L-нуклеозиды, обладающие анти-hbv или анти-ebv активностью, способ ингибирования hbv или ebv инфекции

Реферат

 

Описываются новые соединения - L-нуклеозиды общей формулы (1), где R - остаток урацила, тимина, цитозина или пурина, который может быть замещен атомом галогена и алкилом, и R'' - атом водорода, ацил, алкил, монофосфат, дифосфат или трифосфат, или его фармацевтически приемлемые соли, которые обладают анти-HBV или анти-EBV активностью. Описывается также способ ингибирования HBV или EBV инфекции. 2 с. и 11 з.п.ф-лы, 20 ил., 2 табл.

Изобретение относится к области способов лечения заболеваний, вызванных вирусом гепатита B (называемым также HBV и вирусом Эпштейна-Барра (называемым также EBV, которые включают введение эффективного количества одного или более из активных соединений, раскрытых здесь, или их формацевтически приемлемых производных или пролекарств одного из этих соединений.

Предпосылки изобретения Заболевания, вызванные вирусом гепатита B, во всем мире достигли эпидемического уровня. После двух-шестимесячного инкубационного периода, во время которого носитель инфекции не знает об инфицировании, HBV инфекция может привести к острому гепатиту и повреждению печени, боли в желудке, желтухе и повышенным уровням содержания некоторых энзимов в крови. HBV может вызвать скоротечные гепатиты, быстро развивающиеся, часто фатальные формы заболевания, при которых разрушаются большие участки печени. Обычно пациенты выздоравливают от острых вирусных гепатитов. Однако у некоторых пациентов высокие уровни вирусных антигенов существуют в крови в течение длительного или неопределенного промежутка времени, вызывая хроническую инфекцию. Хронические инфекции могут привести к хроническим гепатитам. Пациенты, инфицированные хроническим персистентным HBV, наиболее часто встречаются в развивающихся странах. К середине 1991 г. только в одной Азии было примерно 225 миллионов хронических носителей HBV, а по всему миру - почти 300 миллионов носителей. Хронические персистентные гепатиты могут вызвать нарушение функций, циррозы печени и гепатоцеллюлярную карциному, первичный рак печени.

В западных индустриальных странах высокому риску HBV инфекции подвержены те, кто находится в контакте с HBV носителями или образцами их крови. Эпидемиология HBV в действительности очень сходна с эпидемиологией синдрома приобретенного иммунодефицита, чем можно объяснить то, почему HBV инфекция обычна среди пациентов с AIDS (СПИД) или HIV-связанными инфекциями. Однако HBV гораздо более заразны, нежели HIV.

HBV является второй после табака причиной раковых заболеваний человека. Механизм, посредством которого HBV вызывает рак, неизвестен, хотя считается, что он может непосредственно включать развитие опухоли или вызывать развитие опухоли косвенным путем за счет хронического воспаления, цирроза и перерождения клеток, связанных с инфекцией.

Вирус Эпштейна-Барра (EBV) является членом рода Lymphocryptovirus, который принадлежит к подсемейству gammaherpesvirinae. Он заметно лимфотрофичен. EBV имеет классическое строение герпесных вирусов, а именно его двухцепочечный геном ДНК заключен в айкозапентаэдрический нуклеокапсид, который, в свою очередь, окружен липидной оболочкой с вирусными гликопротеинами. Аморфный оболочковый протеин занимает пространство между оболочкой и нуклеокапсидом.

Все герпесвирусы человека инфицируют лимфоциты и реплицируются в них до некоторой степени, но EBV проделывает это более эффективно. Наиболее важно, что патогенез и реакции хозяина на инфицирование EBV гораздо более зависят от инфицирования лимфоцитов, нежели это происходит с другими герпесвирусами человека.

В настоящее время EBV считают причиной лимфопролиферативных заболеваний B-клеток и связывают с различными другими серьезными и хроническими заболеваниями, включая редкий синдром, сходный с прогрессирующим мононуклеозом и оральной волосистой лейкоплакией у пациентов с AIDS (СПИДом). Предположение, что EBV является основной причиной хронической усталости, не выдерживает проверки.

EBV передается, главным образом, со слюной, хотя иногда инфекция передается при переливании крови. Более чем 85% пациентов с острой фазой инфекционного мононуклеоза секретируют EBV.

EBV связан с раком. По крайней мере, две группы пациентов подвергаются риску развития связанных с EBV лимфом: те, кому были трансплантированы почка, сердце, костный мозг, печень или тимус в сочетании с иммуноподавляющей терапией, и пациенты с AIDS. Раковые заболевания, связанные с EBV, включают лимфому Буркитта и назофарингиальную карциному.

В свете того факта, что вирус гепатита В и вирус Эпштейн-Барра оказывают сильное и часто трагическое действие на инфицированного пациента, существует настоятельная необходимость в создании эффективных фармакологических агентов для лечения пациентов, инфицированных этими вирусами, которые отличались бы низкой токсичностью по отношению к носителю.

Поэтому целью настоящего изобретения является создание соединения, композиции и способа лечения заболевания, вызываемого вирусом гепатита B.

Другой целью изобретения является создание соединения, композиции и способа лечения заболевания, вызываемого вирусом Эпштейн-Барра.

Краткое содержание изобретения Предложен способ лечения носителя и, в частности, человека, инфицированного HBV или EBV, который включает введение HBV или EBV, который включает введение HBV- или EBV-лечебного количества L-нуклеозида формулы (1) где R представляет пуриновое или пиримидиновое основание.

В предпочтительном варианте предложен нуклеозид в виде указанного энантиомера и практически без соответствующего ему энантиомера (т.е. в виде обогащенного энантиомером вещества, включая энантиомерно чистую форму).

В одном предпочтительном варианте активное соединение является 2'-фтор-5-метил- -L-арабинофуранозилуридином (именуемым также как L-FMAU). Это соединение является эффективным антивирусным агентом против HBV и EBV и отличается низкой цитотоксичностью. Другие конкретные примеры активных соединений включают N1-(2'-деокси-2'-фтор- -L-арабинофуранозил)-5- этилурацил, N1-(2'-деокси-2'-фтор- -L-арабинофуранозил)-5- иодоцитозин и N1-(2'-деокси-2' -фтор- - L -арабинофуранозил)-5-иодоурацил.

В альтернативном варианте предложен L-нуклеозид для лечения HBV или EBV, который содержит 2'-apaбиногидроксильную группу, например, L-аратимидин, L-флюдарабин, L-арагуанозин и L-араинозин, как показано на фиг. 1.

Раскрытые здесь L-нуклеозиды и их фармацевтически приемлемые производные или фармацевтически приемлемые композиции, содержащие эти соединения, полезны для профилактики и лечения HBV инфекций и родственных состояний, таких как состояния, связанные с позитивом анти-HBV антител и HBV-позитивом, хронические воспаления печени, вызванные HBV, цирроз, острые гепатиты, скоротечные гепатиты, хронические персистентные гепатиты и усталость. Подобным образом эти соединения можно использовать для лечения заболеваний, связанных с EBV. Эти соединения или композиции можно также использовать для профилактики и предотвращения или замедления развития клинических заболеваний у пациентов, которые позитивны в отношении анти-HBV или анти-EBV антител или HBV- или EBV-антигенов, или тех, кто был в контакте с HBV и EBV.

В другом варианте активное соединение или его производное, или его соль можно вводить в сочетании или чередуя с другим анти-HBV агентом или анти-EBV агентом, включая те, что перечислены ранее, или анти-HIV агентом. Обычно, при альтернативной терапии, эффективную дозу каждого агента вводят серийно, тогда как при комбинированной терапии эффективные дозы двух или более агентов вводят вместе. Дозы зависят от скоростей абсорбции, инактивации и экскреции (выделения) лекарства, а также других факторов, известных специалистам. Следует отметить, что величины доз будут зависеть также от тяжести состояния, требующего облегчения. Следует также учесть, что для каждого конкретного пациента конкретные дозовые режимы и схемы со временем следует пересматривать в соответствии с необходимостью для пациента и профессиональной точкой зрения врача, проводящего лечение.

Нелимитирующие примеры противовирусных агентов, которые можно использовать в сочетании с раскрытыми здесь соединениями, включают (-)-энантиомер 2-гидроксиметил-5-(5-фтороцитозин-1-ил)- 1,3-оксатиолана (FTC); (-)-энантиомер 2-гидроксиметил-5-(цитозин-1-ил)- 1,3-оксатиолана (ЗТС); карбовир, ацикловир, интерферон, AZT, DDI (2',3'-дидеоксиинозин), DDC(2',3'-дидеоксицитидин), L-DDC, L-5-F-DDC и D4T.

Краткое описание рисунков Фиг. 1 представляет иллюстрацию выбранных L-нуклеозидов, которые входят в объем настоящего изобретения: L-FMAU (2'-фтор-5-метил- -L-арабинофуранозилуридин), L-FIAU(2'-фтор-5-иодо- -L-арабинофуранозилуридин), L-FC (2'-фтор- -L-арабинофуранозилцитозин), L-FIAC (2'-фтор-5-иодо- -L-арабинофуранозилцитозин), L-2-C1-2' -F-2'-деоксиаденин, L-FEAU (2'- фтор-5-этил- -L-арабинофуранозилуридин), L-aратимидин L-флударабин, L-арагуанозин и L-араинозин.

Фиг. 2 представляет график зависимости процента жизнеспособных клеток от концентрации лекарства для L-FMAU в H1 клетках.

Фиг. 3 является схематической иллюстрацией получения 1-O- ацетил-2,3,5-три-O-бензоил- -L-рибофуранозы (соединение 10).

Фиг. 4 представляет схему альтернативного получения 1-O- ацетил-2,3,5-три-O-бензоил- -L-рибофуранозы (соединение 10).

Фиг. 5 представляет схему способа получения 1,3,5-три-O- бензоил-2-деокси-2-фтор- -L-арабинофуранозы (соединение 13).

Фиг. 6 схематически представляет способ получения N9-(3', 5'-ди-O-бензоил-2'-деокси-2'-фтор- -L-арабинофуранозил)-2,6- ди-хлорпурина (соединение 15) и N9-(2'-деокси-2'-фтор- -L-арабинофуранозил)- 2,6-ди-хлорпурина (соединение 16).

Фиг. 7 представляет способ получения ряда 2'-деокси-2'- фтор- -L-арабинофуранозил -пиримидинов (соединения 17-24).

Фиг. 8 представляет способ получения N1-(2'-деокси-2'- фтор- -L-арабинофуранозил)-5-иодоцитозина) (соединение 22).

Фиг. 9 представляет способ получения 9- -L- арабинофуранозиладенина.

Фиг. 10 представляет альтернативный способ получения 1-O- ацетил-2,3,5-три-O-бензоил- -L-рибофуранозы (соединение 10) из 1,2-ди-O-изопропилиден- -L-ксилофуранозы (соединение 3).

Фиг. 11 представляет график зависимости концентрации L- (-)-FMAU в плазме у мышей после перорального введения в зависимости от времени (перекрестно, 10 мг/кг вводимых дважды в день (bid) в течение 29 дней до фармакокинетических исследований, а затем исследования проводят на тридцатый день при введении той же самой концентрации; заштрихованные кружки - введение 50 мг/кг дважды в день в течение 29 дней до исследования, а затем на тридцатый день проводят исследование при введении той же самой концентрации; незаштрихованные кружки - введение в первый раз 50 мг/кг в первый день исследования).

Фиг. 12 представляет график зависимости концентрации L- (-)-FMAU в печени мышей после перорального введения от времени (перекрестно, 10 мг/кг вводимых дважды в день в течение 30 дней до фармакокинетических исследований, а затем исследования проводят на тридцатый день при введении той же самой концентрации; заштрихованные кружки - введение 50 мг/кг дважды в день в течение 30 дней до исследования, а затем на тридцатый день проводят исследование после введения той же самой концентрации; незаштрихованные кружки - введение в первый раз 50 мг/кг в первый день исследования).

Фиг. 13a представляет изменение веса животных после 30 дней у контрольных самок мышей BDF1.

Фиг. 13b и 13c представляют изменение веса после 30 дней введения самкам мышей BDF1 доз 10 мг/кг (13b) и 50 мг/кг (13c) дважды в день препарата L-(-)-FMAU. Показанные веса животных представляют собой среднее и стандартное отклонение для 5-7 мышей.

Фиг. 14-20 представляют клинический анализ плазмы мышей после введения L-(-)-FMAU в концентрации 10 мг/кг (три мыши) или 50 мг/кг (три мыши) дважды в день в течение 30 дней. Фиг. 14 представляет график концентрации общего количества биллирубина в плазме мышей в мг/дл. Фиг. 15 представляет график концентрации щелочной фосфатазы в мышиной плазме в Ед/л. Фиг. 16 представляет график концентрации креатинина в плазме мышей в мг/дл (децилитр). Фиг. 17 представляет график концентрации AST (SCOT, сывороточная глутаминовая оксалиновая трансаминаза) в плазме мышей в Ед/л. Фиг. 18 представляет график концентрации ALT (SGPT, сывороточная глутаминовая пируват-трансаминаза) в плазме мышей в Ед/л. Фиг. 19 представляет график концентрации молочной кислоты в плазме мышей в ммоль/л. Фиг. 20 представляет график концентрации молочной дегидрогеназы в плазме мышей в Ед/л.

Подробное описание изобретения Термин "энантиомерно обогащенный", в том смысле, как здесь использован, относится к нуклеозидной композиции, которая включает, по крайней мере 95%, и предпочтительно, приблизительно 97, 98, 99% или 100% одного энантиомера этого нуклеозида.

Термин алкил, в том смысле, как здесь использован, включает, но не ограничивается ими, C1-C10алкильные группы, включающие метил, этил, пропил, бутил, пентил, гексил, изопропил, изобутил, втор-бутил, трет-бутил, изопентил, амил, трет-пентил, циклопентил и циклогексил.

Термин ацил, в том смысле, как здесь использован, включает, но не ограничивается ими, ацетил, пропионил, бутирил, пентаноил, 3-метилбутирил, кислый сукцинат, 3-хлорбензоат, бензоил, ацетил, пивалоил, мезилат, пропионил, валерил, капроил, каприлоил, каприл, лаурил, миристил, пальмитил, стеарил и олеил.

В том смысле, как здесь использован и, если нет других определений, термин арил относится к фенилу.

Термин "защищенный" в том смысле, как здесь использован, относится к группе, если нет других определений, которая присоединена к атому кислорода или азота, чтобы предотвратить их вступление в реакции в процессе получения производных по другим фрагментам молекулы, в которой находятся эти кислород или азот. Специалистам в области органического синтеза известен широкий диапазон кислород- и азотзащищающих групп.

Термины пуриновое или пиримидиновое основание включают, но не ограничиваются ими, аденин, N6-алкилпурины, N6-ацилпурины (где ацил представляет C(O)алкил, арил, алкарил или аралкил), N6-бензилпурин, N6-галоидпурин, N6-винилпурин, N6-ацетиленпурин, N6-ацилпурин, N6-гидроксиалкилпурин, N6-тиоалкилпурин, тимин, цитозин, 6-азапиримидин, 2-меркаптопиримидин, урацил, N5-алкилпиримидин, N5-бензилпиримидины, N5-галоидпиримидины, N5-винилпиримидин, N5 -ацетиленпиримидин, N5-ацилпиримидин, N5-гидроксиалкилпурин, N5-тиоалкилпурин, 5- азацитидинил, 5-азаурацилил, триазолопиридинил, имидазолопиридинил, пирролопиримидинил, пиразолопиримидинил.

Функциональные группы кислорода и азота основания можно защитить при необходимости или при желании. Подходящие защитные группы хорошо известны специалистам и включают триметилсилил, диметилгексилсилил, трет-бутилдиметилсилил и трет-бутилдифенилсилил, тритилметил, алкильные группы, такие ацильные группы, как ацетил, пропионил, бутил, метилсульфонил и паратолуилсульфонил. Они конкретно включают 5-метилурацил (тимин), 5- иодоурацил, цитозин и 5-этилурацил.

В настоящем изобретении раскрыты также способ и композиция для лечения HBV инфекций, EBV инфекций и других вирусных инфекций, в которых вирусы реплицируются у человека или других животных-носителей таким же образом, как HIV, что включает введение эффективного количества одного или более вышеуказанных L-нуклеозидов или физиологически приемлемых производных, или их физиологически приемлемых солей, при желании в фармацевтически приемлемом носителе. Соединения настоящего изобретения либо обладают анти-HBV активностью, анти-EBV активностью, либо превращаются в организме в соединение или соединения, которые проявляют анти-HBV или анти-EBV активность. Раскрываемые в настоящем изобретении соединения можно также использовать для лечения заболеваний, связанных с HBV и EBV.

Активные соединения можно вводить в виде любого производного, которое после введения реципиенту способно обеспечить, прямо или косвенно, родственное соединение или само проявить активность. Нелимитирующими примерами могут служить фармацевтически приемлемые соли (иначе именуемые как "физиологически приемлемые соли"), и 5' и пурин- или пиримидин-ацилированные или алкилированные производные активного соединения (иначе именуемые как "физиологически активные производные"). В одном варианте ацильная группа представляет собой сложный эфир карбоновой кислоты (т.е. -C(O)R'), в которой некарбонильный фрагмент (R') сложноэфирной группы выбирают из разветвленного, неразветвленного или циклического C1-C10алкила, алкоксиалкила, включая метоксиметил, аралкила, включая бензил, такого алкоксиалкила, как феноксиметил, арила, включая фенил, необязательно замещенный галоидом, C1-C4алкила или C1-C4алкокси, сульфонатных сложных эфиров, таких как алкил- или аралкилсульфонил, включая метансульфонил, моно-, ди- или три-фосфатные сложные эфиры, тритил или монометокситритил, замещенный бензил, триалкилсилил (например, диметил-трет-бутилсилил) или ди- фенилметилсилил. Оптимально, арильные группы в сложных эфирах содержат фенильные или бензильные группы. Алкильная группа может быть неразветвленной, разветвленной или циклической, а оптимально, представляет собой C1-C10группу.

I. Синтез L-нуклеозидов Раскрытые здесь L-нуклеозиды можно получить, как подробно описано ниже, или другими путями, известными специалистам.

В приведенной далее схеме синтеза можно использовать другие стандартные реагенты, включая эквивалентные кислоты, основания и растворители вместо перечисленных, из числа тех, которые вполне известны специалистам. Для защиты кислорода и азота можно использовать широкий диапазон защитных групп, например, таких, которые указаны в книге: Greene et al., "Protective Groups in Organic Synthesis", John Wiley and Sons, 2nd. Ed., 1991. Подходящие защитные группы для кислорода и азота включают, например, такие тризамещенные силильные группы, как триметилсилил, диметилгексилсилил, трет-бутилдиметилсилил, трет-бутилдифенилсилил, тритил, алкильная группа, такие ацильные группы, как ацетил, пропионил, бензоил, p-NO2-бензоил, бензил или толуил, метилсульфонил или p-толуилсульфонил. Функциональные группы кислорода и азота у гетероциклического основания необходимо защитить перед конденсацией с сахаром.

Подходящие восстанавливающие агенты включают NaBH4, диизобутилалюминийгидрид (DIBAL-H) , боргидрид лития (LiBH4) и натрий-бис(2-метоксиэтокси)-алюминийгидрид (Red-Al). Подходящие окисляющие агенты включают водные кислые хромовую кислоту (CrO3), дихромат натрия (Na2CrO7), пиридинийхлорхромат (PCC), пиридиний дихромат (PDC), перманганат калия (KMnO4,), тетраацетат свинца/пиридин, кислород над катализатором платина/углерод, RuO4, RuO4/NaIO4, диметилсульфоксид/дициклогексилкарбодиимид (DMSO/DCC) и такие доноры протонов, как карбонат серебра и карбонат трифенилвисмута, окисление Оппенауэра (алкоксиды алюминия в ацетоне) и диоксиды марганца (для селективного окисления аллильных или бензильных спиртов в присутствии других спиртов).

Катализаторы Фриделя-Крафтса (кислоты Льюиса), которые можно использовать в реакции конденсации, включают SnCl4, ZnCl4, TiCl4, AlCl3, FeCl3, BF3-диэтиловый эфир и BCl3. Эти катализаторы требуют безводных условий, так как наличие воды снижает их активность. Эти катализаторы можно также инактивировать в присутствии органических растворителей с активными водородами, такими как спирты и органические кислоты. Эти катализаторы обычно используют в таких растворителях, как сероуглерод, метиленхлорид, нитрометан, 1,2-дихлорэтан, нитробензол, тетрахлорэтан, хлорбензол, бензол, толуол, диметилформамид, тетрагидрофуран, диоксан или ацетонитрил. Безводный алюминийхлорид нерастворим в сероуглероде (Niedballa, et al., J.Org. Chem. 39, 25 (1974)). Предпочтительным катализатором является SnCl4. Предпочтительным растворителем является 1,2-дихлорэтан. Триметилсилилтрифлат можно использовать в тех же условиях, которые указаны ранее для катализаторов Фриделя-Крафтса. Реакция протекает при температуре в интервале от -10 до 200oC. Десилилирование можно осуществить с помощью различных реагентов, включая уксусную кислоту, трифторуксусную кислоту, фтористый водород, н-тетрабутиламмонийфторид, фторид калия и пиридиний HCl.

Как представлено на фиг. 3, исходя из L-ксилозы (1a), ключевое промежуточное соединение 1-O-ацетил-2,3,5-три-O-бензоил- -L-рибофуранозу (10) получают с полным выходом 20% (L.Vargha, Chem.Ber., 1954, 87, 1351; Holy A., et al. , Synthetic Procedure in Nucleic Acid Chemistry, VI, 163-67). Как представлено на фиг. 4, соединение 10 можно также получить из более дорогого исходного материала L-рибозы (Holy A. , et al., Synthetic Procedures in Nucleic Acid Chemistry, VI, 163-67). Фиг. 3 представляет альтернативный синтез соединения 10 (выход 53%), который последовательно фторируют по C2 (J. Org. Chem. , 1985, 50, 3644-47) с получением 1,3,5-три-O-бензоил-2-деокси- 2-фтор-L-арабинофуранозы (13), которую конденсируют с различными основаниями через бромированный сахар с получением 2'-деокси-2'-фторарабинофуранозилнуклеозидов с различными выходами.

1,2-Ди-O-изопропилиден- -L-ксилофураноза (3) К 650 мл безводного ацетона добавляют 4 мл концентрированной серной кислоты, 5 г молекулярных сит (4A), 80 г безводного сульфата меди и 50 г L-ксилозы, полученную смесь перемешивают при комнатной температуре в течение 36 часов. Реакционную смесь фильтруют и тщательно промывают ацетоном, объединенные фильтраты нейтрализуют гидроксидом аммония, а затем выпаривают досуха. Добавляют 200 мл этилацетата, затем фильтруют и выпаривают, получая масло, которое растворяют в 250 мл 0,2% HCl раствора и перемешивают при комнатной температуре в течение 2,5 часа, pH устанавливают в размере 8 насыщенным раствором NaHCO3, затем выпаривают досуха, остаток экстрагируют этилацетатом. После удаления растворителя получают масло желтого цвета, соединения 3 (41,7 г, 82,3%).

1H-ЯМР (CDCl3): 5,979 (д, J = 3,78 Гц, 1H, H-1); 4,519 (д, J = 3,6 Гц, 1H, H-2); 4,308 (шир.д., 1H, H-3); 4,080 (м, 3H, H-4 и H-5); 1,321 (с, 3H, CH3); 1,253 (с, 3H, CH3).

1,2-ди-O-изопропилиден-3,5-ди-O-o-толилсульфонил- -L-ксилофураноза (4) Соединение 3 (40 г, 210 ммолей) перемешивают в 500 мл безводного пиридина при 0oC, при этом TsCl (75 г, 393 ммоля) растворяют в 100 мл CHCl3 путем добавления по каплям. Спустя 3 часа таким же образом добавляют вторую порцию TsCl (50 г, 262 ммоля) в 50 мл CHCl3. Полученную смесь перемешивают при комнатной температуре в течение 24 часов, затем охлаждают при 0oC, добавляют 10 мл воды, затем перемешивают при комнатной температуре в течение 30 минут. Реакционную смесь выливают в 500 мл смеси льда с водой, экстрагируют CHCl3 (150 мл x 4), промывают 1,5М H2SO4, (150 мл x 4), насыщенным раствором NaHCO3 (200 мл x 2), сушат над сульфатом магния. После удаления растворителя получают коричневый сироп, который после кристаллизации из EtOH дает соединение 4 в виде твердого вещества белого цвета (103,8 г, 99%).

1H-ЯМР (CDCl3): 7,282, 7,836 (м, 8H, OT); 5,849 (д, J = 3,51 Гц, 1H, H-1); 4,661, 4,779 (м, 2H, H-3 и H-4); 4,193 (дд, 1H, H-2); 4,011 (д, 2H, H-5); 2,448, 2,478 (2с, 6H, -OTs); 1,261, 1,320 (2с, 6H, CH3).

1,2-ди-O-ацетил-3,5-ди-O-p-толилсульфонил- , - ксилофураноза (5) Соединение 4 (70 г, 140,5 ммоля) растворяют в 700 мл ледяной AcOH и 100 мл Ac2O, прикапывая при 0oC 50 мл концентрированной серной кислоты. Полученный раствор перемешивают при комнатной температуре в течение ночи, а затем выливают в 1 л смеси лед-вода, экстрагируют CHCl3 (200 мл x 4), промывают насыщенным раствором бикарбоната натрия, сушат над сульфатом магния. После удаления растворителя в вакууме получают соединение 5 в виде сиропа (84,2 г, выход неочищенного продукта 110%).

Метил-3,5-ди-O-p-толилсульфонил- , - ксилофураноза (6) Неочищенный продукт 5 (80 г) перемешивают в 500 мл 1% смеси HCl/CH3OH при комнатной температуре в течение 30 часов. Растворитель удаляют при пониженном давлении, остаток растворяют в 300 мл CHCl3, промывают насыщенным NaHCO3, сушат над сульфатом магния. После удаления растворителя получают соединение 6 в виде сиропа (60 г, 90% из 4).

Метил-2-O-бензоил-3,5-ди-O-p-толилсульфонил- , - ксилофуранозид (7) Сироп соединения 6 (60 г, 127 ммолей) растворяют в 200 мл пиридина и перемешивают при 0oC, прикапывая бензоилхлорид (40 мл, 345 ммолей), а полученный раствор перемешивают при комнатной температуре в течение 17 часов. Его концентрируют до около 50 мл, затем выливают в 300 мл смеси лед-вода, экстрагируют CHCl3, промывают 3 н. H2SO4 и насыщенным NaHCO3, сушат над сульфатом магния. После выпаривания растворителя получают соединение 7 в виде сиропа (71 г, 97%).

Meтил-2,3,5-три-O-бензоил- , -L-рибофуранозид (9) Сироп соединения 7 (70 г) и бензоат натрия (100 г, 694 ммоля) суспендируют в 1200 мл ДМФ и перемешивают механической мешалкой при кипячении с обратным холодильником в течение 16 часов. Смесь охлаждают до комнатной температуры и выливают в 1 л смеси лед-вода, экстрагируют эфиром, сушат над сульфатом магния. После выпаривания растворителя получают сироп (50 г, 8a и 8b), который растворяют в 180 мл пиридина и бензоилируют (BzCl, 20 мл, 172 ммоля) в течение 17 часов при комнатной температуре. После обработки получают соединение 9 в виде сиропа коричневого цвета (48 г, 83% из 7).

1-O-ацетил-2,3,5-три-O-бензоил- -L-рибофураноза (10) Соединение 9 (26 г, 54,6 ммоля) обрабатывают 275 мл ледяной уксусной кислоты, 55 мл уксусного ангидрида и 16 мл концентрированной серной кислоты при температуре от 0oC до комнатной температуры в течение 17 часов. Затем выливают в 1 л смеси лед-вода, экстрагируют хлороформом (200 мл x 4). Объединенный экстракт промывают насыщенным раствором бикарбоната натрия и сушат над сульфатом магния. После удаления растворителя получают сироп коричневого цвета, который обрабатывают этанолом и получают соединение 10 в виде твердого вещества белого цвета (8,8 г, 32%). Т.плавления 124,7oC, литерат. 129-130oC; Д форма: 130-131oC []D= -45,613 (с 1,0, CHCl3); Д форма: []D= +44,2. 1H-ЯМР (CDCl3): 7,317, 8,134 (м, 15H, OBz), 6,437 (с, 1H, H-1), 5,835 (м, H-2 и H-3), 4,649 (м, 3H, H-4 и H-5), 2,003 (с, 3H, ).

1-O-ацетил-2,3,5-три-O-бензоил- -L-рибофураноза (из L-рибозы) L-рибозу (5 г, 33,3 ммоля) суспендируют в 120 мл 1% HCl/ MeOH и перемешивают при комнатной температуре в течение 3 часов, в результате чего получают прозрачный раствор. Реакцию гасят, добавляя 30 мл безводного пиридина, а затем выпаривают при пониженном давлении. Оставшийся сироп выпаривают совместно с пиридином (30 мл x 2), затем растворяют в 80 мл безводного пиридина и перемешивают при 0oC, прикапывая бензоилхлорид (20 мл, 172 ммоля). После перемешивания при комнатной температуре в течение 17 часов реакцию завершают. Добавляют 10 мл воды, полученную смесь перемешивают при комнатной температуре в течение 0,5 часа, затем концентрируют до около 50 мл, выливают в 150 мл смеси лед-вода, экстрагируют хлороформом (50 мл x 4), промывают последовательно 3 н. H2SO4, (30 мл x 2), насыщенным бикарбонатом натрия (30 мл x 3) и сушат над сульфатом магния. После удаления растворителя получают соединение 9 в виде 13 г сиропа.

Неочищенное соединение 9 растворяют в 80 мл HBr/AcOH (45%, вес/объем) и перемешивают при комнатной температуре в течение 1,5 часа. К этой смеси добавляют ледяную уксусную кислоту (50 мл), полученный раствор перемешивают при 0oC, медленно добавляя 34 мл воды для поддержания температуры ниже 7oC. Затем перемешивают при комнатной температуре в течение 1 часа, выливают в 200 мл смеси лед-вода, экстрагируют хлороформом (50 мл x 5). Объединенные экстракты промывают насыщенным раствором бикарбоната натрия, сушат над сульфатом магния. После удаления растворителя получают 13 г сиропа, который растворяют в 40 мл безводного пиридина, перемешивают при 0oC. Затем прикапывают уксусный ангидрид (14 мл, 148,4 ммоля). После завершения реакции реакционную смесь выливают в 150 мл смеси лед-вода, экстрагируют хлороформом (50 мл x 4), промывают последовательно 3 н. H2SO4, (30 мл x 2), насыщенным раствором бикарбоната натрия (50 мл x 2) и сушат над сульфатом магния. После удаления растворителя и обработки метанолом получают соединение 10 в виде твердого вещества белого цвета (9,2 г, 53,7% из L-рибозы).

1,3,5-три-O-бензоил- -L-рибофураноза (11) Соединение 10 (9 г, 17,84 ммоля) перемешивают в 100 мл CH2Cl2 при 0oC, при этом добавляют 70 мл CH2Cl2, содержащего HBr (3,2 г, 30,5 ммоля), сразу. Полученную смесь перемешивают при температуре 0oC в течение 3,5 часа, добавляют 55 мл воды, полученную смесь перемешивают при комнатной температуре в течение 18 часов. Органический слой выделяют, промывают насыщенным раствором бикарбоната натрия и сушат над сульфатом магния. После выпаривания растворителя получают пену, из которой после перекристаллизации из CH2Cl2 и н-гексана получают соединение 11 в виде твердого вещества белого цвета (6,2 г, 75,5%). Т. плавления 137-138oC, из литературы: 140-141oC, []D= -81,960 (с 0,55, CHCl3; Д форма: []D= +83,71. 1H-ЯМР (CDCl3): 7,312, 8,187 (м, 15H, OBz), 6,691 (д, J = 4,59 Гц, H-1); 5,593 (дд, J4-3 = 6,66 Гц, J2-3 = 1,8 Гц, 1H, H-30); 4,637, 4,796 (м, 4H, 4-2, H-4 и H-5); 2,3 (шир. OH).

1,3,5-три-O-бензоил-2-O-имидазосульфурил- -L- рибофураноза (12) Соединение 11 (5,94 г, 12,84 ммоля) перемешивают в 50 мл безводного CH2Cl2 при -15oC (смесь сухой лед-CCl4). Последовательно добавляют безводный ДМФ (15 мл) и сульфурилхлорид (3,2 мл, 3,98 ммоля). Полученный раствор перемешивают при -15oC в течение 30 минут, а затем оставляют при комнатной температуре на 4 часа. Тремя порциями добавляют имидазол (9,7 г, 12,78 ммоля), охлаждая при этом в ледяной ванне. Затем ее перемешивают при комнатной температуре в течение 17 часов. Полученную смесь выливают в 150 мл смеси лед-вода, водную фазу экстрагируют CH2Cl2 (50 мл x 3). Объединенные органические слои промывают водой и сушат над сульфатом магния. Очищают на хроматографической колонке (гексан: EtOAc/5:1 до 1:1), в результате чего получают соединение 12 в виде твердого вещества белого цвета (3,7, 49%). Т.плавления 124,5-125,5oC; литерат. 129oC; []D= -68,976, Д форма: +66,154.

1H-ЯМР (CDCl3): 6,9, 8,2 (м, 18H, Ar-H); 6,67 (д, J = 4,4 Гц, 1H, H-1); 5,59 (дд, 1H, H-3); 5,21 (дд, 1H, H-2); 4,5, 4,8 (м, 3H, H-4 и H-5).

1,3,5-три-O-бензоил-2-деокси-2-фтор- -L-арабинофураноза (13) Суспензию соединения 12 (3,33 г, 5,62 ммоля), KHF2 (1,76 г, 22,56 ммоля) в 30 мл 2,3-бутандиола перемешивают в атмосфере аргона. Смесь нагревают до 150oC, добавляя 1 мл HF/H2O (48%, 27,6 ммоля), полученную смесь перемешивают при 160oC в течение 1,5 часа. Для гашения реакции добавляют смесь рассол-вода, а затем полученный раствор экстрагируют метиленхлоридом (50 мл x 4). Объединенные экстракты промывают рассолом, водой, насыщенным раствором бикарбоната натрия, сушат над безводным сульфатом магния и активированным углем (Darco-60). Все это выливают на слой силикагеля (5 см x 5 см), промывают метиленхлоридом, а затем EtOAc, получают сироп, который кристаллизуют из 95% EtOH, получая соединение 13 (1,3 г, 49,8%). Т.плавления 77-78oC (литературн. 82oC).

1H-ЯМР (CDCl3): 7,314, 8,146 (м, 15H, OBz); 6,757 (д, J = 9,1 Гц, 1H, H-1); 5,38 (д, J = 48,5 Гц, 1H, H-2); 5,630 (дд, J = 22,5 Гц, 1H, H-3); 4,768 (м, 3H, H-4 и H-5).

N9-(3', 5'-ди-O-бензоил-2'-деокси-2'-фтор- -L-арабинофуранозил)-2,6-ди-хлорпурин (15) Соединение 13 (464 мг, 1 ммоль) растворяют в 10 мл метиленхлорида, добавляя при этом 1,4 мл HBr/AcOH (45% вес/объем). Полученный раствор перемешивают при комнатной температуре в течение 24 часов, а затем выпаривают досуха. Остаток растворяют в 20 мл метиленхлорида и промывают водой, насыщенным раствором бикарбоната натрия, сушат над сульфатом магния. После фильтрования и выпаривания получают бромосахар - соединение 14 (100%, на основании данных ТСХ).

Одновременно суспендируют 2,6-ди-хлорпурин (378 мг, 2 ммоля) в 15 мл HMDS (гексаметилдисилозан) и 2 мг сульфата аммония, а затем кипятят с обратным холодильником в течение 2 часов. HMDS выпаривают при высоком вакууме в атмосфере азота до получения силилированного основания белого цвета.

Бромосахар 14 растворяют в 25 мл безводного 1,2-дихлорэтана. Полученный раствор добавляют к силилированному основанию в атмосфере азота. Полученную смесь перемешивают при кипении с обратным холодильником в течение 2 дней. Добавляют хлороформ (30 мл) и промывают последовательно водой (20 мл x 2), насыщенным раствором бикарбоната натрия (20 мл x 2), насыщенным раствором NaCl (20 мл x 2) и сушат над сульфатом магния. Из CHCl3 кристаллизуют соединение 15 (105 мг, 19,7%). Т. плавления 158oC; Д форма: 158oC.

УФ (метанол) макс = 238,5 нм, 273,0 нм.

1H-ЯМР (300 МГц, DMSO-d6): 8,82 (д, J = 1,5 Гц, 1H, H-8); 7,49, 8,33 (м, 10H, OBz); 6,767 (дд, JH-H = 4 Гц, KF-H = 13,8 Гц, 1H, 1-H'); 5,854 (дкв, J = 67,4 Гц, 1H, H-2'), 5,910 (м, 1H, H-3'); 4,751 (м, 3H, H-4' и H-5').

М9(2'-деокси-2'-фтор- -L-арабинофуранозил)- 2,6-ди-хлорпурин (16) Соединение 15 (70 мг, 0,13 ммоля) растворяют в 25 мл насыщенного NH3/CH3OH в запаянной стальной бомбе и нагревают при 90oC в течение 6 часов. После удаления растворителя при пониженном давлении получают полужидкое вещество желтого цвета, которое очищают с помощью препаративной ТСХ (9: 1/CHCl3: CH3OH). После лиофилизации из воды и 1,4-диоксана получают порошок белого цвета - соединение 16 (30 мг, 75%). УФ (H2O) pH2, макс = 212,00 нм, 263,5 нм ( 6711); pH7, макс = 213,5 нм, 263,00 нм ( 7590); pH11, макс = 213,5 нм, 263,00 нм ( 5468).

1H-ЯМР (300 МГц, BMSO-d6): 8,279 (д, J = 1,5 Гц, 1H, H-8); 7,908 (шир. с, 2H, NH2); 6,321 (дд, JH-H = 4,4 Гц, JF-H = 13,8 Гц, 1H, H-1'), 5,986 (т, 1H, 5'-OH), 5,230 (дт, JF-H = 52,6 Гц, 1H, H-2'); 5,115 (д, 1H, 3'-OH); 4,425 (дкв, JF-H = 19 Гц, 1H, H-3'); 3,841 (м, 1H, H-4'); 3,636 (д, 2H, H-5').

N1-(2'-деокси-2'-фтор-3', 5'-ди-O-бeнзил- -L- арабинофуранозил)-тимин (17) К раствору соединения 13 (400 мг, 0,86 ммоля) в безводном CH2Cl2 (10 мл) добавляют бромистый водород в уксусной кислоте (45% вес/объем, 1,5 мл), полученный раствор перемешивают при комнатной температуре в течение 17 часов. После удаления растворителя и совместного испарения с толуолом получают соединение 14.

В то же самое время тимин (215 мг, 1,72 ммоля) кипятят с обратным холодильником в НМ (25 мл) в атмосфере азота в течение 17 часов до получения гомогенного раствора. После выпаривания растворителя получают силилированный тимин.

Раствор соединения 14 в 50 мл дихлорэтана добавляют к силилированному тимину и полученный раствор кипятят в атмосфере азота в течение 3 дней. Добавляют воду, а затем экстрагируют CHCl3. Органический слой промывают водой, рассолом и сушат над сульфатом магния. После выпаривания растворителя получают неочищенный продукт, который очищают с помощью препаративной ТСХ, используя 2% MeOH/CHCl3 до получения соединения 17 (235 мг, 58%). Т.плавления 99-101oC. УФ (метанол): 230, 26