Амиды фосфиновых кислот и способ предупреждения или лечения заболевания, связанного с нежелательной активностью металлопротеазы

Реферат

 

Изобретение относится к амидам фосфиновых кислот ф-лы (I), где R1 - водород, алкил, фенилалкил, пиридинил, пиридинилалкил, алкоксиалкил, фенилалкоксиалкил; R2 - водород, алкил, фенилалкил, индолил, фенилалкоксиалкил, алкилтиоалкил, алкиламиноалкил; R3 - алкил или фенил; R4 - алкил, фенил или замещенный фенил, пиридил, тиенил или фурил, к их оптическим изомерам, диастереомерам, энантиомерам, фармацевтически приемлемым солям или биогидролизуемым сложным эфирам, которые могут быть использованы в качестве ингибиторов матриксной металлопротеазы при лечении состояний, характеризуемых чрезмерной активностью указанных ферментов. 3 с. и 7 з.п. ф-лы, 2 табл.

Изобретение относится к соединениям, полезным для лечения заболеваний, связанных с активностью металлопротеазы, в частности активностью цинковой металлопротеазы.

Ряд структурно родственных металлопротеаз [MPs, МП] расщепляет структурные белки. Эти металлопротеазы часто воздействуют на межклеточный материал и, следовательно, участвуют в разрушении и ремоделировании ткани. Такие белки называют металлопротеазами или МП. Существует несколько различных групп МП, классифицированных по гомологии последовательностей. Некоторые группы МП и их примеры уже известны.

Указанные МП включают матриксные металлопротеазы [ММП], цинковые металлопротеазы, многие из металлопротеаз, связанных с мембранами, TNF-превращающие ферменты, ангиотензин-превращающие ферменты (ACEs, АПФ), расщепители, включая ADAMs (смотри Wolfsberg et al, 131 J. Cell Bic. 275-78, октябрь 1995), и энкефалиназы. Примеры МП включают коллагеназу фибробласта кожи человека, желатиназу фибропласта кожи человека, коллагеназу, агреканазу и желатиназу мокроты человека и стромелизин человека. Считается, что коллагеназа, стромелизин, агреканаза и родственные ферменты важны в опосредовании симптоматологии многих заболеваний.

Возможные терапевтические показания ингибиторов МП уже описаны в литературе. Смотри, например, патент США N 5506242 (Ciba Geigy Corp.); патент США N 5403952 (Merck & Co.); PCT опубликованную заявку WO 96/06074 (British Bio Tech Ltd); PCT публикацию WO 96/00214 (Ciba Geigy); WO 95/35275 (British Bio Tech Ltd); WO 95/35276 (British Bio Tech Ltd); WO 95/33731 (Hoffman-LaRoche); WO 95/33709 (Hoffman-LaRoche); WO 95/32944 (British Bio Tech Ltd); WO 95/26989 (Merck); WO 95/29892 (DuPont Merck); WO 95/24921 (Inst. Ophthalmology); WO 95/23790 (Smith Kline Beecham); WO 95/22966 (Sanofi Winthrop); WO 95/19965 (Glycomed); WO 95/19956 (British Bio Tech Ltd); WO 95/19957 (British Bio Tech Ltd); WO 95/19961 (British Bio Tech Ltd); WO 95/13289 (Chiroscience Ltd.); WO 95/12603 (Syntex); WO 95/09633 (Florida State Univ. ); WO 95/09620 (Florida State Univ.); WO 95/04033 (Celltech); WO 94/25434 (Celltech); WO 94/25435 (Celltech); WO 93/14112 (Merck); WO 94/0019 (Glaxo); WO 93/21942 (British Bio Tech Ltd); WO 92/22523 (Res. Corp. Tech. Inc.); WO 94/10990 (British Bio Tech Ltd); WO 93/09090 (Yamanouchi); и патенты Британии GB 2282598 (Merck) и GB 2268934 (British Bio Tech Ltd); опубликованные заявки на европейский патент ЕР 95/684240 (Hoffman LaRoche); ЕР 574758 (Hoffman LaRoche); ЕР 575874 (Hoffman LaRoche); опубликованные заявки на патент Японии JP 08053403 (Fujusowa Pharm. Co. Ltd); JP 7304770 (Kanebo Ltd. ); и Bird et al, J. Med. Chem. том 37, стр. 158-69 (1994). Примеры возможных терапевтических применений МП ингибиторов включают ревматоидный артрит (Mullins D.E., et al., Biochim. Biophys. Acta (1983) 695: 117-214); остеоартрит (Henderson, В. , et al. Drugs of the Future (1990) 15: 495-508); метастаз опухолевых клеток (там же, Broadhurst, M.J., заявка N 276436 на европейский патент (опубликована в 1987 г), Rech, R., et al., 48 Cancer Res. 3307-3312 (1988)); и различные язвы или язвенные состояния ткани. Например, язвенные состояния могут возникнуть в роговице в результате ожога щелочью или в результате инфекции бактериями Pseudomonas aeruginosa, Acanthamoeba, вирусами герпеса простого и вакцинии.

Другие примеры состояний, характеризуемых нежелательной активностью металлопротеаз, включают периодонтальное заболевание, врожденный буллезный эпидермолиз, лихорадку, воспаление и склерит (ср. DeCicco et al., WO 95/29892, опубликованная 9 ноября 1995 г.).

Ввиду участия таких металлопротеаз в создании многих болезненных состояний были предприняты попытки получения ингибиторов указанных ферментов. Целый ряд таких ингибиторов описан в литературе. Примеры включают патент США N 5183900, выданный 2 февраля 1993 г. на имя Galardy; патент США N 4996358, выданный 26 февраля 1991 г. на имя Handa et. al.; патент США N 4771038, выданный 13 сентября 1988 г. на имя Wolanin, et al.; патент США N 4743587, выданный 10 мая 1988 г. на имя Dickens, et al.; европейская патентная публикация N 575844, опубликованная 29 декабря 1993 г. by Broadhurst, et al., международная патентная публикация N WO 93/09090, опубликованная 13 мая 1993 г. by Isomura et al.; международная патентная публикация 92/17460, опубликованная 15 октября 1992 г. by Markwell et al.; и европейская патентная публикация N 498665, опубликованная 12 августа 1992 г. by Beckett et al.

В качестве способа лечения заболеваний, связанных с нежелательной активностью металлопротеаз, было бы целесообразным ингибирование этих металлопротеаз. Хотя уже было получено много разных ингибиторов, тем не менее продолжает оставаться потребность в мощных ингибиторах матриксных металлопротеаз, пригодных для лечения таких заболеваний.

Целью настоящего изобретения является создание мощных ингибиторов металлопротеаз.

Другой целью настоящего изобретения является создание фармацевтических композиций, содержащих такие ингибиторы.

Следующей целью настоящего изобретения является создание способа лечения заболеваний, связанных с металлопротеазами.

В соответствии с настоящим изобретением предлагаются соединения, полезные для применения в качестве ингибиторов металлопротеаз и эффективные в лечении состояний, характеризуемых чрезмерной активностью указанных ферментов. В частности, настоящее изобретение относится к соединению, имеющему структуру, соответствующую формуле (I) где R1i представляет водород, алкил, арилалкил, гетероциклоалкил, алкоксиалкил, арилалкоксиалкил или алкилтиоалкил; R2 представляет водород, алкил, арилалкил, гетероциклоалкил, алкоксиалкил, арилалкоксиалкил или алкилтиоалкил; R3 представляет алкил, циклоалкил, карбоциклический или гетероциклический арил, гидроксиалкил, алкоксиалкил или аминоалкил; и R4 представляет карбоциклический или гетероциклический арил; его оптическому изомеру, диастереомеру или энантиомеру или его фармацевтически приемлемой соли или биогидролизуемому алкоксиамиду, сложному эфиру, ацилоксиамиду или имиду.

Предпочтительный R4 включает фенил и замещенный фенил. Предпочтительное замещение на R4 производят рядом с местом присоединения или напротив него (т. е., если R4 представляет фенил, то в положениях 2 и/или 4). Предпочтительные заместители фенила включают галоген, алкил, алкокси, нитро, циано и тому подобное. Предпочтительным R3 является алкил, а более предпочтительным - C1-C2 алкил. Предпочтительным R2 является H или алкил, а более предпочтительным - H или C1-C4 алкил. Предпочтительным R1 является H или алкил, арилалкил, а более предпочтительным - C1-C6 алкил или арил(C1-C2) алкил.

Указанные соединения обладают способностью ингибировать по крайней мере одну матриксную металлопротеазу млекопитающего. Поэтому в других аспектах настоящее изобретение касается фармацевтических композиций, содержащих соединения формулы (I), и способов лечения заболеваний, характеризуемых активностью матриксных металлопротеаз, с использованием указанных соединений или фармацевтических композиций, содержащих эти соединения.

Матриксные металлопротеазы, активные в особенно неподходящем месте (например, органе или некоторых типах клеток), могут быть сделаны мишенью путем сопряжения соединений по настоящему изобретению с нацеливающим лигандом, специфическим по отношению к маркеру в этом месте, таким, как антитело или его фрагмент, или лиганд рецептора. Методы сопряжения известны в данной области химии.

Настоящее изобретение касается также многих других способов использования преимущества уникальных свойств указанных соединений. Так, в еще одном аспекте настоящее изобретение относится к соединениям формулы (I), объединенным с твердыми носителями. Эти конъюгаты можно использовать в качестве обладающих сродством реагентов для очистки требуемой матриксной металлопротеазы.

И в еще одном аспекте настоящее изобретение касается соединений формулы (I) с введенной меткой. Когда соединения по настоящему изобретению связываются с по крайней мере одной матриксной металлопротеазой, метка может быть использована для обнаружения относительно высокого уровня матриксной металлопротеазы in vivo или клеточной культуры in vitro.

Кроме того, соединения формулы (I) могут быть сопряжены с носителями, позволяющими использование этих соединений в схемах иммунизации для получения антител, специфически иммунореактивных с соединениями по настоящему изобретению. Типичные методы сопряжения известны в данной области. Указанные антитела в этом случае полезны и для терапии, и для контроля дозирования ингибиторов.

Соединения по настоящему изобретению являются ингибиторами матриксных металлопротеаз млекопитающих. Соединения предпочтительно представляют собой соединение формулы (I) или его фармацевтически приемлемую соль, или биогидролизуемый алкоксиамид, ацилоксиамид или имид.

Используемые термины и определения "Ацил" или "карбонил" представляет собой радикал, который мог быть образован путем удаления гидроксигруппы из карбоновой кислоты (т.е., R-C(=0)-). Предпочтительные ацильные группы включают, например, ацетил, формил и пропионил.

"Ацилокси" представляет собой оксильный радикал, имеющий ацильный заместитель (т.е., -О- ацил), например -O-C(=O)-алкил.

"Алкоксиацил" - это ацильный радикал (-C(=O)-), имеющий алкоксильный заместитель (т. е., -O-R), например -C(=O)-O-алкил. Этот радикал можно назвать сложным эфиром.

"Ациламино" представляет собой амино-радикал, имеющий ацильный заместитель (т.е., -N-ацил), например -NH-C(=O)-алкил.

"Алкенил" представляет собой незамещенный или замещенный углеводородный радикал, имеющий 2-15, предпочтительно 2-10 и более предпочтительно 2-8 углеродных атомов, если не указано иное. Алкенильные заместители имеют по крайней мере одну олефиновую двойную связь (включая, например, винил, аллил и бутенил).

"Алкинил" представляет собой незамещенный или замещенный углеводородный радикал, имеющий 2-15, предпочтительно 2-10 и более предпочтительно 2-8 углеродных атомов, если не указано иное. Цепь имеет по крайней мере одну тройную углерод-углеродную связь.

"Алкокси" - это кислородный радикал, имеющий углеводородный заместитель, где углеводородная цепь представляет собой алкил или алкенил (т.е., -О-алкил или -О-алкенил). Предпочтительные алкоксигруппы включают, например, метокси, этокси, пропокси и аллилокси.

"Алкоксиалкил" - это незамещенный или замещенный алкильный фрагмент, замещенный алкокси-фрагментом (т. е. , -алкил-О-алкил). Является предпочтительным, когда алкил имеет 1-6 углеродных атомов (более предпочтительно 1-3 углеродных атома) и алкокси имеет 1-6 углеродных атомов (более предпочтительно 1-3 углеродных атомов).

"Алкил" представляет собой незамещенный или замещенный насыщенный углеводородный радикал, имеющий 1-15, предпочтительно 1-10 и более предпочтительно 1-4 углеродных атомов, если не указано иное. Предпочтительные алкильные группы включают, например, замещенные или незамещенные метил, этил, пропил, изопропил и бутил.

При упоминании в данном описании термин "спироцикл" или "спироциклический" относится к циклическому фрагменту, имеющему общий углеродный атом с другим кольцом. Такой циклический фрагмент может быть по своей природе карбоциклическим или гетероциклическим. Предпочтительные гетероатомы, входящие в основу гетероциклического спироцикла, включают кислород, азот и серу. Спироциклы могут быть незамещенными или замещенными. Предпочтительные заместители включают оксо, гидрокси, алкил, циклоалкил, арилалкил, алкокси, амино, гетероалкил, арилокси, конденсированные кольца (например, бензотиол, циклоалкил, гетероциклоалкил, бензимидазолы, пиридилтиол и т.д., которые могут быть также замещенными) и тому подобное. Кроме того, гетероатом гетероцикла может быть замещенным, если позволяет валентность. Предпочтительные по размерам спироциклические кольца включают 3-7-членные кольцевые системы.

Алкилен относится к алкилу, алкенилу или алкинилу, который представляет собой не радикал, а дирадикал. Аналогичным образом "гетероалкилен" можно определить как (дирадикал)-алкилен, имеющий в своей цепи гетероатом.

"Алкиламино" - это амино-радикал, имеющий один (вторичный амин) или два (третичный амин) алкильных заместителя (т.е., -N-алкил); например, метиламино (-NHCH3), диметиламино (-N(CH3)2), метилэтиламино (-N(CH3)CH2CH3).

"Аминоацил" представляет собой ацильный радикал, имеющий амино-заместитель (т. е. , -C(=O)-N); например, -C(=O)-NH2. Аминогруппа аминоацильного фрагмента может быть незамещенной (т.е., первичный амин) или замещенной одной (вторичный амин) или двумя (т.е., третичный амин) алкильными группами.

"Арил" представляет собой ароматический карбоциклический кольцевой радикал. Предпочтительные арильные группы включают, например, фенил, толил, ксилил, куменил, нафтил, дифенил и флуоренил. Такие группы могут быть замещенными или незамещенными.

"Арилалкил" представляет собой алкильный радикал, замещенный арильной группой. Предпочтительные арилалкильные группы включают бензил, фенилэтил и фенилпропил. Такие группы могут быть замещенными или незамещенными.

"Арилалкиламино" - это амино-радикал, замещенный арил-алкильной группой (например, -NH-бензил). Такие группы могут быть замещенными или незамещенными.

"Ариламино" - это амино-радикал, замещенный арильной группой (например, -NH-арил). Такие группы могут быть замещенными или незамещенными.

"Арилокси" - это кислородный радикал, имеющий арильный заместитель (т.е. , -О-арил). Такие группы могут быть замещенными или незамещенными.

"Карбоциклическое кольцо" представляет собой незамещенный или замещенный, насыщенный, ненасыщенный или ароматический углеводородный кольцевой радикал. Карбоциклические кольца являются моноциклическими или конденсированными, снабженными мостиком или спирополициклическими кольцевыми системами. Моноциклические карбоциклические кольца обычно содержат 4-9, предпочтительно 4-7 атомов. Полициклические карбоциклические кольца содержат 7-17, предпочтительно 7-12 атомов. Предпочтительные полициклические системы содержат 4-, 5-, 6- или 7-членные кольца, сконденсированные с 5-, 6- или 7-членными кольцами.

"Карбоциклоалкил" представляет собой незамещенный или замещенный алкильный радикал, замещенный карбоциклическим кольцом. Если не указано иное, карбоциклическое кольцо предпочтительно является арилом или циклоалкилом, более предпочтительно арилом. Предпочтительные карбоцикло-алкильные группы включают бензил, фенилэтил и фенилпропил.

"Карбоциклогетероалкил" - это незамещенный или замещенный гетероалкильный радикал, замещенный карбоциклическим кольцом. Если не указано иное, карбоциклическое кольцо предпочтительно является арилом или циклоалкилом, более предпочтительно арилом. Гетероалкил предпочтительно представляет собой 2-оксапропил, 2-оксаэтил, 2-тиапропил или 2-тиаэтил.

"Карбоксиалкил" - это незамещенный или замещенный алкильный радикал, замещенный карбокси (-C(=O)ОН) фрагментом. Например, - CH2-C(=O)OH.

"Циклоалкил" представляет собой насыщенный карбоциклический кольцевой радикал. Предпочтительные циклоалкильные группы включают, например, циклопропил, циклобутил и циклогексил.

"Циклогетероалкил" представляет собой насыщенное гетероциклическое кольцо. Предпочтительные циклогетеро-алкильные группы включают, например, морфолинил, пиперидинил, пиперазинил, тетрагидрофурил и гидантоинил.

"Конденсированные кольца" - это кольца совмещенные друг с другом так, что они имеют два общих кольцевых атома. Данное кольцо может быть сконденсировано с более чем одним другим кольцом. Имеется в виду, что конденсированные кольца представляют собой гетероарильные, арильные и гетероциклические радикалы или тому подобное.

"Гетероциклоалкил" - это алкильный радикал, замещенный гетероциклическим кольцом. Гетероциклическое кольцо является предпочтительно гетероарилом или циклогетероалкилом, а более предпочтительно гетероарилом. Предпочтительный гетероциклоалкил включает C1-C4 алкил с присоединенным к нему предпочтительным гетероарилом. Более предпочтительным является, например, пиридилалкил и т.п.

"Гетероциклогетероалкил" представляет собой незамещенный или замещенный гетероалкильный радикал, замещенный гетероциклическим кольцом. Гетероциклическое кольцо является предпочтительно арилом или циклогетероалкилом, а более предпочтительно арилом.

"Гетероатом" представляет собой атом азота, серы или кислорода. Группы, имеющие один или несколько гетероатомов, могут содержать разные гетероатомы.

"Гетероалкенил" представляет собой незамещенный или замещенный ненасыщенный радикал, имеющий 3-8 членов, содержащих атомы углерода и один или два гетероатома. Цепь имеет по крайней мере одну двойную углерод-углеродную связь.

"Гетероалкил" представляет собой незамещенный или замещенный насыщенный радикал, имеющий 2-8 членов, содержащих атомы углерода и один или два гетероатома.

"Гетероциклическое кольцо" - это незамещенный или замещенный, насыщенный, ненасыщенный или ароматический кольцевой радикал, состоящий из углеродных атомов и одного или нескольких гетероатомов в кольце. Гетероциклические кольца являются моноциклическими или конденсированными, снабженными мостиком или спирополициклическими кольцевыми системами. Моноциклические гетероциклические кольца содержат 3-9, предпочтительно 4-7 атомов. Полициклические кольца содержат 7-17, предпочтительно 7-13 атомов.

"Гетероарил" представляет собой ароматическое гетероциклическое кольцо или моноциклический или бициклический радикал. Предпочтительные гетероарильные группы включают, например, тиенил, фурил, пирролил, пиридинил, пиразинил, тиазолил, пиримидинил, хинолинил и тетразолил, бензотиазолил, бензофурил, индолил и тому подобное. Такие группы могут быть замещенными или незамещенными.

"Гало", "галоген" или "галогенид" - это радикал в виде атома хлора, брома, фтора или йода. Предпочтительными являются радикалы брома, хлора и фтора.

Кроме того, при упоминании в данном описании "низший" углеводородный фрагмент (например, "низший" алкил) представляет собой углеводородную цепь, состоящую из 1-6, предпочтительно 1-4 углеродных атомов.

"Фармацевтически приемлемая соль" представляет собой катионную соль, образованную по любой кислотной (например, карбоксильной) группе, или анионную соль, образованную по любой основной (например, амино) группе. Многие такие соли известны в данной области техники, например те, что описаны в международной патентной публикации 87/05297 (Johnston et al.), опубликованной 11 сентября 1987 г. (включена в данное описание путем ссылки). Предпочтительные катионные соли включают соли щелочных металлов (таких, как натрий и калии) и соли щелочноземельных металлов (таких, как магний и кальций) и органические соли. Предпочтительные анионные соли включают галогениды (такие, как хлориды).

"Биогидролизуемый алкоксиамид" или "биогидролизуемый ацилоксиамид" - это амиды гидроксамовой кислоты, которые не мешают ингибирующей активности соединения или легко преобразуются in vivo у человека или низшего животного в активную гидроксамовую кислоту.

"Биогидролизуемый гидроксиимид" - это имид соединения формулы (I), который не мешает ингибирующей активности соединения в отношении металлопротеазы или легко преобразуется in vivo у человека или низшего животного в активное соединение формулы (I). Такие гидроксиимиды включают те, что не мешают биологической активности соединений формулы (I).

"Биогидролизуемый сложный эфир" - это сложный эфир соединения формулы (I), который не мешает ингибирующей активности указанных соединений в отношении металлопротеазы или легко преобразуется в организме животного в активное соединение формулы (I).

"Сольват" представляет собой комплекс, образованный путем сочетания растворенного вещества (например, гидроксамовой кислоты) и растворителя (например, воды). Смотри J. Honig et al. The Van Nostrand Chemist's Dictionary, стр. 650 (1953). Фармацевтически приемлемые растворители, используемые в соответствии с настоящим изобретением, включают те, которые не мешают биологической активности гидроксамовой кислоты (например, воду, этанол, уксусную кислоту, N,N-диметилформамид и другие известные или легко определяемые квалифицированным специалистом).

"Оптический изомер", "стереоизомер", "диастереомер" при упоминании в данном описании имеют известные стандартные значения (Ср., Hawley's Condensed Chemical Dictionary, 11-ое издание).

Иллюстрацию конкретных защищенных форм и других производных соединений формулы (I) не следует считать ограничивающей. Применение других полезных защитных групп, видов солей и т.д. находится в компетенции квалифицированного специалиста.

Как было указано выше, при использовании в настоящем изобретении замещающие группы могут сами быть замещенными. Такое замещение может быть произведено одним или несколькими заместителями. Такие заместители включают те, которые перечислены в публикации C. Hansch and A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology (1979), включенной в данное описание путем ссылки. Предпочтительные заместители включают, например, алкил, алкенил, алкокси, гидрокси, оксо, нитро, амино, аминоалкил (например, аминометил и т. д. ), циано, галоген, карбокси, алкоксиацетил (например, карбоэтокси и т.д.), тиол, арил, циклоалкил, гетероарил, гетероциклоалкил (например, пиперидинил, морфолинил, пирролидинил и т.д.), имино, тиоксо, гидроксиалкил, арилокси, арилалкил и их сочетания.

При использовании в данном описании "матриксная металлопротеаза млекопитающего" означает металлсодержащий фермент, найденный у млекопитающих, который способен катализировать расщепление коллагена, желатина или протеогликана при подходящих условиях анализа. Подходящие условия анализа можно найти, например, в патенте США N 4743587, где дана ссылка на методику Cawston, et al. Anal. Biochem. (1979) 99: 340-345, а применение синтетического субстрата описано у Weingarten, Н., et, al., Biochem. Biophy. Res. Comm. (1984) 139: 1184-1187. Разумеется, может быть применен любой стандартный метод анализа расщепления указанных структурных белков. Все упоминаемые в данном описании матриксные металлопротеазы являются цинксодержащими протеазами, которые подобны по структуре, например, человеческому стромелизину или фибробластной коллагеназе в коже. Способность предлагаемых соединений ингибировать активность матриксной металлопротеазы можно, конечно, проверить описанными выше методами анализа. Для подтверждения ингибирующей активности соединений по настоящему изобретению можно использовать выделенные матриксные металлопротеазы или неочищенные экстракты, содержащие ряд ферментов, способных к разрушению ткани.

Соединения Соединения по настоящему изобретению описаны в разделе "Краткое изложение сущности изобретения". Предпочтительные соединения формулы (I) включают соединение где R1 представляет водород, алкил, арилалкил, гетероциклоалкил, алкоксиалкил, арилалкоксиалкил или алкилтиоалкил; R2 представляет водород, алкил, арилалкил, гетероциклоалкил, алкоксиалкил, арилалкоксиалкил или алкилтиоалкил; R3 представляет алкил, циклоалкил, карбоциклический или гетероциклический арил, гидроксиалкил, алкоксиалкил или аминоалкил; и R4 представляет карбоциклический или гетероциклический арил; его оптический изомер, диастереомер или энантиомер, или его фармацевтически приемлемую соль или, биогидролизуемый алкоксиамид, сложный эфир, ацилоксиамид или имид.

Получение соединений Гидроксамовые соединения формулы (I) могут быть получены разнообразными способами. Общие схемы включают схему I (см. в конце описания).

Далее описаны представительные примеры получения конкретных соединений.

Соединения формулы (I) легко получают из соединений формулы (A), R2 аминокислот, R2 2-галогензамещенных сложных эфиров и тому подобного. В соединении A Y представляет предпочтительно амино и соединение подвергают взаимодействию с соединением B, где Y представляет галоген или подходящую уходящую группу. Когда в соединении A Y представляет галоген, специалисту сразу же понятно, что соединение B имеет Y в виде амино. Когда R1 и R2 не образуют единой цепи, R1 фрагмент (B) вводят, используя традиционные способы. Например, при использовании 2-галогенэфира R1 первичное аминосоединение при основных условиях замещает галогенид или, если используют аминокислоту, он может быть обработан R1 карбонильным соединением, таким, как альдегид, после чего окси фрагмент может быть восстановлен традиционными способами с получением соединения C. Соединения формулы A могут быть произведены от известных аминокислот, включающих 20 распространенных аминокислот, их производные (например, саркозингидроксипролин, 2-аминомасляная кислота, пипиколиновая кислота и тому подобное) или любые такие d-аминокислоты. Многие из них известны или коммерчески доступны из таких, например, источников, как Sigma (St. Louis, МО) или Aldrich (Milwaukee, WI). Когда они не являются легко доступными, различные R2 аминокислоты могут быть получены любым из многих способов, известных в данной области химии.

Когда более выгодным является получение соединений формулы I с использованием галогензамещенного сложного эфира или галогензамещенной кислоты, такие галогенэфиры и галогенкислоты известны в данной области химии или могут быть получены известными способами (см., например, March, Advanced Organic Chemistry, Wiley Interscience).

Соединение R3R4POZ получают стандартными методами. Например, PCl3 может быть алкилирован и/или арилирован с образованием RPCl2 или R2RPCl и затем обработан короткоцепочечным алканолом с образованием R3R4POZ.

В соответствии с другим вариантом, когда R3 и R1 образуют кольцо, соединение XC(O)chr2NH2 может быть подвергнуто реакции при стандартных условиях с образованием XC(O)chr2NA(R1R3)POCl, которое затем замыкают с образованием: (R1R) предпочтительно представляет оксиметилен или оксиэтилен.

Когда R4 представляет гетероцикл, способы получения его фосфинильных или фосфонильных производных известны в данной области химии. Предпочтительные гетероциклические радикалы 4 включают 2- или 3-тиенил, 2- или 3-фурил, 2-, 3- или 4-пиридил, пиримидил и тому подобное.

(R3R4)PO фрагмент (D) вводят с использованием стандартных методов химии фосфонамидов, таких, как обработка амина фосфорилхлоридом в инертном растворителе и тому подобное.

Обычно гидроксамовую кислоту получают в окончательном виде на конечной стадии путем обработки гидроксиламином по известной методике.

Указанные стадии могут быть изменены для увеличения выхода целевого продукта. Квалифицированному специалисту будет также понятно, что здравый выбор реагентов, растворителей и температур является важной составляющей успешного синтеза. Определение оптимальных условий и т. д. является обычным делом, но понятно, что разнообразные соединения можно получить аналогичным образом, руководствуясь приведенной выше схемой.

Исходные материалы, используемые для получения соединений по настоящему изобретению, известны, могут быть получены известными способами или коммерчески доступны.

Понятно, что квалифицированный специалист в области органической химии может легко осуществить стандартные преобразования органических соединений без дополнительных указаний, то есть осуществление таких преобразований полностью находится в пределах компетенции специалиста. Эти преобразования включают (но не ограничиваются ими) восстановление карбонильных соединений до соответствующих спиртов, окисление гидроксилов и тому подобного, ацилирование, ароматические замещения (электрофильное и нуклеофильное), этерификацию, эстерификацию и омыление и тому подобное. Примеры этих преобразований описаны в стандартной литературе, такой, как March, Advanced Organic Chemistry (Wiley), Carey and Sundberg, Advanced Organic Chemistry (том 2) и Keeting, Heterocyclic Chemistry (все 17 томов).

Специалист может легко понять, что некоторые реакции лучше всего осуществлять с обеспечением защиты других функциональных групп в молекуле, чтобы тем самым избежать нежелательных побочных реакций и/или повысить выход реакции. Чтобы получить такие повышенные выходы или избежать нежелательных реакций, специалист часто использует защитные группы. Эти реакции описаны в литературе, а также хорошо известны квалифицированному специалисту. Примеры многих таких преобразований можно найти, например, у T.Green, Protecting Groups in Organic Synthesis. Разумеется, используемые в качестве исходных материалов аминокислоты с реакционноспособными боковыми цепями предпочтительно блокируют (защищают) для предотвращения нежелательных побочных реакций.

Соединения по настоящему изобретению могут иметь один или несколько хиральных центров. В результате, можно избирательно получать один оптический изомер (включая диастереомер и энантиомер) за другим, например, используя хиральные исходные материалы, катализаторы и растворители, или можно получать оба стереоизомера или оба оптических изомера (включая диастереомеры и энантиомеры) одновременно (рацемическая смесь). Поскольку соединения по настоящему изобретению могут существовать в виде рацемических смесей, смеси оптических изомеров (включая диастереомеры и энантиомеры) или стереоизомеров, могут быть разделены известными методами, такими, как метод хиральных солей, метод хиральной хроматографии и тому подобное.

Кроме того, понятно, что один оптический изомер (включая диастереомер и энантиомер) или стереоизомер может иметь более подходящие свойства, чем другой. Поэтому со всей очевидностью подразумевается, что когда в описании и формуле изобретения раскрывается только рацемическая смесь, то раскрываются и заявляются также оба оптических изомера (включая диастереомеры и энантиомеры) или стереомера, по существу отдельных друг от друга.

Способы применения Металлопротеазы (МП), обнаруженные в организме, участвуют в разрушении межклеточного матрикса, содержащего межклеточные белки и гликопротеины. Указанные белки и гликопротеины играют важную роль в поддержании размера, формы, структуры и стабильности ткани в теле. Ингибиторы металлопротеаз полезны для лечения заболеваний, вызываемых, по крайней мере частично, расщеплением таких белков. Известно, что МП близко вовлекаются в ремодулирование ткани. В результате такого действия они, как уже было сказано, принимают активное участие во многих нарушениях, влекущих за собой одно из двух: - разрушение ткани; в том числе дегенеративные заболевания, такие, как артрит, рассеянный склероз и тому подобное; метастазирование или изменчивость ткани в теле; - ремоделирование ткани, в том числе фиброзное заболевание, рубцевание, доброкачественную гиперплазию и тому подобное.

Соединения по настоящему изобретению лечат нарушения, заболевания и/или нежелательные состояния, которые характеризуются нежелательной или повышенной активностью протеаз этого класса. Например, соединения могут быть использованы для ингибирования протеаз, которые - расщепляют структурные белки (т.е. белки, обеспечивающие стабильность и структуру ткани); - мешают межклеточной и внутриклеточной передаче сигналов, включая те, которые участвуют в регуляции цитокинов, и/или переработке цитокинов, и/или воспалении, разрушении ткани и других болезнях [Mohler KM, et al, Nature 370 (1994) 218-220, Gearing AJH, et al. Nature 370 (1994) 555-557, McGeehan GM, et al. Nature 370 (1994) 558-561], и/или содействуют процессам, которые являются нежелательными у субъекта, проходящего курс лечения, например процессам созревания спермы, оплодотворения яйцеклетки и т.п.

При использовании в данном описании выражение "нарушение, связанное с МП" или "заболевание, связанное с МП", означает участие нежелательной или повышенной активности МП в биологическом проявлении заболевания или нарушения, в биологическом каскаде, ведущем к нарушению или в виде симптома нарушения. Это "участие" МП включает: - нежелательную или повышенную активность как "причину" нарушения или биологического проявления независимо от того, обусловлена ли повышенная активность генетически, инфекцией, аутоиммунной реакцией, травмой, биомеханическими причинами, стилем жизни [например, ожирением] или какой-нибудь другой причиной; - МП как часть наблюдаемого проявления заболевания или нарушения. То есть степень заболевания или нарушения можно определять по повышенной активности МП или, с клинической точки зрения, нежелательные или повышенные уровни МП свидетельствуют о заболевании. МП не следует считать "отличительным признаком" заболевания или нарушения; нежелательная или повышенная активность МП является частью биохимического или клеточного каскада, что приводит к заболеванию или нарушению или связано с ним. В этом отношении ингибирование активности МП прерывает каскад и тем самым регулирует заболевание.

Хорошо то, что многие МП распределены по телу неравномерно. Поэтому МП в тканях с ярко выраженной их локализацией часто специфичны к этим тканям. Например, распределение металлопротеаз, вовлеченных в процесс разрушения тканей в суставах, отличается от распределения металлопротеаз, найденных в других тканях. Поэтому, хотя это и несущественно в отношении активности или эффективности, некоторые нарушения предпочтительно лечат соединениями, которые действуют на специфические МП, найденные в пораженных тканях или участках тела. Например, соединение, проявляющее более высокую степень аффинитета и ингибирования по отношению к МП, найденной в суставах (например, хондроцитах), было бы предпочтительным для лечения заболевания, обнаруженного там же, в сравнении с другими соединениями, которые являются менее специфическими.

Кроме того, некоторые ингибиторы более биологически доступны для определенных тканей, чем другие, и потому правильный выбор ингибитора с избирательностью, описанной выше, обеспечивает специфическое лечение нарушения, заболевания или нежелательного состояния. Например, соединения по настоящему изобретению различны по способности проникать в центральную нервную систему. Поэтому соединения могут быть выбраны с возможностью обеспечения эффектов через посредство МП, найденных определенно вне центральной нервной системы.

Определение специфичности ингибитора определенной МП находится в пределах компетенции специалиста в данной области. Подходящие условия анализа можно найти в литературе. Известны, в частности, методы анализа для стромелизина и коллагеназы. Например, в патенте США N 4743587 имеется ссылка на методику Cawston, et al., Anal. Biochem. (1979) 99:340-345. Применение синтетического субстрата в анализе описано у Weingarten, Н. et, al., Biochem. Biophy. Res. Comm. (1984) 139:1184-1187. Можно, разумеется, использовать любой стандартный метод анализа расщепления структурных белков металлопротеазами. Способность соединений по настоящему изобретению ингибировать активность металлопротеаз можно, конечно, проверить путем анализов методами, найденными в литературе, или их вариантами. Для подтверждения ингибирующей активности соединений по настоящему изобретению можно использовать выделенные металлопротеазы или неочищенные экстракты, содержащие ряд ферментов, способных разрушать ткани.

Благодаря их ингибирующему действию на МП соединения по настоящему изобретению полезны также для лечения следующих далее нарушений, обусловленных активностью металлопротеаз.

Соединения по настоящему изобретению полезны также для профилактики или экстренного лечения. Их вводит по потребности любым способом специалист в области медицины или фармакологии. Для квалифицированного специалиста совершенно очевидно, что предпочтительные способы введения зависят от состояния заболевания, которое нужно лечить, и выбранной лекарственной формы. Предпочтительные способы системного введения включают пероральное или парентеральное введение.

Однако специалист легко поймет преимущество введения ингибитора МП непосредственно в пораженную зону для многих нарушений. Например, целесообразном вводить ингибиторы МП непо