Полинуклеотид, способы получения растений, геном растения, клетки, плоды, семена, способы получения семян, применения олигонуклеотида, плазмида, микроорганизм

Реферат

 

Изобретение может быть использовано в генной инженерии растений. Введение в геном растения гена, ингибирующего экспрессию генов, кодирующих фермент, участвующий в синтезе халькона или его предшественников, позволяет получить растение с мужской стерильностью. Использование подходящего флавоноидного соединения при опылении растения с мужской стерильностью обеспечивает получение фертильных семян растения. 5 с. и 9 з.п. ф-лы, 7 ил.

Изобретение относится к рекомбинантной ДНК, предназначенной, в частности, для использования в генетическом конструировании растений. Кроме того, настоящее изобретение относится к растениям, обладающим нуклеарно мужской стерильностью, обусловленной экспрессией указанной рекомбинантной ДНК; а также к частям указанных растений, которые являются репродуцируемыми либо путем полового размножения, либо путем бесполового размножения, либо тем и другим способом.

Уже давно известно, что семена, полученные в результате перекрестного опыления различных сортов растений одного вида, дают потомство, приспособляемости к внешним условиям и сопротивляемости к болезням по сравнению с семенами, полученными в результате самоопыления. Это явление обычно называют гетерозисом. Поэтому, целью промышленного производства семян обычно является получение гибридных семян многих сельскохозяйственных и садовых культур, поскольку такие семена имеют более высокую коммерческую ценность.

Однако, к сожалению, многие культурные растения имеют мужские и женские репродуктивные органы на одной и той же особи, в которых в значительной степени превалирует самоопыление по сравнению с перекрестным опылением. Поэтому, для получения семян от перекрестного опыления, желательно получить такие акцепторные растения, которые были бы неспособны к самоопылению вследствие отсутствия у них (правильно функционирующей) пыльцы. Такие растения, обладающие мужской стерильностью, или материнские особи затем подвергают перекрестному оплодотворению с использованием растения-донора с мужской фертильностью в целях продуцирования гибридных семян.

Для получения гибридных семян в больших количествах, обычно, растения, имеющие мужскую стерильность, и растения с мужской фертильностью выращивают вместе на полях в целях стимуляции перекрестного опыления, после чего проводят селекцию гибридных семян. В зависимости от типа растений с мужской стерильностью, используемых для перекрестного опыления, селекцию или отделение гибридных семян проводят либо до сбора урожая, т.е., путем уничтожения или удаления растений-доноров с мужской фертильностью, продуцирующих негибридные семена, либо после сбора урожая, например, на основании маркера, такого, как цвет у кукурузы, или на основании другого легко обнаружимого фенотипа. Доурожайная селекция может быть проведена в том случае, когда особи с мужской стерильностью и особи с мужской фертильностью являются легко отличимыми друг от друга, а поэтому особь с мужской фертильностью может быть удалена или уничтожена. Альтернативно, если локус мужской стерильности присоединить непосредственно к селектируемому маркеру (такому, как резистентность к гербициду), то растения с мужской стерильностью, дающие гибридные семена, смогут успешно конкурировать с растениями, имеющими мужскую фертильность, посредством соответствующего давления отбора.

В качестве материнской линии, имеющей мужскую стерильность, используют, например, растения, у которых были физически удалены несозревшие пестики, либо натуральные растения-мутанты с цитоплазматически или нуклеарно кодированной мужской стерильностью. Однако, указанные натурально стерилизованные растения имеют свои недостатки, которые заключаются в трудоемкости их получения, наличии дополнительных нежелательных свойств, трудности в их выращивании и размножении, непредсказуемости наследственности или ограниченной возможности получения натуральных мутантов с мужской стерильностью для коммерчески ценных культурных растений.

Лишь недавно стало известно, что генетически сконструированные растения с нуклеарно кодированной мужской стерильностью могут быть использованы для получения гибридных семян, и что эти растения не имеют, по крайней мере, некоторых из вышеуказанных недостатков большинства натуральных мутантов с мужской стерильностью.

В Международной патентной заявке WO 90/08830 ICI предлагаются способы получения воспроизводимых растений, заключающиеся, главным образом, в экспрессии а) либо гена, кодирующего ингибитор белка, либо b) так называемого летального гена, который, при экспрессии его в мужских цветках, вызывает гибель клеток пыльника и ассоциированных с ним тканей. Например, указанные летальные гены, после их экспрессии, оказывают воздействие на метаболизм митохондрий.

В Международной патентной заявке WO 90/08831 ICI раскрывается ингибирование клеточного дыхания путем экспрессии летального гена, которую осуществляют в целях ингибирования митохондриальной функции, что, в свою очередь, приводит к гибели клеток, в которых экспрессируются указанные гены. Предпочтительными белками гена-дезинтегратора являются: а) несвязывающийся белок (UCP) млекопитающего; b) мутированная форма гена, кодирующая - I-субъединицу F1-ATP-азы, так, что имеющиеся мутации вызывают неспособность этих субъединиц к сборке в функциональную ATP-синтазу; с) мутированная синтетическая форма гена olil, кодирующего субъединицу 9 F0-ATP-азы; d) мутированные формы митохондриального транзитного пептида для ингибирования транспорта белка в митохондрии; е) генные конструкции, включая гибриды между дрожжевым геном - -субъединицы (ATP-азы) и геном - -галактозидазы от Е. coil, экспрессия которых приводит к продуцированию разрушающихся гибридных белков. Предпочтительно, если указанная экспрессия в соответствии с описанием вышеуказанной заявки, будет осуществляться под контролем тапетум- или пыльце-специфического промотора.

В Международной патентной заявке WO 89/10396 PGS предлагаются способы, которые, в общих чертах, относятся к получению растений, обладающих мужской стерильностью, путем трансформации нуклеарного генома растения с помощью так называемой ДНК с мужской стерильностью, которая, как считается, кодирует РНК или полипептид, способный ингибировать правильный метаболизм, функционирование, и/или развитие любой клетки тычинки, в которой экспрессируется указанная ДНК с мужской стерильностью, что приводит к гибели любой такой клетки тычинки. Примерами таких ДНК с мужской стерильностью являются ДНК, кодирующие ДНК-азы, РНК-азы, протеазы или ферменты, ответственные за фитогормональный синтез, например, такие, как цитокин. Альтернативно, предлагается отбор ДНК с мужской стерильностью из антисмысловых ДНК, "которые кодируют нить ДНК, комплементарную нити ДНК, естественно транскрибированной к клетках тычинки растения". За исключением гена ТА29, ТА26 и ТА13, все тапетум-специфические гены, происходящие от табака, не дали какого-либо ключа к разгадке того, что конкретно эти гены означают. В статье Колтунова и др., (1990) Koltunow et al., клоны ТА13 и ТА29 были идентифицированы как гены, кодирующие так называемые глицин-обогащенные белки, тогда как клон ТА26 соответствует кДНК пока еще неизвестной природы.

В Европейской патентной заявке ЕР-А-0329308 Palladin Hybrids, предлагается способ получения растений с мужской стерильностью, который заключается в продуцировании генетически трансформированной материнской особи, в основном, путем введения в геном указанного растения рекомбинантных ДНК-последовательностей, включающих в себя антисмысловую ДНК, которая блокирует продуцирование функциональных пыльцевых зерен, либо способствует развитию пыльцевых зерен, восприимчивых к определенному химическому агенту или физиологическому стрессу, который блокирует продуцирование функциональных пыльцевых зерен. Предпочтительно, если указанные антисмысловые гены экспрессируются под контролем пыльца-специфического промотора. В соответствии с описанием указанной заявки, гены, являющиеся критическими в отношении продуцирования функциональных пыльцевых зерен, могут быть выбраны из генов, специфически экспрессированных в микроспорах, предпочтительно в предмейотической стадии. Примерами микроспоро-специфических клонов являются L4 и L19, происходящие от Brassica napus. Кроме общих упоминаний о предмиотических генах и вскользь названных клонах, никаких указаний на природу генов, экспрессия которых должна быть блокирована, в этой заявке не приводится.

В заявке ЕР-А 0335451 под названием "Vereniging voor Christelijk Wetenschappelijk Onderwijs" указывается, что ингибирование экспрессии гена (наринген) халконсинтезы у цветущих растений с использованием антисмыслового сконструированного гена приводит к изменению пигментации цветка. В этом эксперименте, этот антисмысловой ген находился под контролем промотора вируса мозаики цветной капусты (CaMV) 35S. Растения с измененной пигментацией цветков были, однако, способными продуцировать фертильную пыльцу.

Нарингенхалконсинтеза является основным ферментом, ответственным за биосинтез флавоноида. Этот фермент катализирует постадийную конденсацию трех ацетатных остатков из малонил-CoA и одного остатка из 4-коумароил-CoA с образованием нарингенинхалкона (Heller и Hahlbrock, 1980). Изомеризация и последующее замещение этих центральных интермедиатов приводят, в конечном счете, к продуцированию флавоноидов. Флавоноиды являются вторичными метаболитами, которые, как известно, играют ключевую роль в пигментации цветков и плодов. Кроме того, флавоноиды, по всей вероятности, участвуют в защите растения против фитопатогенов (Lamb и др., 1989), и против воздействия УФ-излучения (Schmelzer и др., 1988), а также в индуцировании узлообразования (Long и др. , 1989). Флавоноиды также участвуют в регулировании транспорта ауксина (Jacobs и Oubery, 1988) и резистентности к насекомым (Hedin и Waage, 1986).

Такая многофункциональность флавоноидов требует соответствующей сложной регуляции генов, кодирующих различные ферменты пути метаболизма. Например, экспрессия генов биосинтеза антоцианина является цветко-специфической, светозависимой и эволюционно регулируемой (van Tunen и др., 1988; Koes и др., 1989 г). Однако, экспрессия этих генов в других тканях может быть индуцирована УФ-излучением, что приводит к повреждениям ткани и грибковой атаке (Dixon, 1986; Koes и др., 1989а; Lamb и др., 1989).

Сравнение промотора CHS-A с другими промоторами от генов синтеза флавоноидов, которые являются активными в незрелой ткани пыльника, например, CHS-J, DFR-A и CHI-B, выявило наличие в них строго консервативной области, названной "пыльниковым блоком" (van Tunen и др., 1989). Делекционный анализ промотора CHS-A позволяет предположить, что пыльниковый блок сам по себе не является ответственным за пыльник-специфическую экспрессию, но он может участвовать в регуляции пыльник-специфической экспрессии вместе с другими последовательностями, присутствующими в промоторе CHS-A (vander Meer и др., 1990).

В 1981 году Coe и др. обнаружили, что полноценная на вид белая пыльца не осуществляет свою нормальную функцию в кукурузе, и этот факт позволяет предположить, что синтез или отложение пигмента является жизненно важным для нормальной функции пыльцы. Однако, в этой статье не делается каких-либо выводов об участии флавоноидов в образовании пыльцы, если вообще этот факт не подвергается сомнению, поскольку в последующие годы, как известно, никаких сообщений, свидетельствующих об участии флавоноидов в образовании жизнеспособной пыльцы, зарегистрировано не было.

Пояснения к терминологии Пыльниковый блок: нуклеотидная последовательность, которая является идентичной, или, по крайней мере, в высокой степени гомологичной любой из последовательностей, изображенных на фиг. 1.

Антисмысловой ген: ген или нуклеотидная последовательность, происходящая от этого гена и имеющая гомологию более чем на 50%, а предпочтительно более чем на 80%, с геном-мишенью, определенным ниже; причем, указанный ген сцеплен с промотором в ориентации, обратной ориентации 5' - 3' по отношению к гену-мишени.

Ген: нуклеотидная последовательность, которая может быть экспрессирована в виде РНК-молекулы и/или полипептида.

Гибридный промотор: промотор, состоящий из нуклеотидных последовательностей или отдельных нуклеотидов, которые в природе не ассоциируются друг с другом или не располагаются в данном порядке.

Ингибиторный ген: ген или антисмысловой ген, экспрессия которого приводит, в конечном счете, к ингибированию экспрессии гена-мишени, определенного ниже.

Промотор: нуклеотидная последовательность, которая способна стимулировать экспрессию гена или антисмыслового гена; либо нуклеотидные последовательности, происходящие от нее; причем, указанная экспрессия осуществляется в виде РНК-молекулы и/или полипептида.

Восстановительный ген: ген, предпочтительно гибридный ген, включающий в себя, по крайней мере, какую-либо нуклеотидную последовательность, которая является достаточно идентичной, аналогичной или гомологичной части гена-мишени, определенного ниже, и способной, после экспрессии, к комплементарной ассоциации с транскриптом, продуцированным ингибиторным геном, определенным выше.

Ген-мишень: ген, экспрессия которого ингибируется надлежащей экспрессией соответствующего ингибиторного гена, определенного выше.

В целях настоящего изобретения, все указания положений оснований даются по отношению к предлагаемому сайту инициации транскрипции соответствующего гена, находящегося под его контролем.

Целью настоящего изобретения является получение растений, которые имеют мужскую стерильность и которые могут быть надежно использованы для продуцирования гибридных семян. Кроме того, еще одной целью настоящего изобретения является получение растений с мужской стерильностью, которые могут быть продуцированы в гомозиготной форме с последующим их использованием для продуцирования экономически выгодных гетерозиготных растений с мужской стерильностью в крупных масштабах.

Настоящее изобретение относится к рекомбинатным полинуклеотидам, которые могут быть использованы для получения растений с мужской стерильностью и которые, в основном, включают в себя: (а) ингибиторный ген, способный ингибировать экспрессию гена-мишени в указанном растении, кодирующего фермент, участвующий в биосинтезе халкона; и (b) промотор, который является активным в пыльниках указанного растения и который при правильном присоединении к указанному ингибиторному гену способствует его экспрессии в пыльниках указанного растения.

В соответствии с настоящим изобретением, предпочтительный ген-мишень кодирует фермент, выбранный из группы, включающей в себя: циннамат 4-гидроксилазу (C4H; E.C. 1.14.13.11), 4-кумароил-CoA-лигазу (4CL; E.C. 6.2.1.12) и халконсинтазу (CHS; E.C. 2.3.1.74). Особенно предпочтительным геном-мишенью является ген, кодирующий халконсинтазу (CHS) в растении.

В предпочтительном варианте осуществления настоящего изобретения, ингибиторным геном является антисмысловой ген, направленный против гена-мишени.

В другом предпочтительном варианте осуществления настоящего изобретения, промотор, который является активным в пыльниках растения, включает в себя фрагмент промотора высокого уровня и пыльниковый блок, получаемый из области промотора группы генов, состоящей из гена chs-A, гена chi-B, гена chs-J и гена dfrA от Petunia. В особенно предпочтительном варианте осуществления настоящего изобретения, промотор высокого уровня включает в себя фрагмент промотора CaMV 35S и пыльниковый блок, имеющий последовательность TAGAGGTGACAGAAAT (SEQIDNO: N 2), вставленную в этот фрагмент в положении - 90 по отношению к сайту инициации транскрипции.

Настоящее изобретение также относится к способу получения растения с мужской стерильностью, включающему в себя следующие стадии: (а) перенос рекомбинантного полинуклеотида настоящего изобретения в клетки растения с мужской фертильностью; (b) генерирование целиком новых растений из клеток, содержащих введенный указанный рекомбинантный полинуклеотид; и (c) отбор растений, имеющих мужскую стерильность.

В еще одном варианте своего осуществления, настоящее изобретение относится к рекомбинантному геному растения, который содержит введенный в него рекомбинантный полинуклеотид настоящего изобретения.

Другим предметом настоящего изобретения является нуклеотидная последовательность, а именно: TNGAGGWGAMRDARWW (SEQIDNO: N 1), где N= A, G, C или T; W=A или T; M=A или C; R=A или G и D = A, G или T, предназначенная для использования в способе получения растения с мужской стерильностью. В еще более предпочтительном своем варианте, настоящее изобретение относится к олигонуклеотидной последовательности, выбранной из следующей группы последовательностей: (a) TAGAGGTGACAGAAAT (SEQIDNO: N 2) (b) TAGAGGTGACAAAAAT (SEQIDNO: N 3) (c) TNGAGGTGACAAAGAT (SEQIDNO: N 4) (d) TAGAGGAGAAGTAATA (SEQIDNO: N 5) где N = A, G, C или T, и предназначенной для использования в способе получения растения с мужской стерильностью.

Настоящее изобретение относится также к способу получения оплодотворенных самоопылением семян растений с мужской стерильностью, содержащих введенный в них рекомбинантный полинуклеотид настоящего изобретения; при этом, указанный способ включает в себя следующие стадии: (а) контактирование пестика растения, имеющего мужскую стерильность, с пыльцой от того же самого стерильного растения в присутствии соответствующего флавоноидного соединения; (b) прорастание пыльцы на указанном пестике и оплодотворение растения с мужской стерильностью и (с) получение семян от этого растения.

В указанном способе, особенно предпочтительным флавоноидным соединением является соединение, выбранное из группы, содержащей мирицетин, кверцетин и кемпферол, предпочтительно в концентрации порядка от 100 нм до 3 мкМ.

В еще одном предпочтительном варианте своего осуществления, настоящее изобретение относится к высокоэффективному в коммерческом отношении продуцированию гибридных семян путем использования больших количеств гетерозиготных растений с мужской стерильностью, которые были получены путем скрещивания гомозиготных растений нужного сорта, имеющих мужскую стерильность, с растениями того же сорта, имеющими мужскую фертильность.

Кроме того, настоящее изобретение относится к гибридным семенам, полученным в результате скрещивания или самоопыления любых растений настоящего изобретения.

Другие предпочтительные варианты настоящего изобретения относятся к плазмидам pTS20, pTS21 и pTS22.

Преимущества и область применения настоящего изобретения будут легко оценены исходя из представленного ниже подробного описания изобретения.

На фиг. 1 показана последовательность пыльникового блока CHS-A, который был вставлен в промотор 35S (CaMV). Ниже представлены другие пыльниковые блоки, происходящие от различных генов биосинтеза флавоноида. Цифры в скобках обозначают относительное положение пыльникового блока по отношению к сайту инициации транскрипции гена инициации репликации.

На фиг. 2 показана диаграмма различных стадий клонирования, используемых для получения химерных GUS-конструкций или химерных антисмысловых CHS-конструкций.

На фиг. 3 схематически показан способ получения гибридных семян с мужской стерильностью; причем, эти гибридные семена могут быть использованы для выращивания сельскохозяйственных культур, от которых не требуется получение семян или плодов; X - материнская особь; Y - мужская родительская линия; CaMV - промотор вируса мозаики цветной капусты, 35S; AB - пыльниковый блок, вставленный в промотор 35S; CHSas - антисмысловой ген халконсинтазы.

На фиг. 4 схематически показан способ получения гибридных семян с мужской фертильностью; причем, эти гибридные семена могут быть использованы для выращивания сельскохозяйственных культур, от которых необходимо получить семена или плоды; CHSs-смысловой (нормальный) ген халконсинтазы; все остальные обозначения определены выше (см. фиг. 3).

На фиг. 5 схематически показан способ получения гибридных семян с мужской фертильностью; причем эти гибридные семена могут быть использованы для выращивания культурных растений, от которых необходимо получить семена или плоды; GUSs-ген - глюкуронидазы Е. coli; GUSs и ген CHSas были физически объединены в виде гибридного гена; все остальные обозначения определены выше (см. фиг. 3).

На фиг. 6 схематически показан способ получения гибридных семян, которые индуцируют мужскую фертильность; причем эти гибридные семена могут быть использованы для выращивания культурных растений, от которых необходимо получить семена или плоды; все обозначения определены выше.

На фиг. 7 схематически показан способ получения гибридных семян, которые индуцируют мужскую фертильность; причем эти гибридные семена могут быть использованы для выращивания культурных растений, от которых необходимо получить семена или плоды; NSP-неспецифическая часть восстановительного гена, предназначенная для устранения косуппрессивного действия CHSs-части восстановительного гена; все остальные обозначения определены выше.

Неожиданно было обнаружено, что экспрессия гена-"репортера" бактериальной - глюкуpoнидaзы (GUS) в трансгенных растениях Petunia hybrida, осуществляемая под контролем гибридного промотора, содержащего пыльниковый блок, происходящий от промотора из Petunia hybrida, сшитого с промотором 35S CaMV (далее этот гибридный промотор будет обозначаться промотором AB/CaMV 35S), протекает на значительно более высоком уровне в пыльниках по сравнению с тканями венчика, чем GUS-экспрессия, осуществляемая CaMV- промотором. Кроме того, было отмечено изменение клеточной специфичности, поскольку экспрессия также наблюдалась в клеточном слое тапетума. При использовании промотора 35S, не содержащего пыльниковый блок, указанное изменение не наблюдалось.

Очевидно, пыльниковый блок обладает способностью стимулировать пыльник-специфическую экспрессию, не требуя присутствия дополнительных цис-образующих элементов, которые имеются в гене CHS-A, как ранее предполагалось. Гибридный промотор не является пыльник-специфичным, поскольку экспрессия также наблюдается и в других тканях. Пыльниковый блок обладает способностью к стимулированию экспрессии также в клеточном слое тапетума.

В аналогичном эксперименте, описанном для GUS-гена-репортера, антисмысловой ген CHS (кДНК), происходящий от Petunia, помещали под контроль промотора AB/CaMV 35S, и полученную конструкцию использовали для трансформации гибрида Petunia VR, цветущей пурпурными цветками. После отбора трансформированных растений, в которых была экспрессирована указанная конструкция, и после цветения этих растений, было обнаружено, что пыльники некоторых их этих растений были белыми вместо пурпурных. Такие белые пыльники ни разу не были получены в более ранних экспериментах, в которых антисмысловой ген CHS-A был присоединен к нормальному промотору 35S, контролирующему экспрессию антисмыслового CHS-гена, хотя антисмысловой ген фактически экспрессировался в пыльниках.

Отсюда можно сделать вывод, что блок пыльника, определенный выше, обладает способностью стимулировать экспрессию в клеточном слое тапетума гена (или антисмыслового гена) в тканях пыльника, если этот блок вставлен в сильный промотор, происхождение которого не имеет решающего значения. Более того, было даже установлено, что уровень экспрессии ингибиторного гена в тканях пыльника является достаточно высоким для ингибирования экспрессии гена-мишени в тканях пыльника.

Затем, после попытки осуществления самоопыления трансгенных растений Petunia hybrida, имеющих белые пыльники, было неожиданно установлено, что эти растения обладают абсолютной мужской стерильностью. Существуют природные мутантные линии Petunia, в которых отсутствует функциональная халконизомераза. Халконизомераза участвует в превращении халконов в флавононы, т.е., в одной из стадий пути биосинтеза флавоноида. Известно, что эти растения имеют мужскую фертильность. Отсюда можно сделать вывод, что для того, чтобы получить растения с мужской стерильностью в соответствии с предлагаемым методом, ингибиторный ген должен быть выбран из группы генов, кодирующих ферменты, которые участвуют в пути биосинтеза, приводящего к образованию халкона, поскольку ингибирование этих генов не является летальным для растения в целом.

В других экспериментах, в которых антисмысловой ген CHS-A Petunia помещали под контроль нормального промотора 35S CaMV, было установлено, что антисмысловая CHS-конструкция может быть использована в качестве ингибиторного гена в целях ингибирования экспрессии генов-мишеней также в венчиках табака и картофеля. Это свидетельствует о том, что метод с использованием антисмысловой конструкции также работает в гетерологичных системах, и имеются серьезные основания предполагать, что посредством трансформирования антисмысловым CHS-геном от петунии под контролем AB/35S/промотора могут быть получены растения различных видов, обладающие мужской стерильностью.

Поэтому, новые способы настоящего изобретения предусматривают получение растений с нуклеарно кодированной мужской стерильностью, которые могут быть затем использованы для получения гибридных семян. Для этих целей, растения выбранного сорта генетически трансформируют путем введения в клетки указанных растений одного или нескольких рекомбинантных полинуклеотидов, содержащих один или несколько ингибиторных генов, которые при надлежащей экспрессии в тканях пыльников растения, способны ингибировать экспрессию одного или нескольких ферментов, участвующих в биосинтезе халкона.

В основном, растения с мужской стерильностью получают путем ингибирования экспрессии соответствующего гена-мишени, кодирующего фермент, ответственный за биосинтез халкона; причем указанное ингибирование осуществляют путем правильной экспрессии ингибированного гена, направленного против указанного гена-мишени. Такими генами-мишенями могут быть любые гены, которые кодируют ферменты, участвующие в биосинтезе халконов, или их промежуточных предшественников, поскольку ингибирование генов указанной группы не оказывает неблагоприятного воздействия на другие желательные характеристики растений данного сорта. В основном, гены-мишени могут быть выбраны из генов, кодирующих ферменты, которые участвуют в конверсии предшественников халкона, например, такие, как циннамат 4-гидроксилаза (C4H; E.C. 1.14.13.11), предпочтительно 4-кумароил-CoA-лигаза (4CL; E.C. 6.2.1.12), а наиболее предпочтительно халконсинтаза (E. C. 2.3.1.74), которая способствует непосредственному превращению своего субстрата в халкон.

Ингибиторные гены могут быть выбраны из ряда альтернативных генов, включая смысловые и антисмысловые гены, которые более подробно описаны ниже. Подходящие смысловые ингибиторные гены могут, например, кодировать рибозимы, направленные против РНК-продукта гена-мишени; либо моноклональные антитела, направленные против продукта гена- мишени; либо селективные белковые ингибиторы фермента-мишени, если он присутствует. Альтернативно, ингибиторным геном может быть смысловой ген, который, в основном, идентичен гену-мишени и который при надлежащей экспрессии способен ингибировать ген-мишень в соответствии с еще неизвестным механизмом, называемым sense- sense-ингибированием или косуппрессией (Международная патентная заявка WO 90/11682, DNA Plant Technology Inc.).

Предпочтительным ингибиторным геном является антисмысловой ген, направленный против гена-мишени. Антисмысловой ген необязательно должен быть полностью комплементарным гену-мишени, поскольку его длина и гомология являются достаточными для осуществления довольно высокой степени ингибирования. Так, например, антисмысловой ген может быть (частично) комплементарным 5'-концу соответствующего гена-мишени, его 3-концу или срединной части, либо он может быть (частично) комплементарным целому гену-мишени. Понятие "частично комплементарный" означает, что данный антисмысловой ген является не полностью гомологичным гену-мишени, что может быть обусловлено, например, тем, что данный антисмысловой ген является гетерологичным (т.е., полученным из другого источника) по отношению к гену-мишени и т.п. Антисмысловой ген может быть также целиком синтетическим. Выбор антисмыслового гена не является решающим для настоящего изобретения, поскольку уровень гомологии и/или степень комплементарности этого гена являются достаточными для ингибирования экспрессии гена-мишени.

Надлежащая экспрессия ингибиторного гена настоящего изобретения может быть осуществлена путем помещения ингибиторного гена под контроль гибридного промотора, который состоит, по крайней мере, из промотора, являющегося функциональным в растениях и предпочтительно происходящего от промотора высокого уровня, например, РНК 35S CaMV (или его производных), и пыльникового блока, происходящего от гена, экспрессированного в незрелых тканях пыльников растений. Подходящие представители пыльниковых блоков могут быть получены, inter alia, из CHS-A-гена, CHS-J-гена, CHI-В-гена или DFR-A-гена и т.п.

Предпочтительно, если указанный пыльниковый блок вводят в область промотора между -2000 и +1, более предпочтительно между -1000 и +1, а наиболее предпочтительно между -150 и -50. В особенно предпочтительном варианте осуществления изобретения, пыльниковый блок вводят в промотор CaMV 35S в положение -90.

Выбор растения-источника, из которого получают пыльниковый блок, не является решающим фактором, поскольку этот пыльниковый блок будет нормально функционировать в конечном трансгенном хозяине. При этом, предпочтительно, чтобы используемый пыльниковый блок имел как можно более высокую гомологию с блоками, которые, как известно, в более высокой степени экспрессируются в пыльниках растения-хозяина. Такой пыльниковый блок может быть соответствующим образом синтезирован из известной последовательности пыльникового блока, присутствующего в конечном хозяйском растении, или любом другом растении, происходящем от другого растительного источника, либо полученном другими путями.

Обычно, но необязательно, генетический материал, на котором располагается ингибиторный ген, присоединенный к гибридному промотору согласно настоящему изобретению, в виде либо рекомбинантной ДНК, либо РНК, вводят в растение после рекомбинантного полинуклеотида, либо ДНК, либо РНК, непосредственно связанного с селектируемым или скринируемым признаком, таким, как резистентность к гербициду или антибиотику, в целях возможности осуществления ранней селекции или распознавания трансформированных клеток. Использование такого маркера, однако, является необязательным, поскольку присутствие и экспрессия ингибиторного гена настоящего изобретения могут быть зафиксированы непосредственно при цветении трансгенных растений. Рекомбинантные полинуклеотиды поддерживают или амплифицируют в бактериях в виде плазмид или других репликонов (например, инсертированных в вирусную ДНК или РНК). Альтернативно, рекомбинантные полинуклеотиды могут быть амплифицированы in vitro, например, с помощью полимеразной-цепной реакции (PCR), хорошо известной специалистам в данной области. Однако, конкретный способ, используемый для этих целей, не играет решающего значения в настоящем изобретении.

Введение рекомбинантных полинуклеотидов в растительный материал может быть осуществлено различными методами, хорошо известными специалистам в области биотехнологии растений. Способ введения генетического материала в клетки растения-хозяина не имеет большого значения, если только этот способ дает основание ожидать хорошего и предсказуемого результата. При этом необязательно, чтобы этот способ полностью исключал некоторую селекцию при получении конечного результата. Такая селекция неизменно имеет место в практике генной инженерии растений, однако, имеющиеся в распоряжении специалистов конкретные методы избавляют их от ненужного экспериментирования. В качестве иллюстрации может служить, например, трансформация протопластов методами с использованием кальция/полиэтиленгликоля (Krens и др., 1982; Negrutiu и др., 1987), электропорации (Shillito и др., 1985), микроинъекций (Crossway и др., 1986), бомбардировки частицами (покрытыми ДНК или РНК) (Klein и др., 1987), инфицирование вирусами и т. п. Предпочтительной системой для переноса ДНК является бактериальная система типа Agrobacterium. При осуществлении Agrobacterium-технологии, предпочтительно использовать систему так называемых бинарных векторов (Bevan и др., 1984).

Использование подходящего бактериального фона для переноса ДНК в растительные клетки и выбор векторов, соответствующих селективных маркеров, условий инкубирования, культуральных сред и необходимой техники клонирования ДНК могут быть с успехом осуществлены любым специалистом. После селекции и/или скрининга трансформированного растительного материала, из этого трансформированного материала генерируют целые растения, используя методы, широко описанные в литературе (см., например, Horsch и др., 1985). В этих целях могут быть использованы любые растения, которые подвержены трансформации и регенерации.

Сам по себе метод трансформации и/или регенерации растений не имеет решающего значения для настоящего изобретения, если только он обеспечивает введение генетического материала в клетку растения и стабильную интеграцию генетического материала в геноме клетки растения, а также регенерацию растительного материала с образованием побегов и последующим ускорением (или прививкой) и получением целого нового растения. Выбор способа регенерации зависит от типа используемого растительного материала и/или конкретных целей исследователя.

После получения трансформированных растений, они могут быть оценены на наличие нужных свойств и/или на степень выраженности нужных свойств. Сначала может быть проведена оценка уровня экспрессии ингибиторного гена и степени мужской стерильности трансгенных растений. Затем может быть проведена селекция трансгенных растений на стабильное и/или предсказуемое наследование признака мужской стерильности и т.п. После этого, (гетерозиготные) растения с мужской стерильностью могут быть непосредственно использованы для продуцирования гибридных семян, или альтернативно, они могут быть подвергнуты самоопылению сохраненной пыльцой в целях получения гомозиготных растений с мужской стерильностью. Альтернативно, гомозиготные растения с мужской стерильностью могут быть получены путем самоопыления растений с мужской стерильностью жизнеспособной, но стерильной пыльцой (а) путем осуществления контактирования пестика растения, имеющего мужскую стерильность, с пыльцой того же самого стерильного растения в присутствии соответствующего флавоноидного соединения; (b) проращивания пыльцы на пестике и оплодотворения растения с мужской стерильностью; и (c) получения семян растения.

Перед самоопылением материнского растения с мужской стерильностью, незрелая пыльца может быть доведена до созревания в присутствии халконов.

Особенно предпочтительными флавоноидными соединениями являются керсетин, кемпферол и мирицетин. Флавоноидное соединение может быть добавлено в соответствующую среду для пыльцы, такую как "ВК-среда", в конечной концентрации от около 10 нм до 10 мкМ, а предпочтительно от около 100 нМ до 3 мкМ. Оптимальная концентрация может варьироваться в зависимости от соединения и вида и, вероятно, даже от степени ингибирования продуцирования эндогенных флавоноидных соединений в растении с мужской стерильностью. Однако, исходя из указаний, приведенных в данном описании, подходящие концентрации флавоноидов могут быть определены для разных ситуаций без излишнего экспериментирования. Очевидно, что преимущество получения нескольких гомозиготных растений с мужской стерильностью заключается в том, что это дает возможность быстро получать большие количества гетерозиготных семян с мужской стерильностью, которые могут быть непосредственно использованы для крупномасштабного продуцирования гибридных семян.

Настоящее изобретение может быть применено к любому растению, способному к самоопылению и представляющему интерес в отношении продуцирования гибридных семян.

Второй вариа