Высокоэффективный усилитель мощности с параллельными каскадами

Реферат

 

Усилительная схема 40 предназначена для выработки усиленного сигнала в ответ на входной сигнал. Усилительная схема 40 содержит входную схему 44 для подачи входного сигнала на выбранный по меньшей мере один усилительный каскад из множества усилительных каскадов. Выходная схема 48 предназначена для ответвления усиленного сигнала с выбранного по меньшей мере одного усилительного каскада. Соответствующий усилительный каскад выбирается с помощью схемы управления 56 в соответствии с желательным уровнем мощности усиленного сигнала путем селективной активизации только усилительного каскада (каскадов), которые необходимы для обеспечения требуемого уровня выходной мощности. Технический результат: повышение КПД по постоянному току в системах, где требуется обеспечить линейную работу усилителя в широком динамическом диапазоне. 6 с. и 6 з.п. ф-лы, 12 ил., 2 табл.

Область техники Настоящее изобретение относится к усилителям сигналов. Более конкретно, настоящее изобретение относится к способам и устройствам для обеспечения высокоэффективного линейного усиления сигналов в широком динамическом диапазоне с использованием множества параллельных усилительных каскадов.

Предшествующий уровень техники Известно использование методов модуляции режима множественного доступа с кодовым разделением каналов (МДКР) для обеспечения связи с большим количеством пользователей системы связи. Хотя известны и другие методы, такие как множественный доступ с временным разделением каналов (МДВР), множественный доступ с частотным разделением каналов (МДЧР), различные схемы амплитудной модуляции, такие как с использованием одной боковой полосы с амплитудным компандированием, однако метод МДКР обеспечивает существенные преимущества по сравнению с указанными известными методами. Использование методов МДКР в системе связи множественного доступа описано в патенте США N 4901307 на "Систему связи множественного доступа с расширенным спектром, использующую спутниковые или наземные ретрансляторы", переуступленном правопреемнику настоящего изобретения.

В указанном патенте рассмотрен метод множественного доступа, при котором большое количество пользователей мобильной телефонной системы, снабженных приемопередатчиками, осуществляют информационный обмен через спутниковые ретрансляторы или наземные базовые станции с использованием сигналов связи с расширенным спектром режима МДКР. При использовании режима МДКР частотный спектр может использоваться многократно, что позволяет увеличить пропускную способность системы для пользователей. Использование МДКР приводит к существенному увеличению спектральной эффективности по сравнению с тем, что имеет место при использовании других методов множественного доступа. В системе МДКР увеличение пропускной способности системы может быть реализовано путем управления передаваемой мощностью портативных устройств пользователей, чтобы снизить взаимные помехи другим пользователям системы.

В наземной сотовой системе связи режима МДКР весьма желательно максимизировать пропускную способность в смысле числа одновременно действующих каналов связи, которые могут поддерживаться в пределах заданной полосы системы. Пропускная способность системы может быть максимизирована, если передаваемая мощность каждого портативного устройства управляется так, чтобы передаваемый сигнал поступал в приемник базовой станции с минимальным отношением сигнал/шумовая помеха, которое обеспечивает приемлемое восстановление данных. Если сигнал, передаваемый портативным устройством, поступает в приемник базовой станции со слишком низким уровнем мощности, то частота ошибок в битах может оказаться слишком высокой для того, чтобы обеспечить высокое качество связи. Если, с другой стороны, канал связи устанавливается путем настройки передаваемого сигнала мобильного устройства так, что он приходит в приемник базовой станции со слишком высоким уровнем мощности, то будут иметь место взаимные помехи передаваемым сигналам других мобильных устройств, которые совместно используют тот же самый канал, т.е. полосу частот. Такие взаимные помехи могут отрицательно влиять на связь с другими портативными устройствами и даже приводить к сокращению числа портативных устройств, осуществляющих связь.

Сигналы, принимаемые от каждого портативного устройства в базовой станции, измеряются, и результаты измерения сравниваются с желательным уровнем мощности. Основываясь на этом сравнении, базовая станция определяет отклонение в уровне принимаемой мощности от того, который необходим для поддержания требуемых каналов связи. Предпочтительно, желательный уровень мощности определяется как минимальный уровень мощности, необходимый для поддержания качества канала связи так, чтобы обеспечить снижение взаимных помех в системе.

Базовая станция затем передает сигнал команды управления мощностью каждому пользователю системы так, чтобы осуществить регулировку или "точную настройку" передаваемой мощности портативного устройства. Этот сигнал команды используется портативным устройством для изменения уровня передаваемой мощности ближе к уровню, требуемому для обеспечения связи в обратной линии связи от портативного устройства к базовой станции. Поскольку условия распространения сигналов в канале меняются, в типовом случае из-за перемещения портативного устройства, то измерение принимаемой мощности от портативного устройства и управляющая обратная связь от базовой станции обеспечивают непрерывную подстройку уровня передаваемой мощности, чтобы поддерживать надлежащий уровень мощности.

Использование подобных методов управления мощностью требует, чтобы передатчик портативного устройства обеспечивал линейный режим работы в относительно широком динамическом диапазоне. Поскольку существующие портативные устройства используют автономное питание от батарей, также необходимо, чтобы усилитель мощности передатчика обеспечивал эффективный линейный режим работы в динамическом диапазоне системы связи МДКР. Ввиду того, что существующие усилители мощности, как с переменным усилением, так и с постоянным усилением, не обеспечивают требуемой эффективности и линейности в широком динамическом диапазоне, то существует потребность в усилителе мощности, обеспечивающем указанные рабочие характеристики.

Сущность изобретения Изобретение относится к усилительному устройству для выработки усиленного сигнала в ответ на входной сигнал таким образом, чтобы обеспечивалось повышение КПД при одновременном сохранении линейности. Усилительное устройство содержит входной коммутатор для подачи входного сигнала на выбранный каскад из первого или второго параллельно соединенных усилительных каскадов, причем первый усилительный каскад имеет смещение для обеспечения постоянного усиления в пределах динамического диапазона первого входного сигнала, а второй усилительный каскад имеет смещение для обеспечения постоянного усиления в пределах динамического диапазона второго входного сигнала. Выходная схема обеспечивает ответвление усиленного сигнала с выбранного усилительного каскада.

В предпочтительном варианте выходная схема содержит выходной коммутатор для соединения выбранного усилительного каскада с выходной точкой, а также содержит схему измерения мощности для измерения мощности усиленного сигнала. Схема управления коммутаторами может предусматриваться для управления соединением входного коммутатора и выходного коммутатора с другим каскадом из числа усилительных каскадов, если измеренная мощность усиленного выходного сигнала выходит за пределы предварительно определенного выходного диапазона. В конкретном варианте осуществления изобретения в цифровом передатчике схема управления коммутаторами обеспечивает возможность входной коммутационной матрице и выходной схеме выбирать другой из усилительных каскадов при переходах между цифровыми кодами или символами во входном сигнале.

В одном из вариантов осуществления входной сигнал подается непосредственно на множество различных транзисторных приборов оконечного каскада. Соответствующие затворы этих приборов развязаны по постоянному току с помощью блокировочных конденсаторов, но связаны между собой на частоте радиочастотного диапазона входного сигнала. Логический блок коммутации селективно обеспечивает выдачу тока смещения по постоянному току только на те транзисторные приборы, которые требуются для усиления входного сигнала. Таким образом, путем смещения только тех приборов, которые необходимы для текущего усиления входного сигнала, эффективность по постоянному току существенным образом улучшается.

Краткое описание чертежей Признаки и преимущества настоящего изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами, на которых представлено следующее: фиг. 1 - схематичное представление сотовой телефонной системы, которая содержит по меньшей мере одну базовую станцию и множество портативных устройств; фиг. 2 - упрощенная блок-схема усилителя с параллельными каскадами, выполненного согласно настоящему изобретению; фиг. 3 - иллюстрация схемы смещения усилительных каскадов А1-А4 в усилителе с параллельными каскадами по фиг. 2; фиг. 4 - блок-схема другого варианта усилителя с параллельными каскадами, выполненного согласно настоящему изобретению; фиг. 5A - один из вариантов осуществления настоящего изобретения, в котором функции входной и выходной коммутации присущи самим усилительным каскадам; фиг. 5B - другой вариант осуществления настоящего изобретения, в котором функции входной и выходной коммутации присущи самим усилительным каскадам; фиг. 6 - блок-схема передатчика сигнала с расширенным спектром портативного устройства, в котором может быть использован высокоэффективный усилитель с параллельными каскадами, соответствующий настоящему изобретению; фиг. 7 - блок-схема радиочастотного передатчика, входящего в состав передатчика сигнала с расширенным спектром по фиг. 6; фиг. 8 - блок-схема возможного варианта осуществления соответствующего изобретению усилителя с параллельными каскадами, предназначенного для усиления сигнала с низким уровнем шумов; фиг. 9 - схематичное представление усилителя на сдвоенном транзисторе, пригодного для использования в качестве отдельного каскада усилителя с параллельными каскадами, соответствующего изобретению; фиг. 10 - иллюстрация передаточной характеристики усилителя с параллельными каскадами, соответствующего изобретению, в котором смежные усилительные каскады смещены по усилению; фиг. 11 - еще один вариант осуществления настоящего изобретения, в котором функции входной и выходной коммутации присущи самим усилительным каскадам.

Детальное описание предпочтительных вариантов осуществления изобретения 1. Общие сведения о системах связи режима МДКР Пример осуществления наземной сотовой телефонной системы связи показан на фиг. 1. Система, представленная на фиг. 1, использует методы модуляции МДКР при осуществлении связи между мобильными пользователями системы и базовыми станциями. Каждый мобильный пользователь осуществляет связь с одной или более базовыми станциями посредством портативного приемопередатчика (например, портативного телефона), каждый из которых содержит передатчик, в котором может быть использован высокоэффективный усилитель мощности с параллельными каскадами, соответствующий настоящему изобретению. В данном описании термин "портативное устройство" используется как относящийся в принципе к удаленной абонентской станции, только в целях данного описания. Заметим, однако, что портативное устройство может быть фиксированным по местоположению. Портативное устройство может представлять собой часть концентрированной абонентской системы множества пользователей. Портативное устройство может использоваться для передачи речевых сигналов, данных или комбинации сигналов разных типов. Термин "портативное устройство" относится к уровню техники и не накладывает никаких ограничений на объем признаков или функции указанного устройства.

Согласно фиг. 1, блок управления и коммутации 10 системы в типовом случае содержит соответствующий интерфейс и аппаратные средства для обеспечения системной управляющей информации для базовых станций. Контроллер 10 управляет маршрутизацией телефонных вызовов от коммутируемой телефонной сети общего пользования (КТСОП) к соответствующей базовой станции для передачи к соответствующему портативному устройству.

Контроллер 10 также управляет маршрутизацией вызовов от портативных устройств по меньшей мере через одну базовую станцию к КТСОП. Контроллер 10 может направлять вызовы между пользователями портативных устройств через соответствующие базовые станции, поскольку портативные устройства в типовом случае не осуществляют связь непосредственно друг с другом.

Контроллер 10 может быть связан с базовыми станциям с помощью различных средств, таких как телефонные линии, оптиковолоконные линии или радиочастотные каналы связи. На фиг. 1 показаны для примера две базовые станции 12 и 14, вместе с двумя портативными устройствами 16, 18. Стрелками 20a-20b и 22a- 22b соответственно обозначены возможные линии связи между базовой станцией 12 и портативными устройствами 16 и 18. Аналогичным образом, стрелками 24a-24b и стрелками 26a-26b обозначены соответственно каналы связи между базовой станцией 14 и портативными устройствами 18 и 16. Базовые станции 12 и 14 в обычном состоянии осуществляют передачи с использованием одинакового уровня мощности.

Портативное устройство 16 измеряет полную мощность, принятую от базовых станций 12 и 14 по каналам 20a-20b. Аналогично, портативное устройство 18 измеряет полную мощность, принятую от базовых станций 12 и 14 по каналам 22a-22b. В каждом из портативных устройств 16 и 18 мощность сигнала измеряется в приемнике, причем сигнал представляет собой широкополосный сигнал. Соответственно, это измерение мощности осуществляется до корреляционной обработки принимаемого сигнала с использованием псевдошумового сигнала расширения спектра.

Если портативное устройство 16 находится ближе к базовой станции 12, то мощность принятого сигнала будет преобладающей в канале распространения сигнала 20a. Если портативное устройство 16 находится ближе к базовой станции 14, то мощность принятого сигнала будет преобладающей в канале распространения сигнала 26a. Аналогично если портативное устройство 18 находится ближе к базовой станции 14, то мощность принятого сигнала будет преобладающей в канале распространения сигнала 24a. Если портативное устройство 18 находится ближе к базовой станции 12, то мощность принятого сигнала будет преобладающей в канале распространения сигнала 22a.

Каждое из портативных устройств 16 и 18 использует полученные результаты измерения для оценки потерь в канале для ближайшей базовой станции. Оценка потерь в канале вместе с априорно известным усилением антенны портативного устройства и параметром G/T базовой станции используется для определения номинальной передаваемой мощности, требуемой для получения требуемого отношения сигнал на несущей/помеха в приемнике базовой станции. Известность в портативных устройствах параметров базовых станций может обеспечиваться либо запоминанием в памяти, либо передаваться в сигналах вещательной информации базовой станции при установке канала, для указания иных, чем номинальные условия для конкретной базовой станции.

Когда портативные устройства 16, 18 перемещаются в пределах ячеек, становится необходимым регулировать передаваемую мощность каждого из них в широком динамическом диапазоне. Хотя существуют усилители мощности, которые способны обеспечить усиление сигнала в широком динамическом диапазоне, однако связанные с этим регулировки усиления приводят к усложнению конфигурации остальной части передатчика портативного устройства. Помимо обеспечения постоянного усиления, также желательно, чтобы передающий усилитель портативного устройства обеспечивал экономию ресурса батареи питания при эффективном функционировании во всем динамическом диапазоне, представляющем интерес. В соответствии с изобретением предложен высокоэффективный линейный усилитель мощности, который удовлетворяет вышеуказанным и иным требованиям.

2. Общие характеристики усилителя мощности с параллельными каскадами На фиг. 2 показана упрощенная блок-схема усилителя 40 с параллельными каскадами, соответствующего настоящему изобретению. Входной сигнал, в типовом случае модулированный в цифровой форме радиочастотный сигнал связи, принимается входной схемой 44 от модулятора передаваемого радиочастотного сигнала (не показан). Входная схема 44 передает входной сигнал по меньшей мере на один усилитель из набора из четырех параллельных усилительных каскадов А1-А4. В простейшем варианте входная схема 44 представляет собой коммутационную матрицу, которая селективно подает входной сигнал на один из параллельных каскадов А1-А4 усилителей. Однако в других вариантах осуществления входная схема 44 (см. фиг. 4) может осуществлять коммутацию входов таким образом, чтобы снижать искажения и потери сигнала. В предпочтительном варианте осуществления каждый из усилительных каскадов А1-А4 включает в себя усилитель мощности на высокочастотном полевом транзисторе или на биполярном плоскостном транзисторе.

Выходы усилительных каскадов А1-А4 связаны с выходной схемой 48, которая ответвляет усиленный радиочастотный сигнал с выхода выбранного усилительного каскада или каскадов А1-А4 в выходную точку 52 усилителя. Хотя выходная схема 48 может быть реализована с использованием коммутационной матрицы или тому подобного средства, иные варианты осуществления выходной схемы 48, описанные ниже (см. фиг. 4), обеспечивают коммутацию выходов таким образом, чтобы минимизировать искажения и потери сигнала. Усиленный радиочастотный сигнал подается на передающую антенну (не показана), а также на логический блок 56 коммутации. Логический блок 56 коммутации контролирует уровень усиленного радиочастотного сигнала в выходной точке 52 и подает команды входной схеме 44 и выходной схеме 48 для выбора усилительного каскада А1-А4, предназначенного для выдачи выходной мощности в диапазоне, включающем контролируемый уровень выходного сигнала. В другом варианте осуществления логический блок 56 коммутации может контролировать принимаемый уровень мощности или команды управления мощностью от соответствующей базовой станции.

В предпочтительном варианте, показанном на фиг. 3, усилительные каскады А1-А4 имеют смещение, обеспечивающее идентичное усиление в различных диапазонах выходного сигнала. В рассматриваемом варианте усилительный каскад А1 имеет смещение, обеспечивающее линейное усиление примерно 28 дБ для выходной мощности до 5дБ мВт в ответ на входные сигналы с уровнями до -23 дБ мВт. Аналогичным образом, каждый из усилительных каскадов А2, А3, А4 имеет смещение, обеспечивающее то же самое усиление, что и в каскаде А1, в других диапазонах выходных сигналов. Более конкретно, в примере, показанном на фиг. 3, усилительный каскад А2 вырабатывает энергию выходного сигнала в диапазоне 5-15 дБ мВт в ответ на входные сигналы от -23 до -13 дБ мВт, а усилительные каскады А3 и А4 вырабатывают энергию выходных сигналов от 15 до 25 дБ мВт и от 24 до 28 дБ мВт для входных сигналов от -13 до -4 дБ мВт и от -4 до +1 дБ мВт соответственно. Если усилительные каскады реализованы на полевых транзисторах или на биполярных плоскостных транзисторах, то может быть использована схема смещения (не показана) для подачи на каждый усилительный каскад тока смещения, уровень которого необходим для работы в определенном выходном диапазоне. Следует отметить, что значения усиления и диапазоны, представленные на фиг. 3, приведены лишь для примера, и в других вариантах осуществления могут быть использованы другие диапазоны входной и выходной мощности.

С учетом конкретного варианта, иллюстрируемого на фиг. 3, предположим, что уровень входного сигнала возрастает и приближается к значению -23 дБ мВт. В этом случае входной сигнал будет прикладываться к усилительному каскаду А1 до тех пор, пока логический блок 56 коммутации не определит, что уровень радиочастотного выходного сигнала возрос примерно до 5 дБ мВт. В этот момент логический блок 56 коммутации подает команду на входную схему 44 подать входной сигнал на усилительный каскад А2 и подает команду на выходную схему 48 о съеме полученного в результате усиленного радиочастотного выходного сигнала с усилительного каскада А2 с выходной точки 52. Такой же переход между усилительными каскадами А2 и А3 и между каскадами А3 и А4 управляется логическим блоком 56 коммутации до тех пор, пока уровень радиочастотного выходного сигнала не достигнет соответственно значений 15 и 24 дБ мВт. Дополнительно, логический блок 56 коммутации может обеспечивать гистерезис для предотвращения возможности избыточной коммутации между соседними усилительными каскадами А1-А4, когда уровень входного сигнала изменяется вблизи граничных значений, соответствующих переходам. Поскольку каждый из усилительных каскадов А1-А4 реализован для обеспечения идентичного усиления в определенном диапазоне радиочастотного выходного сигнала, усилитель с параллельными каскадами 40 воспринимается остальными элементами схемы как единый усилитель, имеющий постоянное усиление во всем выходном диапазоне. Эта характеристика настоящего изобретения выгодным образом упрощает конфигурирование взаимосвязанных радиочастотных схем, поскольку она позволяет избежать необходимости учитывать вариации усиления во всем диапазоне выходных сигналов. Следует отметить, что хотя предпочтительно только один из индивидуальных усилительных каскадов А1-А4, иллюстрируемых с помощью фиг. 3, может включаться в каждый данный момент времени, в других вариантах осуществления, описанных ниже, в каждый данный момент времени могут включаться и выключаться различные комбинации усилительных каскадов для получения требуемого радиочастотного выходного сигнала.

Как показано на фиг. 2, информация синхронизации, относящаяся к граничным значениям между цифровыми словами или символами, присущая модулированному в цифровой форме входному сигналу, выдается на логический блок 56 коммутации с местного управляющего процессора. В соответствии с другим аспектом изобретения, логический блок 56 коммутации только подает команду на входную схему 44 и на выходную схему 48 для выбора одного из различных усилительных каскадов А1-А4 при переходах между цифровыми словами или символами во входном сигнале. Это гарантирует, что любая разность фаз между сигнальными трактами в усилительных каскадах А1-А4 не искажает целостность цифровой информации, передаваемой усиленным радиочастотным выходным сигналом. Например, при использовании формата модуляции МДКР, как описано ниже, цифровой поток входных данных кодируется с использованием набора ортогональных кодов Уолша или "символов". В этом варианте логический блок 56 коммутации подает команду на входную схему 44 и на выходную схему 48 для коммутации усилительных каскадов А1-А4 при переходах между символами Уолша. Поскольку в рассматриваемом примере период каждого символа Уолша весьма короткий (например, 3,25 мс) по сравнению со скоростью изменения выходной радиочастотной мощности, то, как правило, будет иметься ряд возможностей для коммутации между усилительными каскадами вблизи моментов перехода уровня радиочастотного выходного сигнала в другой выходной диапазон.

На фиг. 4 показана блок-схема другого варианта осуществления усилителя 90 с параллельными каскадами, соответствующего изобретению. Входной сигнал, в типовом случае модулированный в цифровой форме радиочастотный сигнал связи, принимается первым делителем 94 в фазовой квадратуре (квадратурным делителем). Первый квадратурный делитель 94 делит входной сигнал на пару составляющих входного сигнала, амплитуды которых равны, а фазы находятся в квадратурном соотношении (со сдвигом на 90o). Квадратурные составляющие сигнала с первого делителя 94 подаются на второй и третий квадратурные делители 98 и 102. Второй делитель 98 подает выходные сигналы с фазами в квадратуре на элементы регулировки усиления G1 и G2, а третий делитель 102 подает выходные сигналы с фазами в квадратуре на элементы регулировки усиления G3 и G4. Элементы регулировки усиления G1- G4 последовательно соединены с соответствующими усилителями с постоянным усилением F1-F4, причем каждое последовательное соединение одного из элементов регулировки усиления с соответствующим усилителем с постоянным усилением образует усилительный каскад с регулируемым усилением.

Выходы усилительных каскадов с регулируемым усилением объединяются с использованием схемы, состоящей из первого, второго, третьего и четвертого квадратурных сумматоров 106, 110 и 114. Полученный в результате усиленный выходной сигнал подается на передающую антенну (не показана), а также на логический блок 118 регулировки усиления. Логический блок 118 регулировки усиления обеспечивает установку общего усиления усилителя путем выбора различных комбинаций усилительных каскадов с регулируемым усилением и путем установки усиления каждого из каскадов с регулируемым усилением. В рассматриваемом примере по фиг. 4 каждый из усилителей F1-F4 с постоянным усилением имеет смещение для обеспечения идентичного номинального усиления N дБ, а каждый элемент регулировки усиления G1-G4 может быть установлен на усиление/ослабление -3 дБ или на 0 дБ. Это позволяет установить желательный уровень радиочастотной выходной мощности путем настройки усиления выбранных усилительных каскадов с регулируемым усилением, как показано в таблице 1.

Согласно первой строке таблицы 1, когда включены все усилители F1-F4 и каждый из элементов регулировки усиления G1-G4 установлен на -3 дБ, формируется выходная мощность N дБ. Если уровень входного сигнала снижается так, что радиочастотная выходная мощность приближается к значению (N-3) дБ, то усилители с постоянным усилением F3 и F4 выключаются, и элементы регулировки усиления G1 и G2 устанавливаются на 0 дБ. Как показано в таблице 1, если усилители F3 и F4 выключены, установки элементов регулировки усиления не применяются. Если затем желательно снизить радиочастотную выходную мощность до уровня (N-6) дБ, то усилитель с постоянным усилением F2 выключается, а элемент регулировки усиления G1 вновь устанавливается на 0 дБ. И вновь, информация синхронизации с управляющего процессора позволяет логическому блоку 118 регулировки усиления коммутировать усилители постоянного усиления F1-F4 только при переходах между цифровыми словами или символами, содержащимися во входном сигнале, причем логический блок 118 регулировки усиления может обеспечивать гистерезис для предотвращения возможности избыточной коммутации элементов регулировки усиления G1-G4 и усилителей с постоянным усилением F1- F4, когда уровень входного сигнала изменяется вблизи граничных значений, соответствующих переходам.

Выходной импеданс усилительных каскадов не имеет значения, когда они выключены, ввиду наличия первого, второго и третьего квадратурных сумматоров 106, 110 и 114. Однако эффективность по постоянному току поддерживается включением только тех усилительных каскадов F1-F4, которые необходимы для формирования требуемой выходной радиочастотной мощности.

Следует отметить, что хотя на фиг. 4 представлен предпочтительный вариант осуществления, однако возможны и другие варианты осуществления, использующие фазовый сдвиг и суммирование. Например, элементы регулировки усиления G1-G4 могут быть заменены только двумя элементами регулировки усиления, каждый из которых включен непосредственно перед квадратурными делителями 98 и 102 соответственно. Как вариант, единственный элемент регулировки усиления может быть включен непосредственно перед квадратурным делителем 94. В предельном случае элементы регулировки усиления G1-G4 могут быть вообще исключены, причем получающееся в результате изменение в общем усилении усилителя 90 будет компенсироваться другими схемами в системе, соответствующей настоящему изобретению. Кроме того, квадратурные делители 94, 98 и 102, а также квадратурные сумматоры 106, 110 и 114 могут быть заменены фазовращателями любого типа. Следует также отметить, что число квадратурных делителей и сумматоров определяется только числом параллельных усилительных каскадов.

На фиг. 5А представлен еще один вариант осуществления настоящего изобретения, причем выбор усилительных каскадов выполняется путем включения/выключения транзисторных усилителей, содержащихся в каждом каскаде. В устройстве по фиг. 5А каждый усилительный каскад А1-А4 содержит один или более полевых транзисторов. Однако следует иметь в виду, что каждый из этих усилительных каскадов может содержать биполярный плоскостной транзистор или иной активный прибор. Конкретный каскад выбирается путем активизации полевого транзистора этого каскада, и отмена этого выбора производится путем выключения конкретного полевого транзистора при обеспечении того, что выходной импеданс отключенного полевого транзистора достаточно высок для минимизации отрицательного влияния отключенных по питанию полевых транзисторов. Таким образом, аддитивная комбинация желательного числа каскадов обеспечивается путем селективного включения/выключения полевых транзисторов для каждого из каскадов А1-А4. В отличие от варианта по фиг. 2, функции коммутации по входу и функции коммутации по выходу внутренне присущи самим полевым транзисторам. Таким образом, логический блок 56 коммутации управляет непосредственно усилительными каскадами А1-А4.

Выходная схема 48 содержит согласующие элементы 66-69, подсоединенные соответственно между усилительными каскадами А1-А4 и выходной точкой 52. Согласующие элементы 66-69 служат для того, чтобы обеспечивать оптимальное согласование по мощности между выходами усилительных каскадов А1-А4 и антенной (не показана), связанной с выходной точкой 52. Каждая комбинация усилительного каскада А1-А4 и связанного с ним согласующего элемента 66-69 обеспечивает практически эквивалентное усиление сигнала, и каждая такая комбинация включается/выключается логическим блоком 56 коммутации, как это необходимо для достижения желательного уровня выходной мощности. Соответственно, только определенное число усилительных каскадов А1-А4, необходимое для формирования желательного уровня выходной мощности, включается в любой данный момент времени, тем самым обеспечивая экономию мощности постоянного тока и поддерживая практически постоянный КПД. Кроме того, за счет использования индивидуальных каскадов А1-А4 для реализации функции выходной коммутации и выходной схемы 48, содержащей согласующие элементы 66-69, можно избежать потерь мощности и искажений сигнала, связанных с коммутацией.

На фиг. 5В показан еще один вариант осуществления настоящего изобретения, в котором один или несколько усилительных элементов или транзисторов включены между выходом каждого усилительного каскада А1-А4 и промежуточной точкой 72. Вариант по фиг 5В похож на вариант по фиг. 5А. Однако вместо использования индивидуальных согласующих схем 66-69 для каждого усилительного каскада, оконечное усилительное устройство 85, содержащее множество усилительных элементов 74-84 в составе оконечного усилительного устройства 85, связано с одной согласующей схемой 86. В рассматриваемом примере осуществления по фиг. 5В одиночный транзисторный усилительный элемент 74 подсоединен между каскадом А1 и промежуточной точкой 72. Аналогично, одиночный транзисторный усилительный элемент 76 подсоединен между каскадом А2 и промежуточной точкой 72. Пара транзисторных усилительных элементов 78, 80 подсоединена между каскадом А3 и промежуточной точкой 72, и другая пара транзисторных усилительных элементов 82, 84 подсоединена между каскадом А4 и промежуточной точкой 72. В противоположность использованию выходной схемы, показанной на фиг. 5А, реализация по фиг. 5В использует одно оконечное усилительное устройство 85, в котором каждый из индивидуальных усилительных элементов 74-84 в составе оконечного усилительного устройства 85 может иметь отдельный вход. Это позволяет уменьшить физические габариты и вес и обеспечить изготовление оконечного усилительного устройства 85 на одном кристалле. Как и в варианте по фиг. 5А, не требуется выходной коммутатор, поскольку если усилительные элементы 74-84 выполнены на биполярных плоскостных транзисторах или на полевых транзисторах, то их смещение при выключении переводит соответствующие их выходы в состояние высокого импеданса, при минимальной реальной нагрузке.

Каждый усилительный элемент 74-84 включается/выключается посредством тока смещения, обеспечиваемого предшествующим ему усилительным каскадом А1-А4. Путем включения/выключения определенного набора транзисторных усилительных элементов, обеспечивается получение требуемого уровня выходной мощности. Следует отметить, что в данном примере осуществления, когда каскад А3 или А4 активизирован, формируется достаточный ток смещения, обеспечивающий включение обоих транзисторных усилительных элементов (78, 80) или (82, 84) соответственно. Следует также отметить, что хотя каждый из усилительных каскадов А3 и А4 возбуждает два отдельных транзисторных элемента (78, 80) или (82, 84) соответственно, в других вариантах осуществления может использоваться большее или меньшее число транзисторных усилительных элементов в каждом каскаде.

Рассмотрим пример осуществления усилителя по фиг. 5А, в котором каждый транзисторный усилительный элемент 74-84 обеспечивает мощность примерно 1 Вт при смещении в проводящее состояние предшествующим усилительным каскадом А1-А4. В таблице 2 приведены различные уровни выходной мощности, формируемые в этом варианте осуществления, когда различные комбинации транзисторных усилительных элементов смещены в проводящее состояние соответствующими усилительными каскадами А1-А4. Из таблицы 2 можно видеть, что путем включения каждого усилительного каскада А1 или А2, полная радиочастотная выходная мощность может быть увеличена на 1 Вт, в то время как включение каждого из усилительных каскадов А3 или А4 приводит к увеличению радиочастотной выходной мощности на 2 Вт. Таким образом, согласно способу, иллюстрируемому таблицей 2, конкретный вариант осуществления по фиг. 2 может быть использован для генерирования изменяющихся уровней радиочастотной выходной мощности от 1 до 6 Вт путем использования четырех усилительных каскадов А1-А4 и поддержания КПД по постоянному току за счет смещения по постоянному току только тех каскадов, которые необходимы для генерирования желательного уровня выходной мощности. Отметим, что в таблице 2 приведен лишь возможный вариант осуществления и что транзисторные усилительные элементы 74-84 могут быть спроектированы для выработки мощности, как больше, так и меньше, чем 1 Вт. Однако выбор каждого усилительного элемента 74-84 с одинаковыми размерами существенно упрощает изготовление оконечного усилительного устройства 85.

В примере осуществления, иллюстрируемом на фиг. 5В, представленном первой строкой таблицы 2, если только один усилительный каскад и связанный с ним транзисторный усилительный элемент, например А1 и транзистор 74, смещены в проводящее состояние, то все остальные каскады А2-А4 смещены в непроводящее состояние, при этом реактивная нагрузка транзисторов в непроводящем состоянии (76, 78, 89, 82, 84) не может обеспечить оптимальное согласование при использовании только одной выходной согласующей схемы 86. Однако достигается улучшенный КПД по постоянному току на низких уровнях выходной мощности, например 1 Вт, как показано в таблице 1. Кроме того, любое рассогласование в усилении может быть отрегулировано в индивидуальных усилительных каскадах, в данном случае А1, или в соответствующей системе, в которой использовано устройство, соответствующее изобретению.

Еще один вариант осуществления, похожий на представленный на фиг. 5В, показан на фиг. 11. Вариант по фиг. 11 отличается от варианта по фиг. 5В тем, что входной сигнал не проходит через четыре и