Транзитная система связи для коммутируемого потока трафика
Реферат
Изобретение относится к транзитным системам связи для коммутируемого потока информационного обмена - трафика и, в частности, к транзитным системам, которые используют системы с асинхронной передачей данных (АПД). Транзитная система связи содержит средство обработки для приема информации сигнализации, связанной поступающим коммутируемым трафиком, асинхронное средство организации межсетевого обмена для приема поступающего коммутируемого трафика и для преобразования поступающего коммутируемого трафика в асинхронный трафик в ответ на управляющую информацию, средство маршрутизации для направления асинхронного трафика из асинхронной системы организации межсетевого обмена через матрицу на основе выбранного идентификатора, линию для переноса управляющей информации между системой обработки и асинхронной системой организации межсетевого обмена. Способ функционирования транзитной системы связи включает операции над сигналами, реализуемые упомянутыми узлами. Достигаемый технический результат - обеспечение транзитной функции между коммутируемыми системами без необходимости в коммутируемом переключателе, без запрашивания полного набора логики комплексной маршрутизации. 2 с. и 10 з.п.ф-лы, 18 ил.
Изобретение относится к транзитным системам для коммутируемого потока информационного обмена (трафика) и, в частности, к транзитным системам, которые используют системы с асинхронной передачей данных (АПД), чтобы соединять между собой различные коммутируемые сети или сетевые элементы.
Транзитная функция используется для того, чтобы уплотнять и переключать трафик связи между сетями, переключателями и иными сетевыми элементами. Фиг. 1 отображает обычный транзитный коммутатор, известный из уровня техники. Три переключателя и сетевой элемент объединены в транзитный коммутатор. Этот транзитный коммутатор позволяет переключателям соединяться с сетевым элементом без непосредственного соединения между переключателями и сетевым элементом. Он также позволяет каждому переключателю соединяться с каждым другим переключателем без непосредственного соединения между всеми переключателями. Эта экономия в соединениях и группообразовании является одним из преимуществ транзитных коммутаторов. Вдобавок к этому, соединение между транзитным коммутатором и сетевым элементом использует частотный диапазон более эффективно, потому что на транзитном коммутаторе трафик уплотняется. Кроме того, транзитный коммутатор может использоваться для уплотнения трафика, который поступает на другие сети. Соединения, показанные на фиг. 1 сплошными линиями, являются коммутируемыми соединениями. Коммутируемые соединения хорошо известны в уровне техники из некоторых примеров, являющихся соединениями временного уплотнения (ВУ), такими как соединения DS3, DSI, E3, E1 или E0. Соединения DS3 переносят непрерывный транспортный сигнал со скоростью 44,736 мегабит в секунду. Соединения DS1 переносят непрерывный транспортный сигнал со скоростью 1,544 мегабит в секунду. Соединения DSO переносят непрерывный транспортный сигнал со скоростью 64 килобит в секунду. Как известно, соединения DS3 могут состоять из множества соединений DS1, которые в свою очередь могут состоять из множества соединений DSO. Линии сигнализации, показанные пунктирными линиями, могут быть обычными линиями сигнализации, например линиями SS7, C7 или ISDN. Переключатели, показанные на фиг. 1, представляют собой общеизвестные переключатели каналов, примерами которых являются Nortel DMS-250 или Lucent 5ESS. Транзитный коммутатор обыкновенно содержит переключатели каналов, которые соединяют между собой соединения DS3, DSI или DSO. Хорошо известны характеристики стоимости и эффективности, относящиеся к транзитным коммутаторам. Для многих сетей введение транзитных коммутаторов является неоправданным до тех пор, пока эффективность, обеспечиваемая транзитной функцией, станет более весомой по отношению к стоимости транзитного коммутатора. Это проблематично, поскольку неэффективность допустима, пока она не станет более весомой, чем высокая стоимость транзитного коммутатора. В настоящее время имеется потребность в более доступной и эффективной транзитной системе коммутации. Изобретение относится к транзитной системе связи и способу обеспечения транзитного соединения для вызова. Транзитная система содержит первый мультиплексор межсетевого обмена АПД, перекрестный соединитель АПД, второй мультиплексор межсетевого обмена АПД и процессор сигнализации. Первый мультиплексор межсетевого обмена АПД принимает коммутируемый поток информационного обмена (трафик) для вызова из первого коммутируемого соединения. Он преобразует коммутируемый трафик в пакеты АПД, которые идентифицируют выбранное виртуальное соединение на основе первого управляющего сообщения, и передает пакеты АПД. Перекрестный соединитель АПД подключен к первому мультиплексору межсетевого обмена АПД. Он принимает пакеты АПД от первого мультиплексора межсетевого обмена АПД и направляет пакеты АПД на выбранное виртуальное соединение, идентифицированное в этих пакетах АПД. Второй мультиплексор межсетевого обмена АПД подключен к перекрестному соединителю АПД. Он принимает пакеты АПД от перекрестного соединителя АПД. Он преобразует пакеты АПД в коммутируемый поток информационного обмена (трафик) и передает коммутируемый трафик по выбранному второму коммутируемому соединению на основе второго управляющего сообщения. Процессор сигнализации связан линиями с первым мультиплексором межсетевого обмена АПД и вторым мультиплексором межсетевого обмена АПД. Он принимает и обрабатывает сигнализацию связи для вызова, чтобы выбрать виртуальное соединение и второе коммутируемое соединение. Он выдает первое управляющее сообщение для вызова на первый мультиплексор межсетевого обмена АПД и выдает второе управляющее сообщение для вызова на второй мультиплексор межсетевого обмена АПД. Первое управляющее сообщение идентифицирует первое коммутируемое соединение и выбранное виртуальное соединение. Второе управляющее сообщение идентифицирует выбранное виртуальное соединение и выбранное второе коммутируемое соединение. В результате транзитное соединение образуется первым комментируемым соединением, выбранным виртуальным соединением и выбранным вторым коммутируемым соединением. В различных других вариантах осуществления транзитная система обеспечивает транзитное соединение для вызова между: двумя коммутируемыми переключателями, двумя коммутируемыми переключающими сетями, коммутируемым переключателем и платформой расширенных услуг, каналом занятой локальной телефонной сети и каналом конкурирующей локальной телефонной сети, каналом первой конкурирующей локальной телефонной сети и каналом второй конкурирующей локальной телефонной сети с несущей, каналом локальной телефонной сети и каналом междугородней телефонной сети, каналом локальной телефонной сети и каналом международной телефонной сети с несущей, каналом междугородней телефонной сети и каналом международной телефонной сети. В различных выполнениях процессор сигнализации выбирает соединения для вызова на основе: сообщения установки вызова, начального адресного сообщения Системы сигнализации N 7 (НАС SS7), вызываемого номера, области плана нумерации или кода области NPA, кода обмена, NXX, NPA-NXX, сети места назначения, кода выбора транзитной сети, параметра идентификации канала, признака адреса, идентификатора сетевого элемента, локального маршрутного номера или группы магистральных каналов. В различных элементах многочисленные физические ограничения также могут отличать изобретение. Первый мультиплексор межсетевого обмена АПД и второй мультиплексор межсетевого обмена АПД могут быть встроены в единый мультиплексор межсетевого обмена АПД. Первое управляющее сообщение и второе управляющее сообщение могут быть встроены в единое управляющее сообщение. Первый мультиплексор межсетевого обмена АПД, второй мультиплексор межсетевого обмена АПД, перекрестный соединитель АПД могут физически располагаться в одном и том же месте. Процессор сигнализации, первый мультиплексор межсетевого обмена АПД, второй мультиплексор межсетевого обмена АПД и перекрестный соединитель АПД могут физически располагаться в одном и том же месте. Преимущественно изобретение обеспечивает транзитную функцию между коммутируемыми системами без необходимости в коммутируемом переключателе или переключателе АПД. Изобретение способно совершать различные виды транзитной маршрутизации без запрашивания полного набора логики комплексной маршрутизации. К примеру, изобретение может лишь анализировать сетевой код места назначения, чтобы выбрать транзитное соединение, и может опускать необходимость анализировать вызываемый номер. Изобретение также способно обеспечить интерфейс АПД. Фиг. 1 является блок-схемой варианта прототипа. Фиг. 2 является блок-схемой варианта настоящего изобретения. Фиг. 3 является блок-схемой варианта настоящего изобретения. Фиг. 4 является блок-схемой варианта настоящего изобретения. Фиг. 5 является блок-схемой варианта настоящего изобретения. Фиг. 6 является логической схемой варианта изобретения. Фиг. 7 представляет собой диаграмму последовательности сообщений в варианте изобретения. Фиг. 8 является блок-схемой варианта настоящего изобретения. Фиг. 9 является блок-схемой варианта настоящего изобретения. Фиг. 10 является блок-схемой варианта настоящего изобретения. Фиг. 11 отображает пример таблицы каналов магистрали. Фиг. 12 отображает пример таблицы группы магистралей. Фиг. 13 отображает таблицу исключений. Фиг. 14 отображает таблицу АОН. Фиг. 15 отображает пример таблицы вызываемых номеров. Фиг. 16 отображает пример таблицы маршрутизации. Фиг. 17 отображает пример таблицы обработки. Фиг. 18 отображает пример таблицы сообщений. Для ясности термин "соединение" будет использоваться для названия среды передачи, используемой для переноса пользовательского трафика. Термин "линия" будет использоваться для названия среды передачи, используемой для переноса сообщений сигнализации или управления. Фиг. 1 отображает транзитный переключатель прототипа. Показаны три переключателя, подключенные к сетевому элементу через транзитный коммутатор. Два переключателя также соединены друг с другом через транзитный коммутатор. Использование транзитного коммутатора устраняет потребность в непосредственных соединениях между всеми этими переключателями и сетевыми элементами. Использование транзитного коммутатора устраняет также потребность в непосредственных соединениях между самими переключателями. Как правило, транзитный коммутатор состоит из обычного переключателя каналов. Фиг. 2 отображает вариант настоящего изобретения. Показана транзитная система 200, переключатель 210, переключатель 212, переключатель 214 и сетевой элемент 290. Переключатели 210, 212 и 214 подключены к транзитной системе 200 соединениями 220, 222 и 224 соответственно. Переключатели 210, 212 и 214 связаны с транзитной системой 200 линиями 230, 232 и 234 соответственно. Как установлено выше, "соединения" переносят трафик, а "линии" переносят сигнализацию связи и управляющие сообщения. Транзитная система 200 также соединена и связана линиями с сетевым элементом 290 с помощью соединения 226 и линии 236. Специалистам известно, что большие сети имеют намного больше компонент, чем показано. К примеру, обычно может иметься множество переключателей и сетевых элементов, соединенных через транзитную систему 200. Специалистам известно, что для передачи сигнализации среди различных компонент можно использовать пункт передачи сигнала (ППС). Число компонент на фиг. 2 ограничено для ясности. Изобретение же полностью применимо к большим сетям. Переключатели 210, 212 и 214 могут быть обычными переключателями каналов или любым источником коммутируемого трафика. Сетевой элемент 290 представляет любой элемент, который принимает коммутируемый трафик. Примерами таких сетевых элементов являются переключатели и платформы расширенных услуг. Часто сетевой элемент 290 будет в иной сети связи, нежели переключатели 210, 212 и 214. Соединения 220, 222, 224 и 226 могут быть любыми соединениями, которые передают коммутируемый трафик. Обычно они являются соединениями DS3 или DS1. Как правило, общее соединение DS0, используемое для обычных речевых вызовов, встроено в соединения DS3 или DS3. Линии 230, 232, 234 или 236 представляют собой любые линии, которые переносят сигнализацию связи или управляющие сообщения, примером чего является линия Системы сигнализации N 7 (SS7). Специалистам известны коммутируемый трафик и сигнализация. Транзитная система 200 составлена из компонент, которые обеспечивают прием коммутируемого трафика и сигнализации, а затем переключение трафика в нужное место назначения согласно сигнализации. Примером может служить осуществляемая переключателем 210 обработка вызова, предназначенного для сетевого элемента 290. Переключатель 210 займет соединение вызова в соединении 220 к транзитной системе 200. Обычно это соединение вызова представляет собой DS0, встроенное в DS3. Кроме того, переключатель 210 направляет начальное адресное сообщение (НАС) к транзитной системе 200 по линии 230. НАС содержит такую информацию, как набранный номер, номер вызывающей стороны и код идентификации канала (КИК). КИК идентифицирует поступающее DSO в соединении 220, которое используется для вызова. Транзитная система 200 принимает и обрабатывает НАС и выбирает исходящее соединение для вызова. В этом примере им будет DS0, встроенное в соединение 226 к сетевому элементу 290. В результате транзитная система 200 соединит DS0 в соединении 220 с выбранным DS0 в соединении 226. Дополнительно транзитная система 200 может послать НАС или иное сообщение к сетевому элементу 290 по линии 236. Та же самая основная процедура может использоваться для соединения вызова от переключателя 214 к переключателю 212 или для соединения вызова от сетевого элемента 290 к переключателю 214. Транзитная система 200 работает с использованием следующего метода. Транзитная система 200 преобразует поступающий коммутируемый трафик в пакеты асинхронной передачи данных (АПД). Она также обрабатывает поступающую сигнализацию, связанную с трафиком, для выбора подходящих соединений АПД для пакетов АПД. Затем она направляет пакеты АПД через матрицу АПД. После прохождения матрицы пакеты АПД преобразуются обратно в формат канала и подаются в выбранное коммутируемое соединение. Управляя выбором соединения АПД и коммутируемого соединения, транзитная система 200 способна соединять любое входное коммутируемое соединение с любым выходным коммутируемым соединением. К примеру, любое поступающее DS0 может соединяться с любым исходящим DS0 путем выбора подходящего виртуального канала АПД и выходного DS0 в транзитной системе. Следует отметить, что использование АПД может быть полностью внутренним для транзитной системы 200 и может быть прозрачным для внешней сети снаружи от транзитной системы 200. В некоторых выполнениях транзитная система 200 может также принимать и передавать трафик АПД в дополнение к коммутируемому трафику. Фиг. 3 отображает транзитную систему 300, которая является вариантом транзитной системы по фиг. 2. Для специалистов очевидны отличия от этого варианта, которые также учитываются изобретением. Транзитная система 300 имеет соединения 320, 322, 324 и 326, которые соответствуют соединениям 220, 222, 224 и 226 на фиг. 2. Транзитная система 300 имеет линии 330, 332, 334 и 336, которые соответствуют линиям 230, 232, 234 и 236 на фиг. 2. Транзитная система 300 состоит из процессора 350 сигнализации, мультиплексора 360 межсетевого обмена АПД (мультиплексора), мультиплексора 362, мультиплексора 364 и перекрестного соединителя 370. Мультиплексор 360 соединен с перекрестным соединителем 370 с помощью соединения 380. Мультиплексор 362 соединен с перекрестным соединителем 370 с помощью соединения 382. Мультиплексор 364 соединен с перекрестным соединителем 370 с помощью соединения 384. Мультиплексоры 360, 362 и 364 связаны с процессором 350 сигнализации линией 390. Соединения 380, 382 и 384 могут быть любыми соединениями, которые поддерживают АПД. Линия 390 может быть линией, способной переносить управляющие сообщения. Примерами такой линии могут быть линии SS7, UDP/IP или TCP/IP по сети Ethernet либо шинная конфигурация, использующая обычный шинный протокол. Процессор 350 сигнализации представляет собой любую обрабатывающую платформу, которая может принимать и обрабатывать сигнализацию для выбора виртуальных соединений и коммутируемых соединений, а затем генерировать и передавать сообщения для идентификации вариантов выбора. Изобретение учитывает различные виды сигнализации, включая ISDN, SS7 и C7. Предпочтительное выполнение процессора сигнализации подробно рассматривается ниже. Мультиплексоры 360, 362 и 364 могут представлять собой любую систему, обеспечивающую организацию межсетевого обмена трафика между форматами АПД и не-АПД в соответствии с управляющими сообщениями от процессора 350 сигнализации. Эти управляющие сообщения, как правило, выдаются по принципу от вызова к вызову и идентифицируют присвоение соединения DSO идентификаторам виртуальных трактов/идентификаторам виртуальных каналов (ИВТ/ИВК). Мультиплексор будет обеспечивать межсетевой обмен пользовательского трафика между DS0 и АПД на основе управляющих сообщений. К примеру, мультиплексор может принимать соединение вызова DS0 и преобразовывать этот трафик в пакеты АПД с ИВТ/ИВК, выбранными процессором сигнализации. Мультиплексор может также принимать пакеты АПД от перекрестного соединителя 370 АПД. Эти пакеты АПД преобразуются обратно в формат DSO и подаются в соединение вызова DS0, выбранное процессором 350 сигнализации. В некоторых выполнениях мультиплексоры обеспечивают цифровую обработку сигналов, как указывается в управляющих сообщениях (обычно от процессора 350 сигнализации). Примером цифровой обработки сигналов является эхоподавление или проверка непрерывности. Предпочтительное выполнение этих мультиплексоров также рассматривается подробно ниже. Перекрестный соединитель 370 АПД представляет собой устройство, обеспечивающее множество виртуальных соединений АПД между мультиплексорами. Примером перекрестного соединителя АПД является NEC Model 20. В АПД виртуальные соединения могут обозначаться с помощью ИВТ/ИВК в заголовке пакета. Перекрестный соединитель 370 может быть построен для обеспечения множества соединений ИВТ/ИВК между мультиплексорами. Следующие примеры иллюстрируют возможную конфигурацию. ИВТ "А" может быть передано от мультиплексора 360 через перекрестный соединитель 370 на мультиплексор 362. ИВТ "В" может быть передано от мультиплексора 360 через перекрестный соединитель 370 на мультиплексор 364. ИВТ "С" может быть передано от мультиплексора 360 через перекрестный соединитель 370 на мультиплексор 360. Аналогично, ИВТ могут быть получены: от мультиплексора 362 к мультиплексору 360, от мультиплексора 362 к мультиплексору 364, от мультиплексора 362 обратно к мультиплексору 362, от мультиплексора 364 к мультиплексору 360, от мультиплексора 364 к мультиплексору 362 и от мультиплексора 364 обратно к мультиплексору 364. Таким образом, выбор ИВТ по существу выбирает исходящий мультиплексор. ИВК могут быть использованы для дифференциации индивидуальных вызовов на ИВТ между двумя мультиплексорами. Соединения DS3, DS1 и DS0 являются двунаправленными, тогда как соединения АПД являются однонаправленными. Это значит, что двунаправленные соединения, как правило, потребуют двух соединений АПД - одно на каждое направление. Это может быть достигнуто присвоением сопровождающих ИВТ/ИВК каждому ИВТ/ИВК, использованному для установки вызова. Мультиплексоры выполняются с возможностью вызова сопровождающего ИВТ/ИВК, чтобы обеспечить обратный тракт для двунаправленного соединения. В некоторых выполнениях процессор сигнализации, мультиплексоры и перекрестный соединитель будут все физически расположены в одном и том же месте. К примеру, транзитная система будет занимать одно местоположение, поскольку и коммутирующий переключатель занимает единственное положение. Таким образом, транзитная система физически и функционально включает в себя коммутирующий переключатель. Однако свойства компонентов транзитной системы обеспечивают возможность ее реализации в распределенном варианте. К примеру, в альтернативных выполнениях мультиплексоры и перекрестный соединитель могут физически располагаться в одном и том же месте, а процессор сигнализации - в удаленном месте. Для вызова в соединении 320, предназначенном для соединения 326, система будет работать следующим образом. В этом варианте выполнения пользовательская информация из соединения 324 может мультиплексироваться на уровень DS0, но в других выполнениях это не требуется. Кроме того, в этом выполнении используется сигнализация SS7, но применимы также и другие протоколы сигнализации, такие как сигнализация C7. DS0 в соединении 320 будет занято, и НАС, относящийся к вызову, будет приниматься по линии 330. Процессор 350 сигнализации обрабатывает НАС для выбора ИВТ/ИВК из мультиплексора 362 через перекрестный соединитель 370 АПД к мультиплексору 364. Процессор 350 сигнализации выбирает также DS0 в соединении 326 от мультиплексора 364. Эти варианты выбора могут основываться на многих факторах, примерами которых являются набираемый номер или идентификация сети назначения. Процессор 350 сигнализации посылает управляющее сообщение по линии 390 на мультиплексор 362, который идентифицирует как занятое DS0 в соединении 320, так и выбранные ИВТ/ИВК. Процессор 350 сигнализации посылает также управляющее сообщение по линии 390 на мультиплексор 364, который идентифицирует как выбранные ИВТ/ИВК, так и занятое DS0 в соединении 326. Если требуется, процессор сигнализации передает команду одному из мультиплексоров применить эхоподавление к вызову. Кроме того, процессор 350 сигнализации передает любую сигнализацию, требуемую для продолжения установки вызова по линиям 330 и 336. Мультиплексор 362 принимает управляющее сообщение от процессора 350 сигнализации, идентифицируя занятое DSO и выбранные ИВТ/ИВК. Мультиплексор 362 преобразует затем пользовательскую информацию от занятого DS0 в соединении 324 в пакеты АПД. Мультиплексор 362 присваивает выбранные ИВТ/ИВК заголовкам пакетов АПД. Фактическое соединение, присвоенное выбранными ИВТ/ИВК, будет предварительно передано через перекрестный соединитель 370 от мультиплексора 362 к мультиплексору 364. В результате пакеты АПД с выбранными ИВТ/ИВК передаются по соединению 382 и переносятся перекрестным соединителем 370 по соединению 384 к мультиплексору 364. Мультиплексор 364 принимает управляющее сообщение от процессора 350 сигнализации, идентифицируя выбранные ИВТ/ИВК и выбранное DSO в соединении 326. Мультиплексор 364 преобразует пакеты АПД с выбранными ИВТ/ИВК в заголовки пакетов для выбранного DSO на соединении 326. Таким образом, можно видеть, что варианты выбора ИВТ/ИВК и DS0 процессором 350 сигнализации могут быть реализованы мультиплексорами 362 и 364 для подключений нескольких DSO на соединениях 320 и 326. Эти подключения могут обеспечиваться транзитной системой 200 по принципу от вызова к вызову. По выполнении вызова процессор 350 сигнализации принимает сообщение разъединения (REL), индицирующее завершение вызова. В результате процессор 350 сигнализации выдает сообщения завершения на мультиплексоры 360 и 364. Когда эти мультиплексоры принимают эти сообщения, они разъединяют ИВТ/ИВК и DS0. Это эффективно завершает соединение вызова и освобождает ИВТ/ИВК и DSO для использования в других вызовах. Из вышеприведенного описания можно видеть, что для соединения трафика из поступающих DS0 к выходным DS0 используется управление по принципу от вызова к вызову для ИВТ/ИВК и DS0 в пункте организации межсетевого обмена АПД/DS0. Этот пункт организации межсетевого обмена, где преобразуется трафик, находится в мультиплексорах. В отличие от обычных коммутирующих переключателей, матрица (т.е. перекрестный соединитель) не управляется по принципу от вызова к вызову. Она просто предусмотрена для обеспечения межсоединений мультиплексоров. Это намного упрощает изобретение по сравнению с обычными транзитными переключателями. Данная уникальная комбинация компонент и управления обеспечивает преимущества транзитной системы. Она может быть, как правило, реализована при более низкой стоимости, чем обычный транзитный коммутирующий переключатель. Компоненты этой транзитной системы легко масштабируются, так что габариты этой транзитной системы можно приспосабливать к конкретным требованиям трафика и обновлять по мере необходимости. Как будет видно, процессор сигнализации не встроен в переключатель. Это позволяет ему приспосабливаться более просто к данной задаче. К примеру, надежная и дорогостоящая логика маршрутизации может не потребоваться. Фиг. 4 отображает транзитную систему 400. Транзитная система 400 такая же, как транзитная система 300 по фиг. 3, за исключением того, что добавлено соединение 486. Для ясности остальные ссылочные позиции опущены. Соединение 486 является соединением АПД. Как правило, соединение АПД будет использовать транспортный протокол, такой как "SONET или DS3, но могут использоваться и другие протоколы. Соединение 486 обеспечивает системам АПД доступ к транзитной системе 400. Этот доступ происходит через перекрестное соединение. Перекрестное соединение предусматривается для того, чтобы соединять конкретные ИВТ/ИВК в соединении 486 с конкретными мультиплексорами. Таким образом, поступающий через мультиплексор в транзитную систему 400 трафик не-АПД может покидать эту систему в формате АПД через соединение 486. Дополнительно, трафик АПД может входить в транзитную систему 400 через соединение 486 и покидать ее через мультиплексор в соединении не-АПД. В некоторых выполнениях линия сигнализации от процессора сигнализации к перекрестному соединителю может использоваться для обмена сигнализацией B-ISDN между процессором сигнализации и системой АПД через перекрестное соединение и соединение 486. В таком выполнении несколько ИВТ/ИВК сигнализации B-ISDN перелаются через перекрестное соединение между процессором сигнализации и системой АПД. Преимущественно, транзитная система 400 обеспечивает транзитный доступ к системе АПД и от нее. Фиг. 5 отображает транзитную систему 500, переключатель 510, переключатель 512, сетевой элемент 514, сеть 520, сеть 522 и сеть 524. Эти компоненты общеизвестны из уровня техники и связаны между собой, как показано на фиг. 5. Эти компоненты и линии такие, как описано выше, но для ясности соединения и линии не пронумерованы. Транзитная система 500 работает, как описано выше. Фиг. 5 предусмотрена для иллюстрации различных особенностей маршрутизации транзитной системы 500. Из-за того, что транзитная система 500 может выполняться для обеспечения транзитной функции специального вида, маршрутизация может также приспосабливаться к конкретным нуждам. Преимущественно, это может упростить сложность и снизить стоимость транзитной системы 500. В одном выполнении транзитная система 500 осуществляет маршрутизацию на основе кода области (NPA) в набранном номере. Это может быть случай, в котором переключатели 510 и 512 подают трафик к транзитной системе 500 для маршрутизации к сетевому элементу 514 и сетям 520, 522 и 524. Если сетевой элемент и сети могут быть дифференцированы для осуществления маршрутизации посредством кода области, нет необходимости использовать в транзитной системе 500 сложной логики маршрутизации. В одном выполнении транзитная система 500 осуществляет маршрутизацию на основе кода обмена (NXX) в набранном номере. Это может быть случай, в котором переключатели 510 и 512, сетевой элемент 514 и сети 520, 522 и 524 находятся все в одном и том же коде области. Если эти компоненты находятся в одном и том же коде области, но могут быть дифференцированы для осуществления маршрутизации посредством NXX, нет необходимости использовать в транзитной системе 500 сложной логики маршрутизации. В другом выполнении транзитная система 500 может осуществлять маршрутизацию на основе как NPA, так и NXX. В некоторых выполнениях транзитная система 500 может осуществлять маршрутизацию на основе идентификации сети назначения. Часто идентификация следующей сети в тракте вызова предоставляется в сообщении сигнализации. Транзитная система 500 примет сообщение сигнализации по линии сигнализации, чтобы идентифицировать сеть назначения. НАС SS7 включает в себя код выбора транзитной сети или идентификационный параметр носителя. Любой из этих кодов может использоваться транзитной системой 500, чтобы идентифицировать сеть назначения и выбрать маршрут к этой сети назначения. К примеру, переключатель 512 может идентифицировать сеть 524 в качестве сети назначения в НАС для транзитной системы 500. Считывая идентификационный параметр носителя в НАС, транзитная система 500 сможет идентифицировать сеть 524 в качестве сети назначения и выбрать маршрут к сети 524. Это и исключает значительную обработку вызова и упрощает транзитную систему 500. В некоторых выполнениях транзитная система 500 может считывать признак адреса в НАС, чтобы идентифицировать виды вызовов с участием операторов и международных вызовов. Будучи идентифицированы, вызовы могут маршрутизироваться к системе соответствующего оператора или международному носителю. В некоторых выполнениях транзитная система 500 может облегчать маршрутизацию в условиях переноса номера. Режим переноса номера позволяет вызываемым сторонам сохранять их телефонные номера при их передвижении. Когда сеть обнаруживает один из таких перенесенных номеров, она направляет запрос прикладного модуля осуществления транзакций (ПМТ) к базе данных, которая может идентифицировать новый сетевой элемент, который обслуживает теперь вызванную сторону. (Как правило, этот новый сетевой элемент представляет собой переключатель класса 5, где теперь расположена вызываемая сторона.) Идентификация сетевого элемента обеспечивается в ответе прикладного модуля осуществления транзакций (ПМТ) обратно к сетевому элементу, который послал запрос. Ответ ПМТ идентифицирует новый сетевой элемент, который теперь обслуживает вызываемую сторону. Эта идентификация может быть локальным маршрутным номером, содержащимся в ПМТ. В контексте изобретения транзитная система 500 может поддерживать режим переноса номера. Транзитная система 500 может осуществлять запрос и маршрутизацию к подходящей сети на основе локального маршрутного номера в ответе ПМТ. Транзитная система 500 может также принимать вызовы от систем, которые уже запросили базу данных переноса номера. В этом случае транзитная система 500 будет использовать в сигнализации локальный маршрутный номер, чтобы идентифицировать сеть и осуществить маршрутизацию вызова. В некоторых выполнениях ключом к маршрутизации вызова будет выбор группы магистральных каналов. Группы магистральных каналов, как правило, содержат много DS0. К примеру, каждое из соединений между транзитной системой 500 и сетями 520, 522 и 524 может представлять собой группу магистральных каналов. Для вызовов, принятых от переключателей 510 и 512, транзитная система 500 может нуждаться лишь в определении того, какую из этих трех групп магистральных каналов использовать. Это связано с тем, что выбор группы магистральных каналов эффективно маршрутизирует вызов требуемой сети. Выбор DS0 в выбранной группе магистральных каналов основан на доступности в выбранной группе магистральных каналов. Фиг. 6 отображает транзитную систему 600, канал занятой локальной телефонной сети (ЗЛТС) 620, канал конкурирующей локальной телефонной сети (КЛТС) 622, канал КЛТС 624, канал междугородней телефонной сети (МГТС) 626, канал МГТС 628 и международный канал 630. Эти сети знакомы специалистам и соединены линиями, как показано. Примерами соединений являются соединения DS1, DS3 или АПД, а примерами линий являются линии SS7, хотя известны также и другие применимые соединения и линии. Каналы ЗЛТС являются установленными локальными сетями. Каналы КЛТС являются более новыми локальными сетями, которые могут конкурировать с установленными локальными сетями. В результате многочисленные ЛТС - либо заняты, либо конкурирующие - будут обеспечивать услуги для той же самой области. Эти каналы ЗЛТС и КЛТС будут нуждаться в доступе друг к другу. Они также будут нуждаться в доступе к каналам МГТС для удаленных вызовов и к каналам международных телефонных станций для международных вызовов. Транзитная система 600 подобна транзитной системе, описанной выше, и она обеспечивает межсоединения среди этих сетей. К примеру, все локальные вызовы от ЗЛТС 620 и КЛТС 622 могут использовать транзитную систему 600 для межсоединений. Сигнализация вызовов и соединения будут подаваться к транзитной системе 600 с помощью ЗЛТС 620. Транзитная система будет обрабатывать сигнализацию и подключать вызовы к КЛТС 622. Транзитная система 600 будет, как правило, посылать дополнительную сигнализацию к КЛТС 622 для облегчения конкуренции вызовов. Аналогичные размещения могут быть осуществлены между остальными сетями. Транзитная система 600 может обеспечить транзитный доступ между следующими комбинациями: КЛТС и КЛТС, КЛТС и ЗЛТС, ЗЛТС и МГТС, КЛТС и МГТС, МГТС и МГТС, ЗЛТС и международный канал, КЛТС и международный канал, и МГТС и международный канал. В некоторых случаях эта маршрутизация может выполняться путем обработки локального маршрутного номера, кода выбора транзитной сети или параметра идентификации носителя. Таким образом, обработка вызова в транзитной системе 600 упрощается, и все же каждая сеть имеет доступ к остальным сетям без управления множеством соединений. Мультиплексор межсетевого обмена АПД На фиг. 7 показано возможное выполнение мультиплексора, которое может быть использовано в настоящем изобретении, но также приемлемы и другие мультиплексоры, которые поддерживают требования изобретения. Показаны управляющий интерфейс 700, интерфейс 705 ОС-3, интерфейс 710 DS3, интерфейс 715 DS1, интерфейс 720 DS0, цифровой сигнальный процессор 725, уровень 730 адаптации АПД (УАА) и интерфейс 735 ОС-3. Управляющий интерфейс 700 принимает сообщения от процессора сигнализации. В частности, управляющий интерфейс 700 обеспечивает присвоения DS0/виртуальных соединений уровню 730 адаптации АПД для реализации. Управляющий интерфейс 700 может принимать управляющие сообщения от процессора сигнализации с сообщениями для DS0 720. Эти сообщения могут быть для подключения DS0: 1) к другим DS0, 2) к цифровому сигнальному процессору 725, или 3) к УАА 730 (обходя цифровой сигнальный процессор 725). Управляющий интерфейс 700 может принимать управляющие сообщения от процессора сигнализации с сообщениями для цифровой сигнальной обработки 725. Примером такого сообщения может служить отключение эхоподавителя в конкретном соединении. Интерфейс 705 ОС-3 принимает формат ОС-3 и осуществляет преобразование в DS3. Интерфейс 710 DS3 принимает формат DS3 и осуществляет преобразование в DS1. Интерфейс 710 DS3 может принимать несколько DS3 от интерфейса 705 ОС-3 или от внешнего соединения. Интерфейс 715 DS1 принимает формат DS1 и осуществляет преобразование в DS0. Интерфейс 715 DS1 может принимать несколько DS1 от интерфейса 710 DS3 или от внешнего соединения. Интерфейс 720 DS0 принимает формат DS0 и обеспечивает интерфейс к цифровому сигнальному процессору 725 или к УАА 730. В некоторых выполнениях интерфейс 720 DS0 может быть способен непосредственно соединять конкретные DS0. Это будет случай для вызова, поступающего и уходящего из одного и того же мультиплексора. Это также будет полезно для облегчения непрерывности проверки переключателем. Интерфейс 735 ОС-3 обеспечивает прием пакетов АПД от УАА 730 и передачи их, как правило, через соединение к перекрестному соединителю. Цифровой сигнальный процессор 725 обеспечивает различную цифровую обработку для конкретных DS0 в ответ на управляющие сообщения, принятые через управляющий интерфейс 700. Примеры цифровой обработки включают в себя: обнаружение тонального сигнала, передача тонального сигнала, кольцевая проверка, обнаружение речевого сигнала, пересылка речевого сигнала, эхоподавление, сжатие или шифрование. В некоторых выполнениях