Частицы аморфного силиката щелочного металла и способ их получения

Реферат

 

Изобретение относится к частицам аморфного силиката щелочного металла, которые могут быть использованы в качестве добавки к моющим или чистящим средствам, а также к способу их получения. Указанные частицы аморфного силиката щелочного металла с молярным соотношением M2O:SiO2 (М означает щелочной металл) от 1:1,5 до 1:3,3 получают высушиванием распылением водного исходного состава, содержащего в качестве активного вещества, главным образом, аморфный силикат щелочного металла приведенного выше состава, полученный силикатный продукт затем пропитывают водной дисперсией компонентов моющих или чистящих средств, причем один из компонентов этой дисперсии представляет собой органический соструктурообразователь, и, при необходимости, высушивают. Технический результат - увеличение сыпучести частиц аморфного силиката. 2 с. и 14 з.п.ф-лы.

Изобретение относится к частицам аморфного силиката щелочного металла, которые могут быть использованы в моющих чистящих средствах, а также к способу их получения.

Известно, что при высушивании растворов жидкого стекла распылением или при высушивании его на вальцах можно получать гидратированные растворимые в воде частицы силикатов, которые содержат еще около 20 мас.% воды (см. Ullmanns Ezyclopaedie der technischen Chemie, 4-е издание 1982, Т. 21, стр. 412). Эти продукты поступают в продажу для использования их по разному назначению. Такие порошки, полученные высушиванием распылением, имеют очень рыхлую структуру и их насыпной вес значительно ниже 700 г/л, например 300 г/л или даже еще ниже.

Силикаты щелочных металлов в форме гранул с более высокими значениями насыпного веса по данным европейской заявки на патент ЕР 526978 могут быть получены при введении раствора силиката щелочного металла с содержанием твердого вещества от 30 до 53 мас.% в обогреваемый барабан, по продольной оси которого расположен вращающийся вал с большим числом заканчивающихся у самой внутренней стенки барабана скребков, причем внутренняя стенка барабана имеет температуру от 150 до 200oC и процесс высушивания поддерживается подаваемым в барабан газом с температурой от 175 до 250oC. В соответствии с этим способом получают продукт, средний размер частиц которого лежит в пределах от 0,2 до 2 мм. В качестве подаваемого для осушки газа предпочтительно использование горячего воздуха.

В европейской заявке на патент ЕР 542131 описан способ получения полностью растворимого в воде при комнатной температуре продукта с насыпным весом от 500 до 1200 г/л. Высушивание проводится предпочтительно с применением горячего воздуха. В этом способе также используют цилиндрическую сушилку с обогреваемой стенкой (от 160 до 200oC), по продольной оси которой расположен ротор с лопастями, вращающийся со скоростью, обеспечивающей переход водного раствора силиката натрия с содержанием твердого вещества от 40 до 60 мас.% в псевдопластическое состояние с содержанием свободной воды от 5 до 12 мас.%. Процесс высушивания и в этом случае поддерживают подачей тока горячего воздуха с температурой 220-260oC.

Растворимый в воде аморфный и гранулированный силикат щелочного металла описан также в еще неопубликованной международной заявке на патент WO 95/33684. Его получают аналогично европейской заявке на патент ЕР 526978, но он отличается тем, что в его состав входит кремневая кислота. В этом случае понятие "аморфный" соответствует понятию "рентгеноаморфный". Это означает, что в рентгенограммах этих силикатов щелочных металлов отсутствуют четкие сигналы, но все-таки имеются один или несколько широких максимумов, ширина которых соответствует нескольким градусам отклонения рентгеновского луча. Поэтому нельзя исключить, что в экспериментах по отклонению электронных пучков будут найдены области, которые дадут четкие сигналы отклонения электронов. Это можно интерпретировать таким образом, что вещество имеет микрокристаллические области с размерами порядка примерно 20 нм (максимум 50 нм).

Гранулированные аморфные силикаты натрия, получаемые высушиванием распылением из раствора жидкого стекла, следующим за этим размалыванием, затем уплотнением и обкатыванием с дополнительным обезвоживанием помола, известны из патентов США 3912649, 3956467, 3838193 и 3879527. Содержание воды в полученных продуктах лежит приблизительно в пределах от 18 до 20 мас.% при насыпной плотности, заметно превышающей 500 г/л.

Другие гранулированные силикаты щелочных металлов с вторичной моющей способностью известны из европейских заявок на патент ЕР 561656 и 488868. В этом случае речь идет о композиционных материалах, состоящих из силикатов щелочных металлов с пространственной структурой и карбонатов щелочных металлов.

В более ранней неопубликованной немецкой заявке на патент 4446363.4 описан аморфный силикат щелочного металла с вторичной моющей способностью и молярным отношением M2О: SiO2 от 1:1,5 до 1:3,3, пропитанный компонентами моющих и чистящих средств и показывающий значение насыпного веса 300 г/л. Предназначенный для пропитки силикатный зернистый носитель находится предпочтительно в виде гранул и/или в виде композиционного материала с карбонатами щелочных металлов. Его можно получать в результате сушки распылением, гранулирования и/или компактирования, например в результате компактирования на вальцах. В предпочтительном варианте реализации изобретения этот силикат пропитывают поверхностно-активными веществами, в первую очередь неионогенными поверхностно-активными веществами. В результате сорбции пропитывающих средств сыпучесть силикатного материала снижается, однако она может быть восстановлена в результате проведения дополнительной обработки пропитанного материала водным раствором.

Из патента США 3920586 известен способ получения частиц аморфного силиката щелочного металла, в частности силиката натрия с соотношением Na2O:SiO2 от 1:1 до 1:3,2 высушиванием распылением водного исходного состава, содержащего в качестве активного вещества, главным образом, аморфный силикат щелочного металла.

И все же оказалось, что у полученных сушкой распылением аморфных силикатов щелочных металлов, которые не содержат дополнительно введенных карбонатов щелочных металлов, после пропитывания и образования покрытия с помощью водного раствора сыпучесть оказывается недостаточной.

В связи с изложенным задача настоящего изобретения состояла в том, чтобы разработать способ, в результате применения которого при сушке распылением получаются аморфные силикаты, которые можно пропитывать без ухудшающей их свойства потери сыпучести, даже если в их составе отсутствуют дополнительно введенные карбонаты щелочных металлов.

В соответствии с этим, объектом изобретения является способ получения состоящего из частиц аморфного силиката щелочного металла с молярным соотношением M2O: SiO2 (М означает ион щелочного металла) от 1:1,5 до 1:3,3, включающий а) высушивание распылением водного исходного состава, содержащего в качестве активного вещества, главным образом, аморфный силикат щелочного металла приведенного выше состава, отличие которого состоит в том, что б) высушенный распылением силикатный продукт со стадии а) пропитывают водной дисперсией компонентов моющих или чистящих средств, причем один из компонентов этой дисперсии представляет собой органический соструктурообразователь, и после этого в) при необходимости высушивают.

Предпочтительно используемые аморфные силикаты щелочных металлов имеют молярное соотношение M2O:SiO2 (М означает ион щелочного металла) от 1:1,9 до 1:3, особенно предпочтительно до 1:2,8. Особый интерес при этом представляет силикат натрия и/или силикат калия. Из экономических соображений более предпочтительны силикаты натрия. Если же в целях практического использования особое внимание уделяется высокой скорости растворения в воде, то рекомендуется по крайней мере часть ионов натрия заменять на ионы калия. Например, состав силиката щелочных металлов может быть выбран таким образом, чтобы содержание в нем калия из расчета на K2O составляло до 5 мас.%. Предпочтительно силикаты щелочных металлов находятся в гранулированном виде и/или представляют собой композиционный материал с карбонатом щелочного металла, предпочтительно карбоната натрия и/или калия, и/или имеют насыпной вес от 300 до 1200 г/л, особенно предпочтительно от 350 до 800 г/л. Содержание воды в этих предпочтительно используемых аморфных силикатах щелочных металлов или, соответственно, композиционных материалах, которые содержат аморфные силикаты щелочных металлов, лежит предпочтительно в пределах от 10 до 22 мас.%, более предпочтительно от 12 до 20 мас.%, а наиболее предпочтительными могут быть материалы с содержанием воды от 14 до 18 мас.%.

Следует особо подчеркнуть, что все аморфные силикаты щелочных металлов приведенного выше модуля, в том числе и имеющиеся в продаже гранулированные силикаты или карбонатно-силикатные композиционные материалы, представляют собой подходящие исходные продукты для реализации изобретения. Эти силикаты можно получать в рамках собственного производства высушиванием распылением, гранулированием и/или компактированием, например компактированием при помощи вальцов, хотя такие способы получения силикатного сырья и не всегда целесообразны, поскольку эти продукты должны быть снова растворены для получения водного исходного материала.

Поступающий на высушивание распылением водный исходный продукт содержит в качестве активных веществ в основном вышеназванные силикаты щелочных металлов, и при этом особенно предпочтительно, чтобы приготовленный состав не содержал карбонаты щелочных металлов или чтобы содержание карбонатов щелочных металлов соответствовало отношению масс силикатов щелочных металлов (из расчета на сухое активное вещество) к карбонатам щелочных металлов в пределах от 3:1 до 20:1. В предпочтительном варианте реализации изобретения высушиванием распылением (на стадии а)) получают композиционные материалы, содержащие от 65 до 95 мас.%, предпочтительно от 70 до 90 мас.% силиката щелочного металла (из расчета на сухое активное вещество), от 0 до 15 мас.%, предпочтительно от 2 до 10 мас.% карбоната щелочного металла, а также от 5 до 22 мас.%, предпочтительно от 10 до 20 мас.% и особенно предпочтительно от 12 до 18 мас.% воды.

В состав поступающего на высушивание распылением продукта могут быть введены и другие компоненты, в первую очередь составляющие моющих и чистящих средств. Из расчета на высушенный распылением силикатный продукт со стадии а) их содержание составляет предпочтительно от 0,5 до 20 мас.%, особенно предпочтительно от 1 до 15 мас.%. Речь здесь может идти, например, о поверхностно-активных веществах, в первую очередь о таких анионных поверхностно-активных веществах, как алкилбензолсульфонаты, алкилсульфаты, 2,3-алкилсульфаты, алкоксизамещенные сульфаты и мыла, о таких нейтральных солях, как сульфаты натрия или калия, о ингибиторах эффекта застирывания (посерения) или о таких неионогенных поверхностно-активных веществах, как алкилполигликозиды или продукты оксиалкилирования сложных эфиров жирных кислот с многоатомными спиртами. В предпочтительном варианте реализации изобретения в поступающий на сушку распылением состав вводят анионные поверхностно-активные вещества и/или органические соструктурообразователи, предпочтительно в количествах от 1 до 15 мас.% из расчета на высушенный распылением силикатный продукт со стадии а).

Подходящими соструктурообразователями являются, например, используемые, при необходимости, в виде их натриевых солей поликарбоновые кислоты, такие, как лимонная кислота, адипиновая кислота, янтарная кислота, глутаровая кислота, винная кислота, сахарные кислоты, аминокарбоновые кислоты, нитрилотриуксусная кислота, а также их смеси, если, конечно, их применение не противоречит требованиям экологической безопасности. Предпочтительными солями являются соли таких поликарбоновых кислот, как лимонная кислота, адипиновая кислота, янтарная кислота, глутаровая кислота, винная кислота, сахарные кислоты и их смеси.

Другими подходящими органическими соструктурообразователями являются декстрины, например олигомеры или, соответственно, полимеры углеводов, которые могут быть получены при частичном гидролизе крахмалов. Этот гидролиз можно проводить обычными способами, например, в результате катализируемых кислотами или ферментами реакций. В этом случае речь идет предпочтительно о продуктах гидролиза со средними молекулярными массами в пределах от 400 до 500000.

Предпочтительны при этом полисахариды с декстрозным эквивалентом в пределах от 0,5 до 40, особенно предпочтительны пределы от 2 до 30, причем декстрозный эквивалент представляет собой удобный показатель редуцирующей способности полисахарида по сравнению с декстрозой, которая характеризуется эквивалентом 100. Возможно использование мальтодекстринов с декстрозным эквивалентом от 3 до 20 и сухих глюкозных сиропов с декстрозным эквивалентом от 20 до 37, а также так называемых желтых декстринов и белых декстринов с более высокими молекулярными массами в пределах от 2000 до 30000. Предпочтительный декстрин описан в заявке на патент Великобритании 9419091. В случае окисленных производных декстринов такого рода речь идет о продуктах взаимодействия их с окислителями, которые могут окислить по крайней мере одну из спиртовых функциональных групп сахаридного цикла в карбоксилатную функциональную группу. Такие декстрины и способы их получения известны, например, из европейских заявок на патент ЕР 232202, ЕР 427349, ЕР 0472042 и ЕР 542496, а также из международных заявок на патент WO 92/18542, WO 93/08251, WO 94/28030, WO 95/07303, WO 95/12619 и WO 95/20608. Особенно предпочтительным может быть использование продукта окисления по атому углерода в 6-положении сахаридного цикла.

Другими подходящими соструктурообразователями являются оксидисукцинаты и другие производные дисукцинатов, предпочтительно этилендиаминдисукцинат. В этой связи особенно предпочтительны также дисукцинаты глицерина и трисукцинаты глицерина, описанные, например, в патентах США 4524009, 4639325, в европейской заявке на патент ЕР 150930 и в заявке на патент Японии N 93/339896. Количества, в которых они применяются в составах вместе с цеолитами и/или с силикатами лежат в пределах от 3 до 15 мас.%.

Другими подходящими органическими соструктурообразователями являются, например, ацетилированные гидроксикарбоновые кислоты или, соответственно, их соли, которые могут представлять собой лактоны, содержащие не менее четырех атомов углерода и не менее одной гидроксильной группы, а также не более двух кислотных функциональных групп. Такие соструктурообразователи описаны, например, в международной заявке WO 95/20029.

Другие подходящие соструктурообразователи представлены продуктами окисления содержащих карбоксильные группы полиглюкозанов и/или их растворимыми в воде солями. Они описаны, например, в международной заявке WO 93/08251, а их получение описано, например, в международной заявке WO 93/16110. Для этого подходят также окисленные олигосахариды в соответствии с более ранней немецкой заявкой на патент 19600018.1.

И все же наиболее предпочтительными соструктурообразователями являются полимерные поликарбоксилаты, например натриевые соли полиакриловой кислоты или полиметакриловой кислоты, имеющие, например, относительные молекулярные массы от 800 до 150000 (из расчета на кислоту). Подходящими поликарбоксилатными сополимерами являются в первую очередь сополимеры акриловой и метакриловой кислот и акриловой или метакриловой кислот с малеиновой кислотой.

Особенно подходящими оказались сополимеры акриловой и малеиновой кислот, содержащие от 50 до 90 мас.% акриловой кислоты и от 50 до 10 мас.% малеиновой кислоты. Их относительная молекулярная масса (из расчета на свободные кислоты) составляет в общем случае от 5000 до 200000, предпочтительно от 10000 до 120000 и особенно предпочтительно от 50000 до 100000. Также особенно предпочтительны способные к деструкции биологическим путем терполимеры, например, по немецкой заявке на патент 4300772, мономеры которых представлены солями акриловой кислоты и малеиновой кислоты и виниловым спиртом или производными винилового спирта, или же по патенту ФРГ 4221381, содержащие в качестве мономеров соли акриловой кислоты и 2-алкилаллил-сульфоновой кислоты, а также производные сахаров. К другим предпочтительным сополимерам относятся описанные в немецких заявках на патент 4303320 и 4417734, мономерный состав которых представлен акролеином и акриловой кислотой или солями акриловой кислоты или, соответственно, винилацетатом.

В отличие от гранулированных продуктов полученные высушиванием распылением продукты эквивалентного состава обычно хуже впитывают жидкие или воскообразные компоненты моющих или чистящих средств из-за того, что при используемых для такого способа обработки температурах поверхность высушенных капелек оплавлена. Для того, чтобы эти компоненты можно было наносить на высушенные распылением частицы, их поверхностная структура должна быть разрушена с соответствующим увеличением поверхности. Полученные при таком способе сушки силикатные продукты (стадия а)) предпочтительно должны быть пропитаны на стадии б) количеством от 3 до 15 мас.%, особенно предпочтительно от 5 до 12 мас.%, из расчета в каждом случае на пропитанный и при необходимости дополнительно высушенный силикатный продукт. В качестве пропиточных материалов пригодны, например, поверхностно-активные вещества, ингибиторы пенообразования на основе кремнийорганических соединений и/или парафинов или же такие смягчающие текстильные материалы соединения, как катионные поверхностно-активные вещества. Особенно предпочтительно применение поверхностно-активных веществ. Особенно предпочтительными пропитывающими средствами и в этом случае являются неионогенные поверхностно-активные вещества, например алкоксилированные, предпочтительно оксиэтилированные и/или оксиэтилированные и оксипропилированные, алифатические спирты с числом атомов углерода от восьми до двадцати двух. Особенно это относится к первичным спиртам с числом атомов углерода в алкильной части предпочтительно от восьми до восемнадцати, в молекулах которых на один фрагмент спирта приходится от 1 до 12 молей этиленоксида, а алкильный остаток спирта имеет линейное строение или метильное замещение в 2-положении; возможно также использование смесей из спиртовых остатков линейного строения и остатков с разветвлением в виде метильного заместителя, таких, какие обычно присутствуют в спиртах, получаемых с помощью оксосинтеза. Точно также предпочтительны продукты оксиэтилирования спиртов с линейными радикалами на основе натуральных продуктов с числом атомов углерода от двенадцати до восемнадцати, например, полученных из кокосового и пальмового масла, из животного жира, а также продукты оксиэтилирования олеилового спирта со средним содержанием от двух до восьми моль этиленоксида на один моль спирта. К предпочтительным оксиэтилированным спиртам относятся, например, спирты с числом атомов углерода от двенадцати до четырнадцати с тремя или с четырьмя этиленоксидными фрагментами, спирт с числом атомов углерода от девяти до одиннадцати и семью этиленоксидными фрагментами, спирты с числом атомов углерода от тринадцати до пятнадцати с тремя, пятью, семью или восемью этиленоксидными фрагментами, спирты с числом атомов углерода от двенадцати до восемнадцати с тремя, пятью или семью этиленоксидными фрагментами и смеси этих продуктов, например, смеси из спиртов с числом атомов углерода от двенадцати до четырнадцати с тремя этиленоксидными фрагментами и спиртов с числом атомов углерода от двенадцати до восемнадцати с пятью этиленоксидными фрагментами. Приведенные степени оксиэтилирования представляют собой среднестатистические величины, которые для отдельного продукта могут быть как целыми, так и дробными. Предпочтительные продукты оксиэтилирования спиртов отличаются узким разбросом гомологов. В дополнение к этим неионогенным поверхностно-активным веществам могут использоваться также жирные спирты с числом этиленоксидных фрагментов более двенадцати. Примерами тому служат спирты на основе животного жира с четырнадцатью, двадцатью пятью, тридцатью или сорока этиленоксидными фрагментами. В принципе, однако, пригодны и перечисляемые далее неионогенные поверхностно-активные вещества, используемые обычно для получения моющих или чистящих средств.

Неожиданно было установлено, что пропитанные компонентами моющих или чистящих средств силикатные продукты, полученные высушиванием распылением, показывают достаточную сыпучесть только в тех случаях, когда используемые для пропитки средства находятся в виде водной дисперсии и особенно в виде эмульсии. В предпочтительном варианте реализации изобретения для пропитки используют эмульсию из неионогенного поверхностно-активного вещества и водного раствора соструктурообразователя органической природы. В качестве соструктурообразователей органической природы могут использоваться названные выше соединения, но особое предпочтение следует все же отдать упоминавшимся выше сополимерным поликарбоксилатам, которые предпочтительно берут в количествах от 1 до 10 мас.%, особенно предпочтительно от 4 до 10 мас.%, из расчета на пропитанный и, при необходимости, досушенный силикатный продукт. Водные растворы содержат в общем случае от 10 до 45 мас.% (со)полимерных поликарбоксилатов, но возможно применение и более концентрированных растворов.

Используемое количество воды может быть критическим фактором в зависимости от взятого пропитывающего средства, а также в зависимости от содержания воды в высушенном распылением силикатном продукте (со стадии а)); поэтому предпочтительно, чтобы количество используемой для пропитки воды не превышало 20 мас. % из расчета на массу пропитанного продукта без дополнительной осушки.

Содержание воды в готовых силикатных продуктах предпочтительно не превышает 22 и особенно предпочтительно 18 мас.%. Если же общее количество воды в приготовленном высушиванием распылением продукте после его дополнительной обработки водной дисперсией превышает названные выше границы, то в предпочтительном варианте реализации изобретения к двум первым стадиям способа добавляется заключительное подсушивание, причем это подсушивание целесообразно включить в непрерывный технологический процесс.

Стадию пропитки б) можно проводить, например, таким образом, чтобы вначале получалась водная дисперсия и предпочтительно водная дисперсия неионогенного поверхностно-активного вещества и органического соструктурообразователя при интенсивном перемешивании неионогенного поверхностно-активного вещества в водном растворе растворимого в воде органического соструктурообразователя или неионогенного поверхностно-активного вещества, органического соструктурообразователя и воды. Сам процесс пропитки может протекать обычным образом в обычных смесителях/грануляторах типа высокоскоростных смесителей, например в рециклере 30 фирмы Ледиге, ФРГ, в аппарате Флексомикс фирмы Шуги, ФРГ, или в смесителе Фукае GS30, но его можно проводить и в более тихоходных смесителях, например, в гребневых смесителях фирмы Ледиге.

В особенно предпочтительном варианте реализации способа по изобретению на стадию б) поступает не один только силикатный продукт со стадии а). Важно, что изобретение предусматривает совместное пропитывание на стадии б) высушенного распылением силикатного продукта со стадии а) и по крайней мере еще одного твердого, порошкообразного или гранулированного продукта, представляющего собой одно единственное исходное вещество или композиционный материал из не менее чем двух различных исходных веществ. При этом было установлено, что наиболее выгодно использовать в качестве второго составляющего композиционный материал, в состав которого входит карбонат или бикарбонат щелочного металла, содержащий также соструктурообразователь органической природы из числа приведенных выше соединений. При этом особенно предпочтительны такие композиционные материалы, которые содержат более 40 мас.% органических соструктурообразователей и от 10 до 40% карбонатов щелочных металлов. В предпочтительном способе на стадии б) проводят совместную пропитку смеси из 60-80 мас. частей высушенного распылением силикатного продукта со стадии а) и 5-20 массовых частей, по крайней мере, еще одного твердого, порошкообразного или гранулированного продукта.

В еще одном предпочтительном варианте реализации изобретения в качестве водной дисперсии выступают смеси из неионогенных поверхностно-активных веществ, предпочтительно оксиэтилированных спиртов с числом атомов углерода в алкильном фрагменте от двенадцати до восемнадцати, и водных растворов органических соструктурообразователей с массовым соотношением от 3:1 до 1:3, особенно предпочтительно от 2:1 до 1:2. Особенно хорошие результаты получают при пропитке 60-90 массовых частей высушенного распылением силикатного продукта со стадии а) 10-30 массовыми частями водной дисперсии, содержащей неионогенные поверхностно-активные вещества и органические соструктурообразователи, или при пропитке 60-80 массовых частей высушенного распылением силикатного продукта со стадии а) и 5-20 массовых частей по крайней мере еще одного твердого, порошкообразного или гранулированного продукта с 10-30 массовыми частями водной дисперсии, содержащей неионогенные поверхностно-активные вещества и органические соструктурообразователи.

При необходимости или вследствие использования на стадии пропитки повышенных количеств воды проводят осушку, предпочтительно в сушилке с кипящим слоем.

Насыпной вес полученных в соответствии с изобретением силикатных продуктов, в общем случае, лежит в пределах от 200 до 600 г/л и он может быть повышен за счет компактирования известными способами, например, при компактировании на вальцах или при экструзии. Распределение частиц по размеру (по данным фракционирования на ситах) таково, что пылевые частицы (частицы с диаметром менее 0,1 мм) не образуются совсем, а частицы с диаметром не менее 0,2 мм и не более 0,8 мм составляют предпочтительно от 60 до 100 мас.%, особенно предпочтительно от 80 до 100 мас.%, от всей массы частиц.

Образующиеся в соответствии с изобретением силикатные продукты, получаемые в соответствии со стадиями а) и б), могут быть при желании дополнительно обработаны тонкодисперсными порошками для повышения их насыпного веса. Для этого используют, главным образом, от 1 до 5 массовых частей сухого порошка на 100 массовых частей силикатного продукта. В качестве примеров таких сухих порошков могут служить цеолит, кремневые кислоты, соли жирных кислот, например, стеарат кальция, но кроме них и активаторы отбеливания и тонкодисперсные алкилсульфаты или смеси цеолита или кремневой кислоты и по крайней мере одного из названных порошков.

Полученные в соответствии с изобретением аморфные и пропитанные силикаты щелочных металлов могут найти применение в качестве дополнительных компонентов моющих или чистящих средств с консистенцией от порошков до гранул или же в качестве составных частей при получении гранулированных моющих или чистящих средств, предпочтительно в процессе гранулирования и/или компактирования. Такие моющие или чистящие средства могут иметь насыпные веса от 300 до 1200 г/л, предпочтительно от 500 до 1000 г/л, и содержать полученные в соответствии с изобретением пропитанные силикаты в количествах предпочтительно от 5 до 50 мас.%, особенно предпочтительно в количествах от 10 до 40 мас.%. Их получение может проводиться по любому из известных способов, например путем смешения, сушкой раствора распылением, гранулированием, компактированием, например компактированием на вальцах, и с помощью экструзии. Для этого подходят в первую очередь такие способы, в соответствии с которыми все составляющие компоненты, например высушенные в распылительной сушилке компоненты и гранулированные и/или экструдированные компоненты, смешиваются друг с другом. При этом в процессе приготовления можно также обычными способами проводить дополнительную обработку других высушенных распылением или гранулированных компонентов, например, неионогенными поверхностно-активными веществами, особенно оксиэтилированными жирными спиртами. Особенно предпочтительно, чтобы в процессах гранулирования и экструзии анионные поверхностно-активные вещества, если они входят в получаемый состав, использовались в виде высушенных распылением, гранулированных или экструдированных композитных материалов и чтобы их добавляли к другим гранулятам в процессе смешения в виде дополнительного компонента или в качестве добавки. Также возможно, а для некоторых рецептур даже лучше, когда другие отдельные составляющие получаемого средства, например карбонаты, цитрат или, соответственно, лимонная кислота или другие поликарбоксилаты или, соответственно, поликарбоновые кислоты, полимерные поликарбоксилаты, цеолит и/или слоистые силикаты, например слоистые кристаллические бисиликаты, дополнительно подмешивают к высушенным распылением, гранулированным и/или экструдированным компонентам, которые могут быть при этом обработаны неионогенными поверхностно-активными веществами и/или другими составляющими веществами, которые при температуре обработки имеют консистенцию жидкости или воска. При этом предпочтителен способ, в ходе реализации которого на заключительной операции проводят обработку поверхности отдельных компонентов средства или всего средства для снижения липкости обогащенных поверхностно-активными веществами гранулятов и/или для улучшения их растворимости. Подходящие для этого модификаторы поверхности известны из уровня техники. Наряду с другими для этого подходят тонкодисперсные цеолиты, кремневые кислоты, аморфные силикаты, жирные кислоты или соли жирных кислот, например, стеарат кальция, но особенно предпочтительны смеси цеолита и кремневой кислоты, особенно, если отношение массы цеолита к массе кремневой кислоты не менее чем 1:1, или же особенно предпочтительны цеолит и стеарат кальция.

Особенно предпочтительными результатами реализации изобретения являются полученные с помощью экструзии моющие и чистящие средства с насыпным весом более 600 г/л, в состав экструдата которых входят анионные и, при необходимости, неионогенные поверхностно-активные вещества, а также аморфный и пропитанный силикат щелочного металла, полученный соответствующим данному изобретению способом. Что касается получения этих экструдированных моющих или чистящих средств, то здесь можно сослаться на известные способы экструзии, в первую очередь на европейский патент ЕР 486592. В соответствии с этим способом из исходной смеси твердых сыпучих материалов при давлениях до 200 бар прессуют стержень, который после выхода из отверстия пресса разрезают с помощью режущего приспособления на гранулы определенного размера или же направляют пластичный и иногда еще влажный сырой экструдат на другой этап переработки для придания частицам другой формы и высушивают его, причем полученные в соответствии с изобретением пропитанные силикаты щелочных металлов вводят в состав исходной смеси.

Готовые моющие и чистящие средства в дополнение к полученным в соответствии с изобретением пропитанным силикатам щелочных металлов могут содержать и другие компоненты.

К ним относятся, главным образом, поверхностно-активные вещества, прежде всего анионные поверхностно-активные вещества, а также, при необходимости, неионогенные поверхностно-активные вещества, но также и катионные, амфотерные и цвиттерионные поверхностно-активные вещества.

В качестве анионных поверхностно-активных веществ сульфонатного типа выступают предпочтительно алкилбензолсульфонаты с числом атомов углерода в алкильных радикалах от девяти до тринадцати, олефинсульфонаты, то есть смеси из алкенсульфонатов и гидроксиалкансульфонатов, а также дисульфонатов, которые получают, например, из моноолефинов с числом атомов углерода от двенадцати до восемнадцати с концевой или расположенной внутри цепи двойной связью при сульфировании их газообразным триоксидом серы с последующим гидролизом образовавшихся продуктов сульфирования в кислых или щелочных средах. Пригодны для этого и алкансульфонаты, которые получают из алканов с числом атомов углерода от двенадцати до восемнадцати в результате, например, сульфохлорирования или сульфоокисления с последующим гидролизом или, соответственно, нейтрализацией. Пригодны и сложные эфиры -сульфонированных жирных кислот (эфиросульфонаты), например, -сульфонированные метиловые эфиры гидрированных кислот кокосового, пальмоядрового масла или жиров животного происхождения. Другими подходящими анионными поверхностно-активными веществами являются -сульфонированные жирные кислоты или их двойные соли, получаемые при расщеплении сложноэфирных связей в алкиловых эфирах -сульфонированных жирных кислот. При крупномасштабном промышленном получении водных смесей моно-солей сложных алкиловых эфиров -сульфонированных жирных кислот они уже содержат ограниченные количества двойных солей. Содержание двойных солей в таких поверхностно-активных веществах составляет обычно менее 50 мас.% от всей смеси поверхностно-активных веществ, например, до величины около 30%.

Другими пригодными анионными поверхностно-активными веществами являются продукты сульфирования сложных эфиров глицерина и жирных кислот, представляющих собой моно-, ди- и триэфиры, а также их смеси, которые получают реакцией этерификации моноглицерина с 1-3 молями жирной кислоты или переэтерификацией триглицеридов с 0,3-2 молями глицерина.

Подходящими поверхностно-активными веществами сульфатного типа являются моноэфиры серной кислоты, получаемые из первичных спиртов натурального или синтетического происхождения. Предпочтительны алкил- или алкенилсульфаты, представленные солями щелочных металлов, особенно натриевыми солями, с моноэфирами серной кислоты и спиртов с числом атомов углерода от двенадцати до восемнадцати, например, спирта на основе кокосового масла, спирта на основе жиров животного происхождения, лаурилового, миристилового, цетилового или стеарилового спирта, спиртов из оксосинтеза с числом атомов углерода от десяти до двадцати, соответствующие моноэфиры вторичных спиртов с аналогичной длиной цепи атомов углерода. Кроме того, предпочтительны алкил- или алкенилсульфаты с углеродной цепью такой же длины, содержащие линейный алкильный остаток, получаемый синтетическим путем на нефтехимической основе, если они подвергаются биодеструкции подобно адекватным соединениям на основе жирового сырья. С точки зрения технологии стирки особенно предпочтительны алкил- и алкенилсульфаты с числом атомов углерода от шестнадцати до восемнадцати. Хорошие характеристики, дающие положительный эффект, главным образом при машинной стирке, можно получить при комбинированном использовании алкил- или алкенилсульфатов с числом атомов углерода от шестнадцати до восемнадцати с более низкоплавкими анионными поверхностно-активными веществами и особенно с такими анионными поверхностно-активными веществами, которые имеют более низкое значение точки Краффта и отличаются невысокой склонностью к кристаллизации при сравнительно низких температурах стирки, например, при температурах от комнатной до 40oC. В предпочтительном варианте реализации изобретения в состав средств вводят смеси сульфатов жирных спиртов с короткими и с длинными углероводородными цепями, предпочтительно смеси алкилсульфатов с числом атомов углерода от двенадцати до четырнадцати или от двенадцати до восемнадцати с алкилсульфатами с числом атомов углерода от шестнадцати до восемнадцати, и особенно предпочтительны смеси алкилсульфатов с числом атомов углерода от двенадцати д