Стент для расширения просвета, расположенного внутри тела канала

Реферат

 

Изобретение относится к медицине. В настоящем изобретении заявляется стент для расширения просвета, расположенного внутри тела канала, и устранения непроходимости желчных протоков, мочеиспускательного канала, пищевода и трахеально-бронхиальной непроходимости, представляющий собой в общем случае трубчатую структуру, покрытую композицией, содержащей фактор, подавляющий развитие кровеносных сосудов, и полимерный носитель. В частности примером факторов, подавляющих развитие кровеносных сосудов, является таксол, его аналоги или его производные. Предложенный стент препятствует проникновению опухолей при снижении опасности закупорки отверстия стента. 2 с. и 19 з.п. ф-лы, 3 табл., 22 ил.

Изобретение относится к устройствам для реконструкции просвета расположенных внутри тела каналов, покрытым композициями, включающими факторы, подавляющие развитие кровеносных сосудов, и полимерные носители. Более конкретно - к стентам для расширения просвета расположенных внутри тела каналов, протоков и сосудов.

Предпосылки изобретения Рак занимает второе место среди причин смертности в США и ответственен более чем за одну пятую часть от общей смертности. Если коротко, то рак характеризуется бесконтрольным делением популяций клеток, которое, как правило, приводит к образованию одной или большего количества опухолей. Хотя в настоящее время рак гораздо легче диагностируют, чем раньше, многие формы, даже при их раннем выявлении, все еще не поддаются лечению.

В настоящее время при лечении рака используется множество методов, в том числе, например, различные хирургические процедуры. Однако если проводить лечение лишь хирургическим способом, то у многих пациентов наблюдается рецидив рака. Помимо хирургического вмешательства многие виды рака лечат с применением комбинированной терапии, включающей использованием цитотоксических химиотерапевтических средств (в частности, винкристина, винбластина, цисплатина, метотрексата, 5-FU и т.д.) и/или радиационную терапию. Одна из сложностей указанного подхода заключается в том, что радиотерапевтические и химиотерапевтические средства являются токсичными по отношению к нормальным тканям и часто вызывают опасные для жизни побочные эффекты. Далее, при таком подходе весьма часто наблюдаются неблагоприятные исходы или временное исчезновение симптомов заболевания.

Помимо хирургии, химиотерапии и радиотерапии предпринимались попытки использовать для уничтожения раковых клеток собственную иммунную систему пациента. Например, было предложено применять бактериальные или вирусные компоненты в качестве адъювантов, с целью стимулировать иммунную систему для уничтожения опухолевых клеток, (см. "Principles of Cancer Biotherapy", Oldham (ed.), Raven Press, New York, 1987). Подобные агенты обычно применяют в качестве адъювантов и неспецифичных стимуляторов в опухолевых моделях животных, однако еще не показано, что они в целом эффективны для лечения людей.

При лечении рака также использовали лимфокины. Если коротко, то лимфокины секретируются разными клетками и обычно оказывают воздействие на специфические клетки, вызывая ответную иммунную реакцию. Примерами лимфокинов являются интерлейкины (IL)-l, -2, -3 и -4, а также колониестимулирующие факторы, такие как G-CSF, GM-CSF и M-CSF. Недавно одна из групп исследователей применила IL-2 для стимулирования клеток периферической кровяной системы, с целью их разрастания и выделения больших количеств клеток, которые являются цитотоксичными для опухолевых клеток (Rosenberg et al., N. Engl. J. Med., 313: 1485-1492, 1985).

Другими группами исследователей для лечения рака предложено использовать антитела. Если коротко, то могут быть получены антитела, распознающие определенные антигены на поверхности клеток, которые либо уникальны для раковых клеток, либо превалируют у раковых клеток, по сравнению с нормальными клетками. Указанные антитела, или "магические пули", могут использоваться сами по себе или в сочетании с токсином, с тем, чтобы они могли специфично нацелиться и поразить раковые клетки (Dilman, "Antibody Therapy", "Principles of Cancer Biotherapy", Oldham (ed.), Raven Press Ltd, New York, 1987). Трудность, однако, заключается в том, что большинство моноклональных антител имеют муриновое происхождение и, таким образом, гиперчуствительность по отношению к муриновому антителу может ограничивать их эффективность, особенно после повторного лечения. Обычные побочные эффекты включают жар, испарину и озноб, высыпания на коже, артрит и нервный паралич.

Дополнительная сложность существующих методов заключается в том, что локальный рецидив и локальный контроль остается важнейшей задачей при лечении злокачественных образований. В частности, в общей сложности 630000 пациентов (в США) ежегодно страдают от локальных заболеваний (не замечено распространение отдаленных метастаз); это составляет 64% от числа всех пациентов, у которых обнаружены злокачественные образования (в него не входит немеланомный рак кожи или карцинома in situ). Для подавляющего большинства этих пациентов хирургическое лечение болезни предоставляет наибольший шанс для выздоровления, и действительно 428000 из них вылечиваются после первичного лечения. К сожалению, у 202000 (или 32% пациентов с локальными заболеваниями) наблюдается рецидив после первичного лечения. Из пациентов, у которых наблюдается рецидив, число тех, у кого наблюдается рецидив локального заболевания, достигает 133000 ежегодно (или 21% от числа пациентов с локальными заболеваниями). Число тех, у кого рецидив связан с отдаленными метастазами, составляет 68000 пациентов ежегодно (11% из всех пациентов с локальными заболеваниями). Еще 102139 пациентов ежегодно умирают непосредственно в результате невозможности контролировать локальное распространение болезни.

Одним из методов, который опробован при лечении опухолей и имел ограниченный успех, является терапевтическая эмболизация. Если коротко, то кровеносные сосуды, которые питают опухоль, преднамеренно блокируют путем введения в сосуды эмболических веществ. С этой целью испытано большое количество материалов, в том числе аутогенных веществ, таких как жир, сгустки крови и измельченные фрагменты мышц, а также искусственные материалы, такие как шерсть, хлопок, стальные шарики, пластиковые или стеклянные шарики, порошок тантала, кремниевые соединения, радиоактивные частицы, стерильный поглощаемый губчатый желатин (Sterispon, Gelfoam), окисленная целлюлоза (Oxycel), стальная спираль, спирт, лиофилизованная твердая мозговая оболочка человека (Lyodura), микрофибриллярный коллаген (Avitene), фибриллы коллагена (Tachotop), губчатый поливиниловый спирт (PVA, Ivalon), импрегнированные барием кремниевые сферы (Biases) и съемные надувные шарики. При использовании указанных методов размер метастаз печени может быть временно уменьшен, однако опухоль отвечает тем, что стимулирует прорастание внутрь нее новых кровеносных сосудов.

Проблемой, связанной с образованием опухоли, является развитие вызванных раком блокад, которые препятствуют прохождению веществ по находящимся внутри организма каналам, таким как желчные протоки, трахея, пищевод, сосудистая система и мочеиспускательный канал. Чтобы держать открытыми проходы, блокированные опухолями или другими веществами, было разработано устройство для реконструкции органов - стент. Примерами обычных стентов являются стеночный стент, стент Штреккера, стент Жиантурко и стент Пальмаца. Основная проблема при использовании стентов заключается, однако в том, что они не препятствуют проникновению опухоли или воспалительного вещества через щели стента. Если указанные вещества проникают внутрь стента и возникает опасность закупорки отверстия стента, то это может привести к блокаде расположенного внутри тела прохода, в который стент установлен. Далее, присутствие стента внутри организма может привести к тому, что активные или воспалительные ткани (в частности, кровеносные сосуды, фибропласты, белые кровяные тельца) попадают в проход стента, что приводит к частичной или полной закупорке стента.

В настоящем изобретении заявляются стенты, покрытые композицией, пригодной для лечения рака и других заболеваний, связанных с развитием кровеносных сосудов.

Краткое описание изобретения Если коротко, то в настоящем изобретении заявляются устройства, в которых используются композиции, подавляющие развитие кровеносных сосудов, для лечения рака и других заболеваний, связанных с развитием кровеносных сосудов. Эти композиции (далее называемые "композициями, подавляющими развитие кровеносных сосудов"), включают (а) фактор, препятствующий развитию кровеносных сосудов и (b) полимерный носитель. В рамках настоящего изобретения в качестве факторов, препятствующих развитию кровеносных сосудов, может использоваться широкий круг молекул, в том числе, например, таксол, аналоги таксола и производные таксола. Аналогично, может использоваться широкий круг полимерных носителей, выборочными примерами которых являются поли(этилен-винилацетат), сшитый 40% винилацетата, сополимер молочной и гликолевой кислот, поликапролактон полимолочной кислоты, сополимеры полиэтилена и винилацетата, сшитые 40% винилацетата и молочной кислоты, сополимеры полимолочной кислоты и поликапролактона.

В соответствии с настоящим изобретением заявляются стенты, имеющие в общем случае трубчатую структуру, а их поверхность покрыта одной или несколькими композициями, подавляющими развитие кровеносных сосудов. В рамках различных вариантов осуществления настоящего изобретения заявляются стенты для устранения закупорки желчных протоков, мочеиспускательных каналов, пищевода, трахеи и бронхов. В каждом из этих вариантов осуществления настоящего изобретения стент имеет в общем случае трубчатую структуру, а его поверхность покрыта вышеуказанной композицией, содержащей таксол, которая подавляет развитие кровеносных сосудов.

Далее настоящее изобретение более подробно поясняется приведенным подробным описанием и прилагаемыми чертежами. Ниже указаны многочисленные ссылки, подробно описывающие некоторые методики и композиции, которые приводятся здесь для справок.

Краткое описание чертежей На фиг. 1А представлена фотография, на которой изображена культура яйца без оболочки на 6-й день. На фиг. 1В приведен после цифровой обработки на компьютере образ живых неокрашенных капилляров, полученный с помощью стереомикроскопа (1040х). На фиг. 1С показаны микрососуды хорионалантоисной мембраны, которые питаются нижележащими более крупными сосудами (стрелки, 1300х). На фиг. 1D показан разрез хорионалантоисной мембраны толщиной 0,5 мм, наблюдаемый в оптический микроскоп, На этой фотографии приведена композиция хорионалантоисной мембраны, включающая внешний двухслойный эктодерм (Ес), мезодерм (М), содержащий капилляры (стрелки) и разбросанные клетки адвентициальной оболочки, и однослойный эндодерм (Еn)(400х). Фиг. 1Е представляет собой полученную с помощью электронного микроскопа (3500х) фотографию, на которой показана типичная капиллярная структура с тонкостеночными эндотелиальными клетками (острие стрелок) и связанным с ними перицитом.

Фиг. 2А, 2В, 2С и 2D представляют собой серию цифровых образов четырех различных неокрашенных хорионалантоисных мембран, полученных после 48-часового воздействия таксола.

Фиг. 3А, 3В и 3С представляют собой серию фотографий разрезов толщиной 0,5 мм, полученных от обработанных хорионалантоисных мембран в трех различных местах в пределах содержащей сосуды зоны.

Фиг. 4А, 4В и 4С представляют собой серию полученных на электронном микроскопе микрофотографий мест, близких к тем, которые показаны выше на фиг. 3А, 3В и 3С (соответственно).

Фиг. 5 представляет собой гистограмму, на которой приведено числовое распределение размеров микросфер (5% ELVAX с 10 мг сурамина натрия в 5% поливиниловом спирте).

Фиг. 6 представляет собой гистограмму, на которой приведено весовое распределение размеров микросфер (5% ELVAX с 10 мг сурамина натрия в 5%-ном поливиниловом спирте).

На фиг. 7 приведен график, на котором показан вес инкапсулированного сурамина натрия в 1 мл 5%-ного ELVAX.

На фиг. 8 приведен график, на котором указан процент инкапсулированного сурамина натрия в ELVAX.

На фиг. 9 приведена гистограмма распределения размеров 5%-ных микросфер ELVAX, содержащих 10 мг сурамина натрия в 5%-ном поливиниловом спирте, включающем 10% NaCl.

На фиг. 10 приведена гистограмма весового распределения размеров 5%-ных микросфер PLL, содержащих 10 мг сурамина натрия в 5%-ном поливиниловом спирте, включающем 10% NaCl.

На фиг. 11 приведена гистограмма числового распределения размеров 5%-ных микросфер PLL, содержащих 10 мг сурамина натрия в 5%-ном поливиниловом спирте, включающем 10% NaCl.

Фиг. 12 представляет собой график, который показывает количество высвобожденного сурамина натрия в зависимости от времени.

На фиг. 13 приведен пример эмболизации опухоли печени. Фиг. 14 показывает выборочный пример размещения стента, покрытого композицией, подавляющей развитие кровеносных сосудов, по настоящему изобретению.

На фиг. 15А приведен график, показывающий влияние отношения сополимер этилена и винилацетата: поли-1-молочная кислота в смеси полимеров на агрегацию микросфер. На фиг. 15В приведена микрофотография, полученная с помощью сканирующего электронного микроскопа, которая показывает размер "маленьких" микросфер. На фиг. 15С приведена микрофотография, полученная с помощью сканирующего электронного микроскопа, которая показывает размер "больших" микросфер. На фиг. 15D приведен график, который показывает выделение таксола с течением времени из сфер, изготовленных из полимерной смеси 50:50 сополимер этилена и винилацетата: поли-1-молочная кислота и наполненных 0,6%-ным (вес/об) раствором таксола, в забуференный фосфатом солевой физиологический раствор (рН 7,4) при температуре 37oС. Незакрашенные кружки соответствуют микросферам "маленького" размера, а закрашенные кружки соответствуют микросферам "большого" размера. На фиг. 15Е приведена фотография хорионалантоисной мембраны, которая показывает результаты высвобождения таксола микросферами ("MS"). Фиг. 15F соответствует фиг. 15Е при большем увеличении.

На фиг. 16 приведен график, показывающий профили высвобождения таксола из поликапролактоновых (PCL) микросфер, содержащих 1%, 2%, 5% или 10% таксола, в забуференный фосфатом солевой физиологический раствор при температуре 37oС. На фиг. 16В представлена фотография, на которой показана хорионалантоисная мембрана, обработанная контрольными микросферами. На фиг. 16С представлена фотография, на которой показана хорионалантоисная мембрана, обработанная микросферами, наполненными 5%-ным таксолом.

На фиг. 17А и 17В, соответственно, представлены два графика, на которых показано высвобождение таксола из пленок сополимера этилена и винилацетата (EVA) и процент таксола, остающегося в тех же пленках с течением времени. На фиг. 17С показано набухание пленок EVA/F127, не содержащих таксол, с течением времени, на фиг. 17D показано набухание пленок EVA /Span 80, не содержащих таксол, с течением времени. На фиг. 17Е приведена зависимость напряжения от деформации в различных смесях EVA/F127.

На фиг. 18А и 18В приведена зависимость точки плавления полимерных смесей PCL/MePEG в зависимости от процентного содержания (18А) и процент увеличения времени, необходимого, чтобы паста PCL начала затвердевать при температуре 60oС в зависимости от количества MePEG (18B). На фиг. 18С показана хрупкость различных полимерных смесей PCL/MePEG. На фиг. 18D приведен график, показывающий изменение веса, выраженное в процентах, с течением времени для полимерных смесей с различным содержанием MePEG. На фиг. 18Е представлен график, показывающий скорость высвобождения таксола с течением времени из различных полимерных смесей, нагруженных 1% таксола. Графики на фиг. 18F и 18G показывают влияние различного содержания таксола на общее количество таксола, высвобождаемого из смеси 20% MePEG/PCL. График, приведенный на фиг. 18Н, показывает влияние MePEG на прочность полимеров MePEG/PCL при пластической деформации.

На фиг. 19А приведена фотография контрольной термопасты (не нагруженной) на хорионалантоисной мембране. На фиг. 19В приведена фотография термопасты, содержащей 20% таксола, на хорионалантоисной мембране.

Фиг. 20А и 20В показывают две фотографии хорионалантоисной мембраны, содержащей опухоль, обработанную контрольной (ненагруженной) термопастой. Фиг. 20С и 20D показывают две фотографии хорионалантоисной мембраны, содержащей опухоль, обработанную нагруженной таксолом термопастой.

График на фиг. 21А показывает влияние таксола на поликапролактоне на рост опухоли. На фиг. 21В и 21С приведены две фотографии, показывающие влияние контрольной термопасты и термопасты, содержащей 10% и 20% таксола, на рост опухоли.

На фиг. 22А представлена фотография синовиальной мембраны из сустава после инъекции забуференного фосфатом солевого раствора. На фиг. 22В представлена фотография синовиальной мембраны из сустава после инъекции микросфер. На фиг. 22С представлена фотография хряща из сустава после инъекции забуференного фосфатом солевого раствора, а на фиг. 22D представлена фотография хряща из сустава после инъекции микросфер.

Подробное описание изобретения Как указано ранее, в настоящем изобретении заявляются стенты для расширения просвета расположенного внутри тела канала, покрытые композицией, в которой используются факторы, подавляющие развитие кровеносных сосудов, в частности таксол или его аналоги, или его производные, т.е. действие которых приводит к ингибированию роста сосудов. Существует множество простых способов определения подавляющей развитие кровеносных сосудов активности данного фактора, в том, числе, например, анализы с хорионалантоисной мембраной ("САМ") цыплят, как показано ниже, в Примерах 2А и 2С, удаляют оболочку у свежеоплодотворенных куриных яиц и на мембрану помещают диск из метилцеллюлозы, содержащий образец фактора, подавляющего развитие кровеносных сосудов. Через несколько дней (в частности, через 48 час) ингибирование роста сосудов под действием испытуемого образца может быть легко замечено путем визуального изучения хорионалантоисной мембраны в области, окружающей диск из метилцеллюлозы. Ингибирование роста сосудов можно также оценить количественно, например, определяя количество и размер кровеносных сосудов, окружающих диск из метилцеллюлозы, по сравнению с контрольным диском из метилцеллюлозы. Наиболее предпочтительные факторы, подавляющие развитие кровеносных сосудов, пригодные для использования по настоящему изобретению, полностью подавляют образование новых кровеносных сосудов в указанном выше анализе.

Кроме того, может быть использовано множество способов определения в условиях in vivo эффективности факторов, подавляющих развитие кровеносных сосудов, в том числе, например, в мышиных моделях, которые были разработаны с этой целью (см. Robertson et al.. Cancer. Res. 51:1339-1344, 1991). Кроме того, множество примеров анализов в условиях in vivo, относящихся к описываемым различным аспектам настоящего изобретения, более подробно рассматривается далее в Примерах.

Как указано ранее, в настоящем изобретении заявляются стенты для расширения просвета расположенного внутри тела канала, покрытые композицией, содержащей фактор, подавляющий развитие кровеносных сосудов, и полимерный носитель. Если коротко, то в соответствии с настоящим изобретением может использоваться множество факторов, подавляющих развитие кровеносных сосудов. Отдельные примеры включают таксол, его аналоги или его производные.

Эти факторы, подавляющие развитие кровеносных сосудов, будут подробнее рассмотрены далее.

Таксол представляет собой содержащий большое количество заместителей дитерпеноид (Wani et al., J. Am. Chem. Soc., 93: 2325, 1971), который получают после сбора и высушивания коры Taxus brevifolia (тиса тихоокеанского) и из Taxomyces Andreanae и Endophytic Fungus. (Stierle et al., Science 60: 214-216, 1993). В общем случае действие таксола приводит к стабилизации микротрубчатой структуры сосудов за счет присоединения тубулина с образованием ненормальных митотических веретен. "Таксол" (в контексте настоящего изобретения следует понимать, что этот термин включает аналоги и производные таксола, такие как, например, баккатин и таксотер), может быть легко получен с использованием методов, известных специалистам в данной области техники (см. также международные заявки WO 94/07882, WO 94/07881, WO 94/07880, WO 94/07876, WO 93/23555, WO 93/10076, Патенты США с номерами 5294637, 5283253, 5279949, 5274137, 5202448, 5200534 и Европейскую патентную заявку 590267), или от различных промышленных источников, в том числе, например, компании "Sigma Chemical Со. " (Сент-Луис, штат Миссури) (Т7402 - из Taxus brevifolia).

Композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов, помимо фактора, ингибирующего развитие кровеносных сосудов, и полимерного носителя, могут дополнительно включать широкий круг соединений. Например, композиции, подавляющие развитие кровеносных сосудов, по настоящему изобретению в некоторых вариантах его осуществления могут также содержать один или большее количество антибиотиков, противовоспалительных средств, антивирусных средств, противогрибковых средств и/или средств, убивающих простейших. Отдельными примерами антибиотиков, которые включаются в приведенные в настоящем описании композиции, являются: пенициллины; цефаллоспорины, такие как цефадроксил, цефазолин, цефаклор; аминогликозиды, такие как гентамицин и тобрамицин; сульфонамиды, такие как сульфаметоксазол; и метронидазол. Отдельными примерами противовоспалительных средств являются: стероиды, такие как преднизон, преднизолон, гидрокортизон, адрено-кортикотропный гормон и сульфазалазин; и нестероидные противовоспалительные средства, такие как аспирин, ибупрофен, напроксен, фенопрофен, индометацин и фенилбутазон. Отдельными примерами антивирусных средств являются ацикловир, ганцикловир, зидовудин. Отдельными примерами противогрибковых средств являются нистатин, кетоконазол, гризеофульвин, флуцитозин, миконазол, клотримазол. Отдельными примерами средств, убивающих простейших, являются изетионат пентамидина, хинин, хлорхинин и мефлохин.

Композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов, могут также содержать один или несколько гормонов, таких как гормон щитовидной железы, эстроген, прогестерон, кортизон и/или ростовой гормон, другие биологически активные молекулы, такие как инсулин, а также такие как цитокины ТH1 (в частности, интерлейкины -2, -12 и -15, гамма-интерферон) или ТH2 (в частности, интерлейкины -4 и -10).

Композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов, могут также включать дополнительные ингредиенты, такие как поверхностно-активные вещества (как гидрофильные, так и гидрофобные; см. Пример 13), противоопухолевые или химиотерапевтические средства (в частности, 5-фторурацил, винбластин, доксирубицин, адриамицин или рамоцифен), радиоактивные средства (в частности, Cu-64, Ga-67, Ga-68, Zr-89, Ru-97, Tc-99m, Rh-105, Pd-109, In-111,1-123, 1-125, 1-131, Re-186, Re-188, Au-198, Au-199, Pb-203, At-211, Pb-212 и Bi-212) или токсины (в частности, рицин, абрин, токсин дифтерии, холерный токсин, гедонин, антивирусный белок филолакки американской, тритин, токсин Shigella и экзотоксин A Pseudomonas).

Помимо факторов, подавляющих развитие кровеносных сосудов, и других соединений, рассмотренных выше, композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов, могут включать самые разнообразные полимерные носители, в том числе, например, как биоразлагаемые, так и небиоразлагаемые соединения. Отдельными примерами биоразлагаемых композиций являются альбумин, желатин, крахмал, целлюлоза, декстраны, полисахариды, фибриноген, поли((1,1-лактид), пoли(d, l-лaктид-гликoлид), поли(гликолид), поли(гидроксибутират), поли(алкилкарбонат) и поли(ортоэфиры) (см. L. Illium, S.S. Davids (eds.) "Polymers in Controlled Drug Delivery", Wright, Bristol, 1987; J. Arshady, J. Controlled Release 17: 1-22, 1991; Pitt, Int. J. Phar. 59: 173-196, 1990; Holland et al., J. Controlled Release 4: 155-180, 1986). Отдельными примерами небиоразлагаемых полимеров являются сополимеры этилена и винилацетата, кремнийорганические каучуки и поли(метилметакрилат). Наиболее предпочтительными полимерными носителями являются сополимеры этилена и винилацетата (в частности, ELVAX 40, поли(этилен-винилацетат), сшитый 40%-ами винилацетата; "DuPont. "), поли(молочная кислота-гликолевая кислота), поликапролактон, полимолочная кислота, сополимеры этилена и винилацетата, сшитые 40% винилацетата и полимолочной кислоты, сополимеры полимолочной кислоты и поликапролактона.

Полимерным носителям можно придать разнообразную форму, в том числе, например, форму наносфер или микросфер, форму стержней, таблеток, полосок или капсул (см. , в частности, Goodell et al, Am. J. Hosp. Pharm. 43:1454-1461, 1986; Langer et. al, "Controlled Release of macromolecules from polymers", in: "Biomedical polymers, Polymeric materials and pharmaceuticals for biomedical use", E.P. Goldberg, A. Nakagim (eds.), Academic Press, pp. 113-137, 1980; Rhine et al, J. Pharm. Sci. 69: 265-270, 1980; Brown et al., J. Pharm. Sci. 72: 1181-1185, 1983; и Bawa et al., J. Controlled Release 1: 259-267, 1985).

Композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов и содержащие один или несколько факторов, подавляющих развитие кровеносных сосудов, и полимерный носитель, преимущественно изготавливают в форме, удобной для конкретного использования. В соответствии с предпочтительными вариантами осуществления настоящего изобретения композиции, подавляющие развитие кровеносных сосудов, должны быть биоразлагаемыми и высвобождать один или несколько факторов, подавляющих развитие кровеносных сосудов, с течением времени от нескольких недель до нескольких месяцев. Далее, композиции, подавляющие развитие кровеносных сосудов, преимущественно должны быть устойчивы в течение нескольких месяцев и их можно было бы получать и хранить в стерильных условиях. В соответствии с некоторыми аспектами настоящего изобретения композиции, подавляющие развитие кровеносных сосудов, могут быть изготовлены в виде частиц любого размера, начиная от наносфер и кончая микросферами (в частности, от 0,1 мкм до 500 мкм), в зависимости от конкретного использования.

Композиции, подавляющие развитие кровеносных сосудов, могут быть также приготовлены, в соответствии с настоящим описанием, для различных применений. Наночастицы (которые называют также "наносферами") могут быть получены с широким диапазоном размеров, включая, например, наночастицы с размерами от 0,1 до 3 мкм, от 10 до 30 мкм и от 30 до 100 мкм (см. Пример 8).

Композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов, могут быть также приготовлены в форме разнообразных "паст" или гелей. Например, композиции, используемые в данном изобретении, подавляющие развитие кровеносных сосудов, могут представлять собой жидкость при одной температуре (в частности, при температуре выше 37oС, такой как 40oС, 45oС, 50oС, 55oС или 60oС) и становиться твердыми или полутвердыми при другой температуре (в частности, при обычной температуре тела или при температуре менее 37oС). Подобные "термопасты" могут быть легко получены в соответствии с настоящим описанием (см., в частности, Примеры 10 и 14).

В соответствии с настоящим изобретением, композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов, могут быть приготовлены в виде пленки, эти пленки обычно имеют толщину преимущественно менее 5, 4, 3, 2 или I мм, более предпочтительно толщину менее 500 мкм до 100 мкм. Указанные пленки являются преимущественно гибкими с хорошей прочностью на разрыв при пластической деформации (в частности, с величиной более 50, преимущественно более 100 и наиболее преимущественно более 150 или 200 Н/см2), хорошими адгезионными свойствами (т.е. обладают хорошей адгезией к влажным или сырым поверхностям) и обладают хорошей проникающей способностью, отдельные примеры подобных пленок приведены далее в Примерах (см., в частности, Пример 13).

Композиции, используемые в настоящем изобретении, подавляющие развитие кровеносных сосудов, являются нетоксичными, тромбогенными, должны быть непрозрачными для рентгеновских лучей, оказывать быстрое и длительное воздействие, быть стерильными и легко получаться в различной форме или различного размера в процессе использования. Далее, композиции преимущественно должны приводить к медленному (в идеале - в течение от нескольких недель до нескольких месяцев) высвобождению фактора, подавляющего развитие кровеносных сосудов.

Использование композиций, подавляющих развитие кровеносных сосудов, в качестве покрытий стентов Как указано ранее, в настоящем изобретении заявляются стенты, имеющие в общем случае трубчатую структуру (которая охватывает, например, спиральную форму), поверхность которых покрыта описанной выше композицией. Если коротко, то стент представляет собой распорку, обычно имеющую трубчатую форму, которую можно поместить в находящийся внутри тела проход (в частности, желчные протоки), суженный вследствие протекания болезненного процесса (в частности, вследствие врастания опухоли), чтобы предотвратить закрытие или повторное закрытие прохода. Стент функционирует, физически удерживая открытыми стенки прохода внутри тела, в который он помещен.

В соответствии с настоящим изобретением могут использоваться разнообразные стенты, включая, например, стенты пищевода, сосудистые стенты, стенты желчных протоков, стенты поджелудочной железы, стенты мочеточников и уретральные стенты, стенты слезных путей, стенты евстахиевой трубы, стенты фаллопиевой трубы и трахеально-бронхиальные стенты.

Стенты легко доступны из коммерческих источников или могут быть легко изготовлены по известным методикам. Отдельными примерами стентов являются стенты, описанные в патенте США 4776337, озаглавленном "Expandable Intraluminal Graft, and Method and Apparatus for Implanting and Expandable Intraluminal Graft", патенте США 5176626, озаглавленном "Indweling Stent", патенте США 5147370, озаглавленном "Nitinol Stent for Hollow Body Conduits", патенте США 5064435, озаглавленном "Self Expanding Prosthesis Having Stable Axial Length", патенте США 5052998, озаглавленном "Indwelling Stent and Method of Use", и патенте США 5041126, озаглавленном "Endovascular Stent and Delivery System", которые все приводятся здесь в качестве ссылок.

Стенты могут быть покрыты композициями, подавляющими развитие кровеносных сосудов, или факторами, подавляющими развитие кровеносных сосудов, с использованием различных способов, в том числе, например: (а) непосредственного нанесения на стент композиции, подавляющей развитие кровеносных сосудов (в частности, путем разбрызгивания на стент пленки полимер/лекарство или путем окунания стента в раствор полимер/лекарство), (b) покрытия стента веществом, таким как гидрогель, которое, в свою очередь, абсорбирует композицию, подавляющую развитие кровеносных сосудов (или вышеуказанного фактора, подавляющего развитие кровеносных сосудов), (с) вплетения нити (или самого полимера, сформированного в виде нити), покрытой композицией, подавляющей развитие кровеносных сосудов, в структуру стента, (d) размещения стента в муфте или петле, которая изготовлена или покрыта композицией, подавляющей развитие кровеносных сосудов, или (с) изготовления самого стента из композиции, подавляющей развитие кровеносных сосудов. В предпочтительных вариантах осуществления изобретения композиция должна надежно прикрепляться к стенту в процессе хранения и в процессе размещения стента и не должна отделяться от стента, когда диаметр стента изменяется при переходе от свернутого состояния в полностью развернутое состояние. Предпочтительные композиции, подавляющие развитие кровеносных сосудов, не должны деградировать в процессе хранения, перед размещением стента, или при нагревании до температуры тела после расширения внутри тела. Далее, она предпочтительно должна покрывать стент ровно и однородно, при этом ингибитор процесса развития кровеносных сосудов должен быть распределен равномерно, а стент не менял своих контуров. В соответствии с предпочтительными вариантами осуществления изобретения композиции, подавляющие развитие кровеносных сосудов, должны обеспечивать равномерное, поддающееся расчету и продолжительное высвобождение фактора, подавляющего развитие кровеносных сосудов, в окружающие стент ткани после его развертывания. Для сосудистых стентов, помимо вышеуказанных свойств, композиция не должна приводить к появлению у стента тромбогенных свойств (вызывать образование сгустков крови) или вызывать значительную турбулентность потока крови (большую, чем можно было бы ожидать при размещении непокрытого стента).

Заявляемые стенты используются для расширения просветов находящихся внутри тела каналов и протоков. Они предназначены для размещения в канале (протоке), при этом стент имеет в общем случае трубчатую структуру, поверхность которой покрыта композицией, подавляющей развитие кровеносных сосудов (или одним лишь фактором, подавляющим развитие кровеносных сосудов), так что канал расширяется. Ниже приведены различные варианты использования стентов согласно настоящему изобретению, в соответствии с которыми просвет находящегося внутри тела канала расширяют, чтобы устранить закупорку желчных протоков, пищевода, трахеально-бронхиальных каналов, мочеточников или сосудов, кроме того, отдельный пример более подробно рассматривается в Примере 7.

Обычно стенты размещаются аналогичным образом независимо от места и болезни, лечение которой проводится. Если коротко, то, с целью определить подходящее место размещения стента, вначале проводят обследование, обычно методами получения диагностического образа, эндоскопии или непосредственным визуальным наблюдением в процессе проведения операции. Направляющий шнур затем вставляют в разрез или в предполагаемое место размещения стента, а по нему перемещают специальный катетер, который позволяет вставлять стент в его сжатом виде. Обычно стенты можно сжать так, что их можно внести через мельчайшие полости с помощью маленьких катетеров, а после того, как они попадают в нужное место, они расширяются до большего диаметра. Расширившись, стент физически препятствует смыканию стенок прохода и заставляет его быть открытым. Таким образом, стенты можно вставлять через маленькие отверстия, но они способны держать открытыми полости или каналы большого диаметра. Стент может быть саморасширяющимся (в частности, стеночный стент или стент Жиантурко), расширяться при надувании (в частности, стент Пальмаца и стент Штреккера) или имплантироваться при изменении температуры (в частности, стент из нитинола).

Маневры по перемещению стента обычно проводят под радиологическим или визуальным контролем, принимая все меры предосторожности к тому, чтобы разместить стент точно поперек сужения в органе, лечение которого проводится. Направляющий катетер затем удаляют, оставляя стент в качестве подпорки. Для подтверждения правильности размещения обычно чаще используют рентгеноскопию.

Одним из вариантов воплощения изобретения является стент для предотвращения. При этом стент имеет в общем случае трубчатую структуру, поверхность которой покрыта вышеуказанной композицией, так что закупорка желчного протока устраняется. Если коротко, то разрастание опухоли обычного желчного протока приводит к прогрессирующей холестатической желтухе, которая несовместима с жизнью. Обычно желчная система, которая перемещает желчь из печени в двенадцатиперстную кишку наиболее часто закупоривается (1) опухолью, составленной клетками желчного прохода (холангиокарцинома), (2) опухолью, которая вторгается в желчный проток (в частности, при раке поджелудочной железы) или (3) опухолью, которая оказывает внешнее давление и сжимает желчный проток (в частности, увеличенные лимфатические узлы).

Как первичные опухоли печени, так и другие опухоли, вызывающие сжатие дерева желчных протоков, можно лечить с использованием стентов, приведенных в настоящем описании, одним из примеров первичных опухолей являются аденокарциномы (которые также называют опухолями Клатскина, если они обнаруживаются в разветвлении обычного протока печени). Указанные опухоли часто относят к раку печени, холедохолангиокарциномам или железистому раку желчной системы. Доброкачественные опухоли, которые оказывают воздействие на желчные протоки (в частности, аденома желчной системы) и в редких случаях плоскопленочный рак желчных протоков и аде