Производные 2-иминооксифенилуксусной кислоты и средство, содержащее эти соединения

Реферат

 

Изобретение относится к производным 2-иминооксифенилуксусной кислоте формулы I, где R1 означает С(СO2СН)=NОСН3, С(CONHCH3= NOCH3, С(СO2СН3)= СНОСН3, С(СO2СН3)= СНСН3; m=0; R3 - Н, C16 алкил, фенил; R4 - H, С1-C6 алкокси, фенил, возможно замещенный С16 алкилом; алкенил, возможно замещенный фенилом, галогеном, причем фенил возможно замещен галогеном; -Qp-C(R5)= N-Y'-R6, где Q - прямая связь; р = 0 или 1; Y' - кислород; R5 - С16 алкил, С16 алкилокси, С16 алкилокси- С16 алкил, фенил, замещенный галогеном; R6 - С110 алкил, С36 циклоалкил, возможно замещенный галогеном; C2-C10 алкенил, возможно замещенный галогеном; С210 алкинил; R3 и R4 вместе с атомом углерода, с которым они связаны, образуют 4-8-членное кольцо, атомы углерода которого могут быть замещены С16 алкилом, а также их соли. Соединения 1 более сильно подавляют митохондриальную цепь дыхания, что позволяет использовать их в средстве для борьбы с насекомыми, паукообразными вредителями или вредоносными грибами. 2 с. и 1 з.п.ф-лы, 25 табл.

Изобретение относится к производным 2-иминооксифенилуксусной кислоты общей формулы I в которой заместители и индекс имеют следующее значение: R1 обозначает C(CO2CH3)= NOCH3 (Ia), C(CONHCH3)=NOCH3 (Ib), C(CO2CH3)= CHOCH3 (Id) или C(CO2CH3)=CHCH3 (Ie); m обозначает 0; R3 обозначает водород, C1-C6алкил, фенил; R4 обозначает водород, C1-C6алкокси, фенил, возможно замещенный C1-C6алкилом; алкенил, возможно замещенный фенилом, галогеном, причем фенил, возможно замещен галогеном; Qp-C(R5)=N-Y'-R6, где Q представляет собой прямую связь, p означает 0 или 1, Y означает кислород, R5 означает C1-C6алкил, C1-C6алкилокси, C1-C6алкилокси-C1-C6алкил, фенил, замещенный галогеном; R6 означает C1-C10алкил; C3-C6циклоалкил, возможно замещенный галогеном; C2-C10алкенил, возможно замещенный галогеном; C2-C10алкинил; R3 и R4 вместе с атомом углерода, с которым они связаны, обозначают 4-8-членное кольцо, атомы углерода которого могут быть замещены C1-C6алкилом, а также к их солям.

Кроме того, изобретение относится к средству, содержащему соединения формулы I, предназначенному для борьбы с насекомыми, паукообразными вредителями или вредоносными грибами.

Из литературы известны производные фенилуксусной кислоты, применяемые для борьбы с вредителями и вредоносными грибами (см. патентные заявки EP-A 370629, EP-A 463488, EP-A 460575, WO-A 95/21154, WO-A 95/21153, WO-A 95/18789).

В отличие от указанных публикаций в основу настоящего изобретения была положена задача по получению соединений, способных более сильно подавлять митохондриальную цепь дыхания и проявляющих тем самым более эффективное действие против вредителей и вредоносных грибов.

Поставленная задача решается соединениями формулы I, описанными выше.

Предпочтительны соединения формулы I, в которых R4 имеет следующее значение: C1-C6алкокси, фенил, возможно замещенный C1-C6алкилом; алкенил, возможно замещенный фенилом, галогеном, причем фенил возможно замещен галогеном; -Qp-C(R5)=N-Y'-R6, где Q представляет собой прямую связь, p означает 0 или 1, Y означает кислород, R5 означает C1-C6алкил, C1-C6алкилокси, C1-C6алкилокси-C1-C6алкил, фенил, замещенный галогеном; R6 означает C1-C10алкил; C3-C6циклоалкил, возможно замещенный галогеном; C2-C10алкенил, возможно замещенный галогеном; C2-C10алкинил.

Поставленная задача решается также средством, предназначенным для борьбы с насекомыми, паукообразными вредителями или вредоносными грибами, содержащим твердый либо жидкий наполнитель и соединение общей формулы I.

Кроме того, в описанных выше соединениях формулы I значение R1 может обозначать C(CONH2)=NOCH3 (Ic), а также R2 обозначает циано, нитро, галоген, C1-C4алкил, C1-C4галогеналкил или C1-C4алкокси; m обозначает 0, 1 или 2, причем радикалы R2 могут быть различными, если m обозначает 2; R3 обозначает водород, циано, гидрокси, галоген, C1-C6алкил, C1-C6галогеналкил, C1-C6алкокси-C1-C6алкил, C1-C6алкокси, C1-C6галогеналкокси, C1-C6алкилтио, циклопропил, C2-C6алкенил, арилокси-C1-C6алкил, бензил или бензилокси, причем ароматические кольца в этих радикалах могут нести от одной до трех групп из числа следующих: циано, нитро, галоген, C1-C6алкил, C1-C6галогеналкил, C1-C6алкокси, C1-C6галогеналкокси или C(CH3)=N-Y-Ra, где Ra представляет собой C1-C6алкил, а Y представляет собой кислород или азот, причем атом азота несет атом водорода или C1-C6алкильную группу; R4 обозначает водород, циано, необязательно замещенный алкил, алкенил, алкинил, циклоалкил, гетероциклил, арил и гетарил; необязательно замещенный алкокси, алкенилокси, алкинилокси, циклоалкокси, гетероциклилокси, арилокси и гетарилокси; необязательно замещенный арилтио и гетарилтио; -Qp-C(R5)=N-Y1-R6 или -Q-O-N=CR7R8, где Q представляет собой прямую связь, CH2, CH(CH3), CH(CH2CH3) или 1,1-циклопропил; p обозначает 0 или 1; Y1 обозначает кислород или азот, причем атом азота несет атом водорода или C1-C4алкильную группу; R5 представляет собой одну из указанных для R3 групп, или необязательно замещенный циклоалкокси, гетероциклилокси, арилокси, гетарилокси, арилтио и гетарилтио; R6 обозначает необязательно замещенный C1-C10алкил, C3-C6циклоалкил, C2-C10алкенил, C2-C10алкинил, C1-C10алкилкарбонил, C2-C10алкенилкарбонил, C2-C10алкинилкарбонил или C1-C10алкилсульфонил; необязательно замещенный арил, гетарил, арилкарбонил, гетарилкарбонил, арилсульфонил или гетарилсульфонил; R7, R8 обозначают метил, этил, фенил и бензил, причем ароматические кольца могут нести от одного до трех заместителей из числа следующих: циано, нитро, галоген, C1-C6алкил, C1-C6галогеналкил, C1-C6алкокси и C1-C6галогеналкокси; R3 и R4 вместе с атомом углерода, с которым они связаны, обозначают 4-8-членное кольцо, которое наряду с атомами углерода может содержать один либо два атома кислорода и/или серы и/или NH- и/или N(C1-C4алкильные) группы и атомы углерода которого могут нести один из следующих заместителей: галоген, C1-C6алкил и C1-C4алкоксиимино; причем R3 и R4 не одновременно связаны через гетероатомы с атомом углерода.

Кроме того, описываются способ и промежуточные продукты для получения соединений формулы I.

Соединения I могут быть получены различным путем, причем в принципе не играет существенной роли, начинать ли построение с группы -O-N=CR3R4 (называемой в последующем также "боковой цепью") или с радикала R1 (называемого в последующем также "фармакофором"), соответственно на какой предварительной стадии "фармакофора" связывать "боковую цепь" со скелетом.

1. При получении соединений I, в которых R1 обозначает C(CO2CH3)=NOCH3 (Ia), C(CO2CH3)= CHOCH3 (Id) или C(CO2CH3)=CHCH3 (Ie), работают, например, таким образом, что эфир бензойной кислоты формулы II в присутствии основания переводят взаимодействием с оксимом формулы III в соответствующее производное формулы IV, которое омыляют с получением соответствующей карбоновой кислоты IVa, после чего эту кислоту IVa превращают сначала в хлорангидрид Va, а затем в цианид Vb, который по реакции Пиннера переводят в соответствующий - кетоэфир VI, а затем этот - кетоэфир VI либо а) с помощью O-метилгидроксиламина или его соли (VIIa) переводят в соответствующее соединение Ia [R обозначает C(CO2CH3)=NOCH3], либо б) с помощью реагента Виттига, соответственно реагента Виттига-Хорнера формулы VIIb переводят в соответствующее соединение Id [R обозначает C(CO2CH3)=CHOCH3], либо в) с помощью реагента Виттига, соответственно реагента Виттига-Хорнера формулы VIIc переводят в соответствующее соединение Ie [R обозначает C(CO2CH3)=CHCH3] (см. схему 1, представленную в конце описания).

L в формуле II представляет собой обычную для нуклеофильного ароматического замещения уходящую группу, такую, как галоген (например, фтор, хлор, бром), нитро или сульфонат.

R в формуле II представляет собой C1-C4алкильную группу, прежде всего метил.

Z- в формуле VIIa представляет собой анион неорганической кислоты, прежде всего анион галогенангидрида.

P* в формулах VIIb и VIIc представляет собой фосфонат, пригодный для использования в реакции Виттига, соответственно Виттига-Хорнера, либо фосфониевогалогенидный радикал.

1A. Взаимодействие эфира бензойной кислоты (II) с оксимом (III) осуществляют обычно при температурах в интервале от -20oC до 170oC, предпочтительно от 0 до 100oC в инертном органическом растворителе в присутствии основания [J. Heterocycl. Chem. 4, 441 (1967); J. Org. Chem. 49, 180 (1984); Synthesis 1975. 782; J. Heterocycl. Chem. 26, 1293 (1989)] (см. схему 2, представленную в конце описания).

Пригодными для использования в указанных целях растворителями являются ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол, простые эфиры, такие, как диэтиловый эфир, диизопропиловый эфир, трет-бутилметиловый эфир, диоксан, анизол и тетрагидрофуран, нитрилы, такие, как ацетонитрил и пропионитрил, кетоны, такие, как ацетон, метилэтилкетон, диэтилкетон и трет-бутилметилкетон, а также диметилсульфоксид и диметилформамид, диметилацетамид, 1,3-диметилимидазолидин-2-он, 1,3-диметилтетрагидро-2(1H)-пиримидинон и триамид гексаметилфосфорной кислоты; особенно предпочтительны из них тетрагидрофуран, диметилсульфоксид, диметилацетамид, диметилформамид и 1,3-диметилтетрагидро-2(1H)-пиримидинон. Возможно также использование смесей указанных растворителей.

В качестве оснований могут рассматриваться в принципе неорганические соединения, такие, как гидриды щелочных и щелочноземельных металлов, в частности гидрид лития, гидрид натрия, гидрид калия и гидрид кальция, карбонаты щелочных и щелочноземельных металлов, такие, как карбонат лития и карбонат кальция, далее карбонат серебра, гидрокарбонаты щелочных металлов, такие, как гидрокарбонат натрия, металлоорганические соединения, прежде всего алкилы щелочных металлов, такие, как метиллитий, бутиллитий и фениллитий, алкилмагнийгалогениды, такие, как метилмагнийхлорид, а также алкоголяты щелочных и щелочноземельных металлов, такие, как метанолят натрия, этанолят натрия, метанолят калия, этанолят калия, трет-бутанолят калия и диметоксимагний, кроме того, органические основания, например, третичные амины, такие, как триметиламин, триэтиламин, триизопропилэтиламин и N-метилпиперидин, пиридин, замещенные пиридины, такие, как коллидин, лутидин и 4-диметиламинопиридин, а также бициклические амины. Особенно предпочтительно используют гидрид натрия, карбонат калия, метанолят калия, этанолят калия, трет-бутанолят калия и метилат натрия. Основания применяют, как правило, в эквимолярных количествах, с избытком или при необходимости в качестве растворителей.

С целью обеспечить полноту обменной реакции может оказаться целесообразным проводить реакцию в присутствии каталитических количеств краун-эфира, такого, как 18-краун-6 или 15-краун-5, или же какого-либо иного обычного катализатора фазового перехода. В качестве таких катализаторов фазового перехода приемлемы галогениды и тетрафторобораты аммония, в частности бензилтриэтиламмонийхлорид, бензилтрибутиламмонийхлорид, тетрабутиламмонийхлорид, гексадецилтриметиламмонийбромид и тетрабутиламмонийтетрафтороборат, а также галогениды фосфония, такие, как тетрабутилфосфонийхлорид и тетрафенилфосфонийбромид.

Эдукты, как правило, подвергают взаимодействию друг с другом в эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным соединение III применять в избытке по отношению к соединению II.

С целью обеспечить требуемую скорость обменной реакции и ее полноту может оказаться целесообразным сначала обработать соединения III основанием и затем полученную соль подвергнуть взаимодействию с соединением II.

Требуемые для получения соединений I исходные вещества II известны из литературы. Исходные вещества III известны из названных выше публикаций либо могут быть получены по описанным в этих публикациях методам (ср. международную заявку WO-A 95/21153).

1B. Превращение сложного эфира IV в соответствующую кислоту IVa осуществляют по известной методике кислотным либо щелочным омылением при температурах в интервале от 0oC до 100oC, предпочтительно от 0oC до 50oC, в инертном органическом растворителе или водно/органических растворителях в присутствии основания или кислоты [основное омыление ср.: Journ. Org. Chem. 30, 3676 (1965); кислотное омыление ср.: Chem. Ind. (Лондон) 1964, 193] (см. схему 3, представленную в конце описания).

Полученную таким путем карбоновую кислоту IVa переводят затем по известной методике с помощью обычных хлорирующих агентов при температурах в интервале от 0oC до 150oC, предпочтительно от 0oC до 100oC, необязательно в присутствии инертного органического растворителя в хлорангидрид бензойной кислоты Va [см. Houben-Weyl, дополнительный том 5, стр. 59 и далее, 225 и далее и 664 и далее] (см. схему 4, представленную в конце описания).

В качестве хлорирующих агентов используют все пригодные в этих целях обычные реагенты, прежде всего SOCl2, (COCl)2, POCl3, AlCl3 и PCl5. Хлорирующие агенты применяют, как правило, в избытке либо при необходимости в качестве растворителей.

Пригодными растворителями являются алифатические углеводороды, такие, как пентан, гексан, циклогексан и петролейный эфир, ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, а также галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол. Возможно также использование смесей названных растворителей.

Эдукты, как правило, подвергают взаимодействию друг с другом в по меньшей мере эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным применять хлорирующий агент в избытке по отношению к соединению IVa.

1C. Превращение хлорангидрида бензойной кислоты Va в соответствующий цианид Vb осуществляют по известной методике [см. заявку Германии DE N 19603990.8; Bull. Chem. Soc. Jpn. 60, 1085 (1987); Synthesis 1983. 636; Journ. Org. Chem. 43, 2280 (1978); Tetrahedron Lett. 1974, 2275] при температурах в интервале от 0oC до 150oC, предпочтительно от 10oC до 100oC взаимодействием с неорганическим цианидом в инертном органическом растворителе, необязательно в присутствии катализатора (см. схему 5, представленную в конце описания).

В качестве неорганических цианидов приемлемы цианиды металлов первой главной группы либо побочных групп Периодической системы, например, лития, натрия, калия, меди и серебра, прежде всего меди, а также органические цианиды, такие, как триметилсилилцианид.

Пригодными для использования в указанных целях растворителями являются алифатические углеводороды, такие, как пентан, гексан, циклогексан и петролейный эфир, ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол, простые эфиры, такие, как диэтиловый эфир, диизопропиловый эфир, трет-бутилметиловый эфир, диоксан, анизол и тетрагидрофуран, нитрилы, такие, как ацетонитрил и пропионитрил, кетоны, такие, как ацетон, метилэтилкетон, диэтилкетон и трет-бутилметилкетон, спирты, такие, как метанол, этанол, н-пропанол, изопропанол, н-бутанол и трет-бутанол, а также диметилсульфоксид и диметилформамид; наиболее предпочтительны из них толуол, метиленхлорид и тетрагидрофуран. Возможно также использование смесей названных растворителей.

При проведении взаимодействия с вышеуказанными цианидными соединениями, за исключением CuCN, рекомендуется применять катализатор. В качестве катализаторов могут применяться обычные катализаторы фазового перехода, прежде всего аммониевые соли, как тетрабутиламмонийбромид.

Эдукты, как правило, подвергают взаимодействию друг с другом в эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным применять цианид с избытком по отношению к соединению Va.

ID. Превращение цианида Vb в - кетоэфир VI осуществляют по известной методике по реакции Пиннера при температурах в интервале от 0oC до 150oC, предпочтительно от 30oC до 100oC в спирте (R-OH) в присутствии кислоты и катализатора [см. Tetrahedron Lett. 21, 3539 (1980); Journ. Org. Chem. 41, 2342 (1982)] (см. схему 6, представленную в конце описания).

В качестве кислот и кислотных катализаторов могут применяться неорганические кислоты, такие, как фтористоводородная кислота, соляная кислота, бромистоводородная кислота, серная кислота и перхлорная кислота, кислоты Льюиса, такие, как трифторид бора, трихлорид алюминия, хлорид железа (III), хлорид олова (IV), хлорид титана (IV) и хлорид цинка (II), а также органические кислоты, такие, как муравьиная кислота, уксусная кислота, пропионовая кислота, щавелевая кислота, лимонная кислота и трифторуксусная кислота. Как правило, кислоты применяют по меньшей мере в эквимолярных количествах, предпочтительно, однако, с избытком.

1E. Взаимодействие - кетоэфира VI с O-метилгидроксиламином, соответственно с его солью (VIIa) с получением соединения формулы Ia осуществляют по известной методике при температурах в интервале от 0oC до 100oC, предпочтительно от 20oC до 70oC в инертном органическом растворителе, необязательно в присутствии основания [см. патент США US-A 5221762] (см. схему 7, представленную в конце описания).

Пригодными для использования в указанных целях растворителями являются алифатические углеводороды, такие, как пентан, гексан, циклогексан и петролейный эфир, ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол, простые эфиры, такие, как диэтиловый эфир, диизопропиловый эфир, трет-бутилметиловый эфир, диоксан, анизол и тетрагидрофуран, нитрилы, такие, как ацетонитрил и пропионитрил, кетоны, такие, как ацетон, метилэтилкетон, диэтилкетон и трет-бутилметилкетон, спирты, такие, как метанол, этанол, н-пропанол, изопропанол, н-бутанол и трет-бутанол, а также диметилсульфоксид и диметилформамид; наиболее предпочтительны из них диметилформамид или спирты. Возможно также использование смесей названных растворителей.

В качестве оснований могут рассматриваться в принципе неорганические соединения, такие, как гидроксиды щелочных и щелочноземельных металлов, в частности гидроксид лития, гидроксид натрия, гидроксид калия и гидроксид кальция, оксиды щелочных и щелочноземельных металлов, такие, как оксид лития, оксид натрия, оксид кальция и оксид магния, гидриды щелочных и щелочноземельных металлов, такие, как гидрид лития, гидрид натрия, гидрид калия и гидрид кальция, амиды щелочных металлов, такие, как амид лития, амид натрия и амид калия, карбонаты щелочных и щелочноземельных металлов, такие, как карбонат лития и карбонат кальция, равно как и гидрокарбонаты щелочных металлов, в частности гидрокарбонат натрия, металлоорганические соединения, прежде всего алкилы щелочных металлов, такие, как метиллитий, бутиллитий и фениллитий, алкилмагнийгалогениды, такие, как метилмагнийхлорид, а также алкоголяты щелочных и щелочноземельных металлов, такие, как метанолят натрия, этанолят натрия, этанолят калия, трет-бутанолят калия и диметоксимагний, кроме того, органические основания, например, третичные амины, такие, как триметиламин, триэтиламин, триизопропилэтиламин и N-метилпиперидин, пиридин, замещенные пиридины, такие, как коллидин, лутидин и 4-диметиламинопиридин, а также бициклические амины. Особенно предпочтительны из них третичные амины. Основания применяют, как правило, в каталитических количествах, однако возможно также их применение в эквимолярных количествах, с избытком или же при необходимости в качестве растворителей.

Эдукты, как правило, подвергают взаимодействию друг с другом в эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным использовать соединения VIIa в избытке по отношению к соединениям VI.

IF. Превращение - кетоэфира VI путем соответствующей обменной реакции в соединение формулы Id осуществляют по известной методике по реакции Виттига, соответственно по реакции Виттига-Хорнера при температурах в интервале от 0oC до 100oC, предпочтительно от 0oC до 50oC в инертном органическом растворителе в присутствии основания и катализатора [см. Tetrahedron 44, 3727 (1988)] (см. схему 8, представленную в конце описания).

Пригодными для использования в указанных целях растворителями являются алифатические углеводороды, такие, как пентан, гексан, циклогексан и петролейный эфир, ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол, простые эфиры, такие, как диэтиловый эфир, диизопропиловый эфир, трет-бутилметиловый эфир, диоксан, анизол и тетрагидрофуран, нитрилы, такие, как ацетонитрил и пропионитрил, кетоны, такие, как ацетон, метилэтилкетон, диэтилкетон и трет-бутилметилкетон, спирты, такие, как метанол, этанол, н-пропанол, изопропанол, н-бутанол и трет-бутанол, а также диметилсульфоксид и диметилформамид; наиболее предпочтителен из них диметилформамид. Возможно также использование смесей названных растворителей.

В качестве оснований могут рассматриваться в принципе неорганические соединения, такие, как гидроксиды щелочных и щелочноземельных металлов, в частности гидроксид лития, гидроксид натрия, гидроксид калия и гидроксид кальция, оксиды щелочных и щелочноземельных металлов, такие, как оксид лития, оксид натрия, оксид кальция и оксид магния, гидриды щелочных и щелочноземельных металлов, такие, как гидрид лития, гидрид натрия, гидрид калия и гидрид кальция, амиды щелочных металлов, такие, как амид лития, амид натрия и амид калия, карбонаты щелочных и щелочноземельных металлов, такие, как карбонат лития и карбонат кальция, равно как и гидрокарбонаты щелочных металлов, в частности гидрокарбонат натрия, металлоорганические соединения, прежде всего алкилы щелочных металлов, такие, как метиллитий, бутиллитий и фениллитий, алкилмагнийгалогениды, такие, как метилмагнийхлорид, а также алкоголяты щелочных и щелочноземельных металлов, такие, как метанолят натрия, этанолят натрия, этанолят калия, трет-бутанолят калия и диметоксимагний, кроме того, органические основания, например, третичные амины, такие, как триметиламин, триэтиламин, триизопропилэтиламин и N-метилпиперидин, пиридин, замещенные пиридины, такие, как коллидин, лутидин и 4-диметиламинопиридин, а также бициклические амины. Особенно предпочтительны из них алкоголяты. Основания применяют, как правило, в каталитических количествах, однако возможно также их применение в эквимолярных количествах, с избытком или же при необходимости в качестве растворителей.

Эдукты, как правило, подвергают взаимодействию друг с другом в эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным использовать соединения VIIb в избытке по отношению к соединениям VI.

IG. Превращение - кетоэфира VI путем соответствующей обменной реакции в соединение формулы Ie осуществляют по известной методике по реакции Виттига, соответственно по реакции Виттига-Хорнера при температурах в интервале от 0oC до 100oC, предпочтительно от 0oC до 50oC в инертном органическом растворителе в присутствии основания и катализатора [см. Austr. Journ. Chem. 34, 2363 (1981); Can. Journ. Chem. 49, 2143 (1971)] (см. схему 9, представленную в конце описания).

Пригодными для использования в указанных целях растворителями являются алифатические углеводороды, такие, как пентан, гексан, циклогексан и петролейный эфир, ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол, простые эфиры, такие, как диэтиловый эфир, диизопропиловый эфир, трет-бутилметиловый эфир, диоксан, анизол и тетрагидрофуран, нитрилы, такие, как ацетонитрил и пропионитрил, кетоны, такие, как ацетон, метилэтилкетон, диэтилкетон и трет-бутилметилкетон, спирты, такие, как метанол, этанол, н-пропанол, изопропанол, н-бутанол и трет-бутанол, а также диметилсульфоксид и диметилформамид; наиболее предпочтителен из них диметилформамид. Возможно также использование смесей названных растворителей.

В качестве оснований могут рассматриваться в принципе неорганические соединения, такие, как гидроксиды щелочных и щелочноземельных металлов, в частности гидроксид лития, гидроксид натрия, гидроксид калия и гидроксид кальция, оксиды щелочных и щелочноземельных металлов, такие, как оксид лития, оксид натрия, оксид кальция и оксид магния, гидриды щелочных и щелочноземельных металлов, такие, как гидрид лития, гидрид натрия, гидрид калия и гидрид кальция, амиды щелочных металлов, такие, как амид лития, амид натрия и амид калия, карбонаты щелочных и щелочноземельных металлов, такие, как карбонат лития и карбонат кальция, равно как и гидрокарбонаты щелочных металлов, в частности гидрокарбонат натрия, металлоорганические соединения, прежде всего алкилы щелочных металлов, такие, как метиллитий, бутиллитий и фениллитий, алкилмагнийгалогениды, такие, как метилмагнийхлорид, а также алкоголяты щелочных и щелочноземельных металлов, такие, как метанолят натрия, этанолят натрия, этанолят калия, трет-бутанолят калия и диметоксимагний, кроме того, органические основания, например, третичные амины, такие, как триметиламин, триэтиламин, триизопропилэтиламин и N-метилпиперидин, пиридин, замещенные пиридины, такие, как коллидин, лутидин и 4-диметиламинопиридин, а также бициклические амины. Особенно предпочтительны из них алкоголяты. Основания применяют, как правило, в каталитических количествах, однако возможно также их применение в эквимолярных количествах, с избытком или же при необходимости в качестве растворителей.

Эдукты, как правило, подвергают взаимодействию друг с другом в эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным использовать соединения VIIс в избытке по отношению к соединениям VI.

2. Особенно предпочтительная возможность получения соединений Vb состоит в том, что цианид формулы Vc, как описано в разделе 1A, подвергают взаимодействию с оксимом формулы III (см. схему 10, представленную в конце описания).

3. Соединения формулы VI получают предпочтительно также благодаря тому, что - кетоэфир формулы VIa переводят в соединение VIb, которое in situ подвергают взаимодействию с кетоном, соответственно альдегидом IX с получением соединения VI (см. схему 11, представленную в конце описания).

Группы R' и R'' в формуле VIa представляют собой независимо друг от друга C1-C6алкил или арил.

Высвобождение гидроксиламина VIb из оксима VIa и последующее взаимодействие полученной таким путем реакционной смеси с кетоном IX осуществляют по известной методике при температурах в интервале от 0oC до 150oC, предпочтительно от 0oC до 50oC в инертном органическом растворителе в присутствии кислоты, соответственно как катализатора.

Пригодными для использования в указанных целях растворителями являются алифатические углеводороды, такие, как пентан, гексан, циклогексан и петролейный эфир, ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол, простые эфиры, такие, как диэтиловый эфир, диизопропиловый эфир, трет-бутилметиловый эфир, диоксан, анизол и тетрагидрофуран, нитрилы, такие, как ацетонитрил и пропионитрил, кетоны, такие, как ацетон, метилэтилкетон, диэтилкетон и трет-бутилметилкетон, спирты, такие, как метанол, этанол, н-пропанол, изопропанол, н-бутанол и трет-бутанол, а также диметилсульфоксид и диметилформамид; наиболее предпочтительны из них спирты. Возможно также использование смесей названных растворителей.

В качестве кислот и кислотных катализаторов могут применяться неорганические кислоты, такие, как фтористоводородная кислота, соляная кислота, бромистоводородная кислота, серная кислота и перхлорная кислота, кислоты Льюиса, такие, как трифторид бора, трихлорид алюминия, хлорид железа (III), хлорид олова (IV), хлорид титана (IV) и хлорид цинка (II), а также органические кислоты, такие, как муравьиная кислота, уксусная кислота, пропионовая кислота, щавелевая кислота, лимонная кислота и трифторуксусная кислота. Кислоты применяют, как правило, в каталитических количествах, однако их можно использовать также в эквимолярных количествах, с избытком или же при необходимости в качестве растворителей.

Эдукты, как правило, подвергают взаимодействию друг с другом в эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным кетон IX применять в избытке по отношению к соединениям VIb.

4. Соединения формулы I, в которых R1 представляет собой C(CONHCH3)=NOCH3 (Ib) или C(CONH2)=NOCH3 (Ic), получают, например, благодаря тому, что соединение формулы Ia по известной методике подвергают взаимодействию с метиламином либо с его солью (XIII) или с аммиаком или же с аммониевой солью (см. схему 12, представленную в конце описания).

Z- в формуле XIII представляет собой анион неорганической кислоты, прежде всего анион галогенида, такого, как хлор и бром.

Указанное взаимодействие проводят обычно при температурах в интервале от 0oC до 150oC, предпочтительно от 0oC до 70oC в инертном органическом растворителе, необязательно в присутствии основания.

Пригодными для использования в указанных целях растворителями являются алифатические углеводороды, такие, как пентан, гексан, циклогексан и петролейный эфир, ароматические углеводороды, такие, как толуол, о-, м- и п-ксилол, галоидированные углеводороды, такие, как метиленхлорид, хлороформ и хлорбензол, простые эфиры, такие, как диэтиловый эфир, диизопропиловый эфир, трет-бутилметиловый эфир, диоксан, анизол и тетрагидрофуран, нитрилы, такие, как ацетонитрил и пропионитрил, кетоны, такие, как ацетон, метилэтилкетон, диэтилкетон и трет-бутилметилкетон, спирты, такие, как метанол, этанол, н-пропанол, изопропанол, н-бутанол и трет-бутанол, а также диметилсульфоксид и диметилформамид; особенно предпочтителен из них тетрагидрофуран. Возможно также использование смесей названных растворителей.

В случае применения в качестве исходных веществ аммониевых солей реакцию предпочтительно проводить в присутствии основания. В качестве оснований могут рассматриваться в принципе неорганические соединения, такие, как гидроксиды щелочных и щелочноземельных металлов, в частности гидроксид лития, гидроксид натрия, гидроксид калия и гидроксид кальция, оксиды щелочных и щелочноземельных металлов, такие, как оксид лития, оксид натрия, оксид кальция и оксид магния, гидриды щелочных и щелочноземельных металлов, такие, как гидрид лития, гидрид натрия, гидрид калия и гидрид кальция, амиды щелочных металлов, такие, как амид лития, амид натрия и амид калия, карбонаты щелочных и щелочноземельных металлов, такие, как карбонат лития и карбонат кальция, равно как и гидрокарбонаты щелочных металлов, в частности гидрокарбонат натрия, металлоорганические соединения, прежде всего алкилы щелочных металлов, такие, как метиллитий, бутиллитий и фениллитий, алкилмагнийгалогениды, такие, как метилмагнийхлорид, а также алкоголяты щелочных и щелочноземельных металлов, такие, как метанолят натрия, этанолят натрия, этанолят калия, трет-бутанолят калия и диметоксимагний, кроме того, органические основания, например, третичные амины, такие, как триметиламин, триэтиламин, триизопропилэтиламин и N-метилпиперидин, пиридин, замещенные пиридины, такие, как коллидин, лутидин и 4-диметиламинопиридин, а также бициклические амины. Особенно предпочтительны из них третичные амины, соответственно карбонат калия. Основания применяют по меньшей мере в эквимолярных количествах, с избытком или при необходимости в качестве растворителя.

Эдукты, как правило, подвергают взаимодействию друг с другом в эквимолярных количествах. Однако для повышения выхода может оказаться целесообразным соединение XIII, соответственно аммиак использовать в избытке по отношению к соединению Ia.

5. Согласно одному из особенно предпочтительных вариантов способа соединения формулы Ib предпочтительно получают благодаря тому, что сначала - кетоамид формулы VIc в условиях, описанных в разделе 1A, переводят с помощью оксима формулы III в соответствующий амид формулы VId, после чего этот амид VId в условиях, описанных в разделе 4, подвергают взаимодействию с O-метилгидроксиламином либо его солью (VIIa) (см. схему 13, представленную в конце описания).

6. Согласно другому варианту способа соединения формулы I получают также благодаря тому, что - кетоэфир VIe с помощью N-гидроксифталимида (XI) переводят в соответствующий защищенный оксим формулы VIf. - Кетоэфирная функция оксима VIf может затем по известной методике согласно описанным выше способам переводиться в различные группы R1 (ср. формулы XIIa и XIIb). Затем фталимидную защитную группу отщепляют по известной методике с помощью гидразина в этаноле [см. Synthesis 23, 682 (1979)] либо с помощью бромистого водорода в уксусной кислоте [см. Journ. Org. Chem. 28, 1604 (1963)] и в завершение полученный O-замещенный гидроксиламин (ср. формулы XIIIa и XIIIb) подвергают in situ взаимодействию с кетоном формулы IX, получая в результате соединение I.

Последовательность проведения описанной реакции представлена на нижеследующей схеме 14.

Отдельные стадии реакции осуществляют в общем и в частности в описанных выше условиях.

7. Согласно другому особенно предпочтительному варианту способа еще одна возможность получения соединений формулы I состоит в том, что сначала - кетоэфир VIe взаимодействием с оксимом III переводят в соответствующий - кетоэфир VI, после чего - кетоэфирная функция оксима VI по известной методике согласно описанным выше вариантам способа может быть переведена в различные группы R1 (см. схему 15, представленную в конце описания).

Отдельные стадии реакции осуществляют в общем и в частности в описанных выше условиях.

Требующиеся для проведения указанных реакций в качестве исходного материала соединения VIe получают, например, согласно схеме 16, представленной в конце описания.

При соответствующей последовательности в проведении реакции получают - кетоэфир формулы VI или соответствующий - кетоамид, если при этом группу L согласно описанным выше условиям замещают взаимодействием с оксимом III (на стадии соединений XIVa, XIVb, XVb или VIe) группой -ON=CR3R4. Этот способ осуществляют по методам, описанным в Coll. Czech. Chem. Commun. 29, 97/119 (1964).

Согласно другому варианту способа соединения формулы I получают также исходя из фенилкетонов формулы XVI с помощью методов, описанных в европейских патентных заявках EP-A 178826, EP-A 256667 и EP-A 468775, согласно реакционной схеме 17, представленной в конце описания.

Группа L при этой