработаны для использования их с целью оценки вклада части молекулы и способность всей молекулы распределяться между фазами, образованными смесями октанол-вода. Такие константы обычно обозначают как фрагментарные константы распределения Хэнша-Лео (в настоящем описании как "фрагментарные константы Хэнша-Лео").

Композиции по настоящему изобретению в основном либо включают в свой состав уже подготовленные к формированию мицеллы с наличием значительной части растворенного в них биологического агента, либо они представляют собой сополимерные композиции, которые образуют мицеллы с включением значительной части биологического агента, который растворяется в них в ходе введения биологического агента пациенту или несколько позже. В вариантах осуществления настоящего изобретения в том случае, когда целевые, пригодные для лечения части связаны с мицеллами, указанная целевая часть может находиться либо в состоянии, подготовленном для такого связывания с мицеллами или может соединяться с мицеллами непосредственно в ходе введения. В особо предпочтительном варианте в качестве блоксополимеров используют такие, которые имеют низкое значение ККМ в изотопных растворах при физиологических температурах. Такие блоксополимеры могут выполнять роль мицеллярного носителя при доставке биологических агентов даже после значительного разбавления их физиологической жидкостью, такой, например, как кровь того пациента, который проходит данный курс лечения. Указанные низкие значения ККМ позволяют применять сниженные количества блоксополимеров в лекарственной композиции по настоящему изобретению.

Полное раскрытие заявки США N 08/374406, поданной 17 января 1995 г., включено в настоящее описание в качестве ссылки.

Число повторяющихся звеньев общего гидрофильного блока (A-типа) или общего гидрофобного блока (B-типа) в полиэфирном сополимере составляет предпочтительно от примерно 4 до примерно 400. Более предпочтительно, число повторяющихся звеньев составляет от примерно 4 до примерно 200, еще более предпочтительно - от примерно 5 до примерно 80. Повторяющиеся звенья, которые образуют блоки: блоки A-типа и блоки B-типа - имеют в основном молекулярный вес от примерно 30 до примерно 500, предпочтительно, от примерно 30 до примерно 100 и еще более предпочтительно, от примерно 30 до примерно 60. В основном в каждом блоке A-типа или B-типа по меньшей мере около 80% связей, имеющихся между повторяющимися звеньями, являются эфирными связями, предпочтительно, по меньшей мере около 90% будут представлять собой эфирные связи и более предпочтительно, по меньшей мере около 95% будут представлять собой эфирные связи. В контексте настоящего изобретения, термин "эфирные связи" относится к гликозидным связям (т.е. к сахарным связям). Однако в одном из аспектов изобретения предпочтительны простые эфирные связи.

Предпочтительно, чтобы все повторяющиеся звенья, которые составляют блок A-типа, имели константы Хэнша-Лео для фрагментов менее чем примерно -0,4, более предпочтительно, менее чем примерно -0,5, еще более предпочтительно, менее чем примерно -0,7. Предпочтительно, чтобы все повторяющиеся звенья, которые составляют блок B-типа, имели константы Хэнша-Лео для фрагментов примерно -0,30 или более и более предпочтительно, примерно -0,20 или более.

В качестве примеров полимеров по первому варианту осуществления настоящего изобретения могут быть приведены блоксополимеры, имеющие следующую формулу: или или или в которых x, y, z, i и j имеют значения, соответствующие описанным выше параметрам полиэфирных сополимеров, и в которых для каждой пары R1, R2 один из компонентов должен быть водородом, другой должен быть метильной группой. Формулы от (V) до (VII) упрощены, поскольку на практике ориентация изопропиленовых радикалов в В блоке будет случайной. Такая случайная ориентация и указана в формуле (VIII), которая является в этой связи более полной. Указанные поли (оксиэтилен)-поли (оксипропилен)овые соединения были описаны Сантоном (Santon, Am. Perfumer.Cosmet., 72(4): 54-58, (1958); Schmolka, Loc. cit. 82(7): 25-30 (1967); Nonionic Surfactants, Schick ed. (Dekker, NY, 1967), pp. 300- 371). Множество таких соединений коммерчески доступно под такими родовыми торговыми названиями, как "полиоксамеры", "плуроники" и "синпероники". Полимеры типа плуроников в рамках формулы B-A-B часто называют как "обращенные" плуроники, "плуроник R" или "мероксапол". "Полиоксаминовый" полимер формулы (VIII) доступен от компании БАСФ (BASF, Wyandotte, MI) под торговой маркой ТетроникTM (TetronicTM). Порядок следования полиоксиэтиленовых и полиоксипропиленовых блоков, указанный в формуле (VIII), может быть изменен на обратный, что дает Тетроник RTTM (Tetronic RTTM), который также доступен от компании БАСФ (Cм. Schmolka, J. Am. Oil Soc. , 59: 110 (1979)). Полиоксипропилен-полиоксиэтиленовые блоксополимеры могут быть также получены с участием гидрофильных блоков, включающих случайную смесь повторяющихся звеньев этиленоксида и пропиленоксида. Для поддержания гидрофильности блока количество этиленоксида делают доминирующим. Аналогично, гидрофобный блок может представлять собой смесь этиленоксидных и пропиленоксидных повторяющихся единиц. Такие блоксополимеры доступны от компании БАСФ под торговой маркой ПлурадотTM (PluradotTM).

Создано множество плуроников, которые соответствуют следующей формуле: Несомненно, любой специалист со средним уровнем знаний в данной области определит, что параметры m и n в указанной формуле обычно обозначают среднестатистические значения и что количество повторяющихся единиц в первом блоке данной молекулы не будет точно соответствовать количеству повторяющихся единиц в третьем блоке. В табл. 2 в соответствии с формулой (IX), приведены характеристики для ряда плуроников.

Приведенные значения ККМ были вычислены по методу определения поверхностного натяжения, описанному в работе Кабанова с соавт. (Kabanov et al. Macromolecules 28: 2303-2314, 1995).

Дополнительные специфические поли(оксиэтилен)- поли(оксипропилен)овые блоксополимеры в соответствии с настоящим изобретением включают плуроники, представленные в табл. 3.

Диамин-подобный плуроник формулы (VIII) может также относиться к семейству диамин-связанных полиоксиэтилен - полиоксипропиленовых полимеров формулы: где пунктирная линия обозначает симметричные копии полиэфира, простирающиеся до второго атома азота, R* обозначает алкилен, включающий от примерно 2 до примерно 6 атомов углерода, циклоалкилен, включающий от примерно 5 до примерно 8 атомов углерода, или фенилен, для R1 и R2: либо (а) оба они являются водородами, либо (б) один обозначает водород, а другой - метил, для R3 и R4: либо (а) оба они являются водородами, либо (б) один обозначает водород, а другой - метил, и, если оба из R3 и R4 являются водородами, то один из R5 и R6 обозначает водород, а другой - метил, и если оба из R3 и R4 являются метилами, то оба R5 и R6 обозначают водород. Группа -NH2-CH2CH2-NH2- в формуле (VIII) и группа N-R*-N в формуле (X) представляют собой примеры связующих групп L в формуле (IV).

Любой специалист со средним уровнем знаний в данной области определит в свете высказанных в описании положений что, если при практической реализации изобретение ограничивается, например, поли (оксиэтилен)-поли (оксипропилен)овыми соединениями, в вышеприведенные формулы тоже вводятся соответствующие ограничения. Наиболее важным параметром является то, что среднее значение константы Хэнша-Лео для фрагментов в мономерах, составляющих блок A-типа, составляет около -0,4 или меньше. Таким образом, единицы, составляющие первый блок, не обязательно состоят только из этиленоксида. Аналогично, не весь блок B-типа состоит только из пропиленоксидных единиц. Вместо этого указанные блоки могут включать мономеры, отличные от тех, что определены для формул (V)-(X), так что параметры первого варианта сохраняются. Так, в простейших примерах по меньшей мере один из мономеров в блоке А может быть замещен боковой линейной группой из числа описанных выше групп.

В другом аспекте настоящее изобретение относится к лекарственной композиции, состоящей из блоксополимера по меньшей мере одной из формул (I)-(X), где блоки A-типа и B-типа состоят по существу из повторяющихся единиц формулы -O-R5, где R5 обозначает: (1) -(CH2)n-CH(R6)-, где n обозначает нуль или целое число от примерно 1 до примерно 5 и R6 обозначает водород, циклоалкил, включающий от примерно 3 до примерно 8 атомов углерода, алкил, включающий от примерно 1 до примерно 6 атомов углерода, фенил, алкилфенил, в котором алкил содержит от примерно 1 до примерно 6 атомов углерода, гидрокси, гидроксиалкил, в котором алкил содержит от примерно 1 до примерно 6 атомов углерода, алкокси, включающий от примерно 1 до примерно 6 атомов углерода, алкилкарбонил, включающий от примерно 2 до примерно 7 атомов углерода, алкоксикарбонил, в котором алкокси содержит от примерно 1 до примерно 6 атомов углерода, алкоксикарбонилалкил, в котором алкокси и алкил, каждый, включают независимо друг от друга от примерно 1 до примерно 6 атомов углерода, алкилкарбоксиалкил, в котором каждый алкил включает, независимо друг от друга, от примерно 1 до примерно 6 атомов углерода, аминоалкил, в котором алкил включает от примерно 1 до примерно 6 атомов углерода, алкиламин или диалкиламино, в котором каждый алкил включает независимо друг от друга от примерно 1 до примерно 6 атомов углерода, моно- или диалкиламиноалкил, в которых каждый алкил включает независимо друг от друга от примерно 1 до примерно 6 атомов углерода, хлор, хлоралкил, в котором алкил включает от примерно 1 до примерно 6 атомов углерода, фтор, фторалкил, в котором алкил включает от примерно 1 до примерно 6 атомов углерода, циано или цианоалкил, в котором алкил включает от примерно 1 до примерно 6 атомов углерода, или карбоксил; (2) карбоциклическую группу, имеющую в составе кольца от примерно 3 до примерно 8 атомов углерода, примером которой могут быть такие группы, как циклоалкильные или ароматические группы, которые могут включать алкил, содержащий от примерно 1 до примерно 6 атомов углерода, алкокси, включающий от примерно 1 до примерно 6 атомов углерода, алкиламино, включающий от примерно 1 до примерно 6 атомов углерода, диалкиламино, в котором каждый алкил, независимо, включает от примерно 1 до примерно 6 атомов углерода, амино, сульфонильные, гидрокси, карбоксильные, фтор или хлор-заместители или (3) гетероциклическую группу, имеющую в составе кольца от примерно 3 до примерно 8 атомов углерода, которая может включать гетероциклоалкильные или гетероароматические группы, которые включают от примерно 1 до примерно 4 гетероатомов, выбранных из группы, состоящей из кислорода, азота, серы и их смесей, и которые могут включать алкил, содержащий от примерно 1 до примерно 6 атомов углерода, алкокси, включающий от примерно 1 до примерно 6 атомов углерода, алкиламино, включающий от примерно 1 до примерно 6 атомов углерода, диалкиламино, в котором каждый алкил, независимо, включает от примерно 1 до примерно 6 атомов углерода, амино, сульфонильные, гидрокси, карбоксильные, фтор или хлор-заместители.

Предпочтительно, n обозначает целое число от примерно 1 до примерно 3. Карбоциклические или гетероциклические группы, включающие R5, предпочтительно содержат в кольце от примерно 4 до примерно 7 атомов углерода, более предпочтительно - примерно 5 или примерно 6. Гетероциклы предпочтительно включают от примерно 1 до примерно 2 гетероатомов, более предпочтительно, гетероциклы содержат один гетероатом. Предпочтительно, гетероцикл представляет собой углевод или аналог углевода.

Для любого специалиста со средним уровнем знаний в данной области очевидно, что мономеры, необходимые для создания таких полимеров, можно синтезировать (См. Vaughn et al., J. Am. Oil Chem. Soc., 28: 294, 1951). В некоторых случаях, как это может заметить любой специалист со средним уровнем знаний в данной области, для проведения полимеризации может потребоваться использование подходящих защищающих групп. В основном блоки A-типа и B-типа состоят по меньшей мере примерно на 80% из -OR5-повторяющихся единиц, более предпочтительно - по меньшей мере примерно на 90%, и еще более предпочтительно, по меньшей мере примерно на 95%.

В другом аспекте настоящее изобретение относится к лекарственной композиции, состоящей из блоксополимера одной из формул (I)-(X), в которых блоки A-типа и B-типа состоят по существу из повторяющихся единиц -O-R7-, где R7 обозначает C1-C4 алкиленовую группу.

Коэффициент (P) Хэнша-Лео для оценки характера распределения органической молекулы в смеси октанол-вода вычисляется с помощью следующей формулы: Log P = anfn+bmFm где значение fn представляют собой константы для фрагментов от различных групп в молекуле, значения an обозначают количества групп любого вида в молекул