Способ измерения удельного сопротивления земных формаций с помощью обсадной трубы с использованием одножильного электрокаротажного кабеля (варианты) и устройство для осуществления способа

Реферат

 

Изобретение относится к электрическому каротажу в скважинах с токопроводящей обсадной трубой. Сущность изобретения: в ствол скважины вводят зонд со множеством электродов на разнесенных в осевом направлении позициях, предназначенных для обеспечения электрического контакта с обсадной трубой. Подают электрический ток между первым и вторым электродами, измеряют ток. Измеряют первое напряжение между первой парой электродов, размещенных в осевом направлении между первым и вторым электродами, и второе напряжение между второй парой электродов, также размещенной в осевом направлении между первым и вторым электродами снаружи от первой пары для определения сопротивления обсадной трубы между парами электродов. Измеряют также вторую разность первого и второго напряжений. Ток прикладывают между другими электродами, размещенными в осевом направлении так, чтобы между ними исключилось наличие третьей пары электродов, и измеряют третье напряжение между третьей парой электродов для определения волнового полного сопротивления. Ток подают между первым электродом и поверхностным электродом для возврата тока, измеряют четвертое напряжение между первой парой электродов, измеряют пятое напряжение между второй парой электродов, измеряют дополнительную вторую разность четвертого и пятого напряжений и определяют удельное сопротивление формации путем объединения первого - пятого напряжений, измерений тока, второй разности и дополнительной второй разности напряжений. Технический результат - возможность использования одножильного кабеля. 3 с. и 10 з.п. ф-лы, 10 ил.

Изобретение относится к регистрации электрического удельного сопротивления буровых скважин. В частности настоящее изобретение относится к устройству и способам измерения электрического удельного сопротивления земных формаций изнутри ствола скважины со вставленной в нее стальной обсадной трубой.

Измерения электрического удельного сопротивления земных формаций, выполняемые изнутри проходящей сквозь эти формации буровой скважины, можно использовать для определения наличия нефти и газа в земных формациях. В технике измерения удельного сопротивления формации известны многочисленные приборы. Эти известные в данной области техники приборы для измерения удельного сопротивления обычно погружают в буровую скважину на одном конце бронированного кабеля. Эти приборы посылают сигналы к оборудованию на поверхности земли, которое электрически соединено с другим концом кабеля. Сигналы от приборов соответствуют удельному сопротивлению формаций.

При использовании известных приборов для измерения удельного сопротивления необходимо, чтобы буровая скважина оставалась "открытым отверстием", т.е. в ней не должен присутствовать стальной трубопровод или обсадная труба, введенная в ствол скважины. Наличие обсадной трубы в стволе скважины отрицательно сказывается на работе известных приборов для измерения удельного сопротивления формаций, поскольку удельное сопротивление обсадной трубы может быть в 10-7-10-10 раз меньше удельного сопротивления земных формаций. Огромная разница в удельных сопротивлениях между обсадной трубой и формацией препятствует измерениям, выполняемым обычными известными приборами для измерения удельного сопротивления.

Для специалиста в данной области техники очевидно, что обсадные трубы обычно вводят в ствол скважины для того, чтобы поддерживать механическую и гидравлическую целостность скважины. С точки зрения безопасности и облегчения работы может быть необходимо измерять удельное сопротивление изнутри ствола скважины со вставленной в нее обсадной трубой. По известным специалисту в данной области техники причинам необходимо также иметь возможность периодически повторять измерения удельного сопротивления в буровых скважинах, которые уже пробурены и выдают нефть и газ. Устройство для измерения удельного сопротивления в буровой скважине с находящейся в ней обсадной трубой описано, например, в патенте США 5075626, выданном на имя Vail.

Конкретным недостатком устройства, описанного в патенте США 5075626 на имя Vail, является то, что для этого устройства необходимо использование электрокаротажного кабеля более чем с одним изолированным электрическим проводником. Причина, по которой с устройством по патенту США 5075626 на имя Vail необходимо использоваться кабель более чем с одним изолированным электрическим проводником, состоит в способе, посредством которого это устройство измеряет свойство формации и обсадной трубы, называемое волновым сопротивлением. Источник электрического тока располагают между первым электродом, электрически контактирующим с обсадной трубой, и обратным электродом на поверхности земли. Затем измеряют напряжение между электродом, расположенным на поверхности земли, и вторым электродом, электрически контактирующим с обсадной трубой и смещенным в осевом направлении от первого электрода. Первый и второй (измеряющий напряжение) электроды должны быть электрически подключены к раздельным изолированным электрическим проводникам, чтобы измерять разность электрических потенциалов между вторым электродом и электродом на поверхности при одновременной подаче питания к обсадной трубе и земле. Хотя в некоторых типах скважинных каротажных приспособлениях используют стальную броню на кабеле в качестве другого электрического проводника для передачи электрической мощности к инструменту в стволе скважины, в устройстве по патенту N 5075626 на имя Vail использование стальной брони для передачи электрического тока от источника вместо использования второго изолированного проводника нарушает распределение электрического тока, подводимого к обсадной трубе. Это нарушение происходит вследствие того, что часть электрического тока будет неизбежно утекать через оплетку стальной брони в буровую скважину и обсадную трубу.

Обычно буровые скважины с обсадными трубами уже полностью "пробурены" или в них созданы условия, когда нефть и газ могут течь через обсадную трубу к земной поверхности. В пробуренных скважинах, как очевидно специалисту, может иметь место существенное давление жидкости в обсадной трубе. Для того чтобы ввести скважинное каротажное устройство в ствол скважины с существенным давлением жидкости в обсадной трубе, целесообразно использовать скважинные каротажные кабели с малыми наружными диаметрами. Электрические кабели малого диаметра содержат обычно лишь один изолированный электрический проводник. Таким образом, существует необходимость в разработке устройства для измерения удельного сопротивления формаций в буровой скважине с введенной в нее обсадной трубой, которое может работать, используя электрический кабель лишь с одним изолированным электрическим проводником.

Согласно настоящему изобретению предложены способ и устройство для определения удельного сопротивления земной формации, через которую проходит буровая скважина с введенной в нее электропроводящей обсадной трубой. Предпочтительный вариант выполнения способа по изобретению включает стадию введения зонда в ствол скважины. Зонд содержит множество предназначенных для обеспечения электрического контакта с обсадной трубой электродов на разнесенных в осевом направлении позициях. Электрический ток прикладывают между первым и вторым из этих электродов и осуществляют измерение электрического тока. Первое напряжение измеряют между первой парой электродов, расположенной в осевом направлении между первым и вторым электродами, а второе напряжение измеряют между второй парой электродов, также расположенной в осевом направлении между первым и вторым электродами, но размещенной вне первой пары, для определения сопротивления обсадной трубы между первой и второй парами электродов. Измеряют также вторую разность первого и второго напряжений. Ток затем прикладывают к другим электродам, расположенным в осевом направлении таким образом, чтобы между ними исключалось наличие третьей пары электродов, и измеряют третье напряжение между третьей парой электродов для определения волнового полного сопротивления обсадной трубы и земной формации. Затем электрический ток прикладывают между первым электродом и поверхностным электродом для возврата тока, расположенным на поверхности земли. Измеряют четвертое напряжение между первой парой электродов, пятое напряжение между второй парой электродов, а также измеряют дополнительную вторую разность напряжений между четвертым и пятым напряжениями. Удельное сопротивление определяют путем объединения измерений первого - пятого напряжений, измерения тока, второй разности и дополнительной второй разности напряжений.

В предпочтительном варианте выполнения устройство включает удлиненный зонд для перемещения по внутреннему пространству обсадной трубы, множество электродов, расположенных на зонде на разнесенных в осевом направлении позициях и предназначенных для обеспечения электрического контакта с обсадной трубой, схемы измерения напряжения, подключенные между парами электродов, по меньшей мере две пары смежных друг с другом электродов, схему измерения разности напряжений, включенную между двумя схемами измерения напряжения и предназначенную для измерения второй разности в напряжении, измеренном между двумя схемами измерения напряжения. Устройство включает источник электрического тока, который можно избирательно подключать между первым и вторым электродами, расположенными в осевом направлении таким образом, чтобы между ними была заключена пара электродов, что позволяет измерять сопротивление обсадной трубы между этими парами электродов. Источник тока можно также избирательно подключать между другими электродами, разнесенными в осевом направлении таким образом, чтобы исключить между ними наличие третьей пары электродов, что позволяет измерять волновое сопротивление формации и обсадной трубы. Источник можно также избирательно подключать между одним из электродов и поверхностным обратным электродом, расположенным на поверхности земли, чтобы измерять утечку тока вдоль трубы. Устройство включает прибор для регистрации измерений, выполненных схемами измерения напряжения, схемой измерения разности напряжений и схемой измерения тока.

Согласно другому варианту выполнения способ по настоящему изобретению включает стадию введения зонда со множеством электродов в ствол скважины. Электроды предназначены для обеспечения электрического контакта с обсадной трубой и расположены на разнесенных в осевом направлении позициях вдоль зонда. Электрический ток подают и измеряют между первым и вторым из электродов, при этом первый и второй электроды разнесены в осевом направлении таким образом, что между ними заключена пара электродов, подключенных к схеме измерения напряжения. Первое напряжение измеряют между первой парой электродов. Затем электрический ток подают и измеряют между первым электродом и третьим электродом, при этом первый и третий электроды разнесены в осевом направлении таким образом, чтобы исключить наличие между ними пары электродов. Измеряют второе напряжение между парой электродов, а удельное сопротивление земной формации определяют путем объединения первого напряжения, второго напряжения и измерений электрического тока.

На фиг. 1 изображен электрод, подающий электрический ток в проводящую металлическую обсадную трубу, вставленную в ствол скважины, которая проходит сквозь земную формацию.

На фиг. 2 показан прибор с рядом электродов, контактирующих с обсадной трубой. Прибор по фиг.2 предназначен для измерения волнового сопротивления обсадной трубы и земли.

На фиг. 3 показан такой же прибор, что и на фиг.2, в конфигурации для определения сопротивления обсадной трубы на малом промежутке между несколькими электродами в приборе.

На фиг. 4 показан такой же инструмент, что и на фиг.2, в конфигурации для определения величины "утечки" тока из обсадной трубы на том же малом промежутке, что и на фиг.3.

На фиг. 5 показан прибор согласно настоящему изобретению с источником тока и электродами для возврата тока, размещенными на этом приборе. Прибор по фиг.5 выполнен в конфигурации для определения сопротивления обсадной трубы на малом промежутке, соответствующем малому промежутку прибора по фиг.3.

На фиг. 6 изображен такой же прибор, что и на фиг.5, в конфигурации для измерения утечки тока на малом промежутке.

На фиг. 7 показан такой же прибор, что и на фиг.5, в конфигурации для измерения волнового сопротивления обсадной трубы и земли.

На фиг. 8А показан такой же прибор, что и на фиг.5, с источником тока, расположенным вне прибора.

На фиг. 8Б представлена рабочая таблица для избирательных переключателей, создающих соответствующую электрическую конфигурацию электродов в приборе для осуществления различных видов измерений.

На фиг. 9 показана телеметрическая система для прибора по настоящему изобретению.

На фиг. 10А показан другой вариант выполнения изобретения с электрической конфигурацией для режима определения сопротивления обсадной трубы.

На фиг. 10Б изображен другой вариант выполнения изобретения с электрической конфигурацией для определения удельного сопротивления формации.

Принцип измерения удельного сопротивления земной формации через проводящую обсадную трубу В проходящем сквозь земные формации стволе скважине, в которую введены токопроводящий металлический трубопровод или токопроводящая металлическая обсадная труба, измерению удельной проводимости земных формаций с использованием известных инструментов препятствует то обстоятельство, что обсадная труба, как очевидно для специалиста в данной области техники, может иметь электрическое удельное сопротивление, меньшее по величине на много порядков, чем удельное сопротивление земной формации.

Однако было установлено, что удельное сопротивление земных формаций можно измерять изнутри токопроводящей обсадной трубы. Принцип измерения удельного сопротивления формаций изнутри токопроводящей обсадной трубы наглядно пояснен на фиг.1. На фиг.1 изображена буровая скважина 2, пробуренная через земные формации, обозначенные общей позицией 6. В буровую скважину 2 вставлен токопроводящий трубопровод или обсадная труба 4. Электрод 8 электрически контактирует с обсадной трубой 4. Один вывод источника электрического тока (не показан на фиг.1), расположенный на поверхности земли, соединен с электродом 8. Как очевидно специалисту в данной области техники, электрод 8 может составлять часть каротажного зонда (на фиг.1 для наглядности не показан), который погружают в ствол скважины 2 на одном конце бронированного электрического кабеля 10. Кабель 10 содержит по меньшей мере один изолированный электрический проводник. Другой вывод источника электрического тока (не показан) обычно соединен с электродом для возврата тока (не показан), размещенным на поверхности земли.

Электрический ток от источника (не показан) проходит по электроду 8 в обсадную трубу 4, где электрический ток распространяется по обсадной трубе 4 вверх и вниз. Часть тока "утекает" наружу в земные формации 6. Из-за утечек тока величина тока, протекающего по обсадной трубе 4, снижается в любой точке по мере того, как возрастает расстояние (вдоль обсадной трубы 4) от электрода 8. Путем измерения величины утечки тока (I) с конкретного промежутка, обозначенного общей позицией 12, можно определить удельное сопротивление земной формации 6, контактирующей с обсадной трубой 4 и в общем случае расположенной в пределах промежутка 12. Если V0 представляет собой напряжение на обсадной трубе 4 относительно бесконечности, то удельное сопротивление формации 6 возле ствола скважины 2 и в общем случае в пределах промежутка 12 вдоль оси может быть рассчитано с помощью выражения V0/I. Кажущееся удельное сопротивление в промежутке 12 может быть определено с помощью выражения где k есть безразмерная постоянная, обеспечивающая равенство кажущегося удельного сопротивления удельному сопротивлению формации 6 при условии, что обсадная труба 4 и формация 6 однородны. z обозначает длину промежутка 12 вдоль обсадной трубы 4.

Система для определения величины утечки тока из промежутка 12 показана схематично на фиг. 2. Система, показанная на фиг.2, может быть аналогична системе, описанной, например, в патенте США N 5075626, выданном на имя Vail.

Система, показанная на фиг.2, включена в описание настоящего изобретения только для пояснения принципа работы устройств, которые измеряют удельное сопротивление внутри обсадной трубы, и не ограничивает объем настоящего изобретения. Система на фиг.2 включает зонд 14, который можно погружать в ствол скважины 2 на одном конце бронированного электрического кабеля 3. Кабель 3 на фиг. 2 содержит по меньшей мере два изолированных электрических проводника, как пояснено ниже. Зонд 14 имеет размещенные на нем электроды, показанные под общими позициями 16, 18, 20, 22, 21 и 24. Электроды можно избирательно электрически замыкать на обсадную трубу 4. Зонд 14 содержит далее первую 26, вторую 28, третью 30 и четвертую 32 схемы измерения напряжения. Как очевидно специалисту в данной области техники, схемы измерения напряжения должны обеспечивать измерение очень малых напряжений. Для третьей измерительной схемы 30, например, напряжения, которые необходимо измерять, могут составлять всего 10-9 В.

Источник 38 электрического тока обычно расположен на поверхности земли. Для специалиста очевидно, что источник 38 предпочтительно представляет собой источник низкочастотного переменного тока, обычно с частотой меньше 10 Гц, для облегчения измерения предельно малых напряжений, которые возникают между электродами в результате подачи напряжения на обсадную трубу 4. Зонд 14 может включать телеметрический блок (на фиг.2 для наглядности не показан), подключенный к каждой из схем измерения напряжения для передачи результатов измерений, осуществляемых схемами 26, 28, 30 и 32 измерений напряжения, на поверхность земли для контроля, регистрации и интерпретации системным оператором, как очевидно для специалиста в данной области техники.

Конкретной величиной, необходимой для обеспечения определения удельного сопротивления формации 6 через обсадную трубу 4, является волновое полное сопротивление (Q) части обсадной трубы 4 и формации 6, которая запитывается источником 38 электрического тока. В системе, показанной на фиг.2, один вывод источника 38 тока подключен к одному из электродов, называемому "электродом для подвода тока" и показанному позицией 16. Другой электрод источника 38 подключен к поверхностному электроду 34. Падение напряжения измеряется четвертой схемой 32 измерения напряжения между электродом 36 поверхностного потенциала, также расположенным на поверхности земли, и другим электродом, называемым воспринимающим напряжение электродом 21, размещенным на зонде 14. Волновое сопротивление вычисляется из напряжения V0, измеренного четвертой измерительной схемой 32, согласно формуле где I0 обозначает величину тока от источника 38. Как очевидно для специалиста в данной области техники, величиной тока можно либо управлять посредством соответствующей конструкции источника 38, либо величину тока можно измерять. Как очевидно для специалиста в данной области техники, измерение волнового сопротивления вдоль обсадной трубы 4 необходимо выполнять лишь через определенные интервалы, примерно через каждые 10 м, в зависимости от удельного сопротивления формации 6.

После этого необходимо измерить сопротивление конкретной части обсадной трубы 4, которая расположена между парами электродов 18 и 20, а также 20 и 22. Процесс определения сопротивления обсадной трубы 4 наглядно проиллюстрирован на примере фиг.3. Зонд 14, как показано на фиг.3, имеет такую электрическую конфигурацию, что ток от источника 38 возвращается в данном случае к электроду 24 для возврата тока на зонде 14, а не к поверхностному электроду (как показано позицией 34 на фиг.2). В электрической конфигурации по фиг. 3 по существу весь электрический ток протекает вдоль обсадной трубы 4 между электродом 16 для подвода тока и электродом 24 для возврата тока на зонде 14. Когда зонд 14 имеет электрическую конфигурацию, показанную на фиг. 3, то ток обозначается как In. Величина тока, который утекает из обсадной трубы с электрической конфигурацией по фиг.3, пренебрежимо мала.

Первая схема 26 измерения напряжения измеряет падение напряжения, обозначенное как V1 ', между электродами 18 и 20, которое относится к сопротивлению обсадной трубы между электродами 18 и 20. Аналогично этому вторая схема 28 измерения напряжения измеряет падение напряжения V2 ' между электродами 20 и 22. Сопротивление обсадной трубы 4 между соответствующими электродами (18 и 20, соотв. 20 и 22) можно определить с помощью выражения Использование вычисленных таким образом значений сопротивления обсадной трубы пояснено ниже. Кроме того, с помощью третьей схемы 30 измерения напряжения можно определить вторую разность, обозначаемую как V, между значениями напряжений, измеренными первой 26 и второй 28 измерительными схемами. Назначение второй разности пояснено ниже.

Затем источник 38 тока может быть переключен в обратном направлении для возвращения тока на поверхностный электрод 34. Такая электрическая конфигурация представлена на фиг.4. Ток от источника 38 в электрической конфигурации по фиг.4 обозначен как Im. Падение напряжения вновь измеряется первой измерительной схемой 26 между электродами 18 и 20, и оно обозначено как V1. Падение напряжения измеряется также вновь второй измерительной схемой 28 между электродами 20 и 22, и оно обозначено как V2.

Другая вторая разность, обозначаемая как V, также измеряется третьей измерительной схемой 30. Среднее значение тока, протекающего вдоль обсадной трубы 4 между электродами 18 и 20, равно V1/R1, а среднее значение тока, протекающего вдоль обсадной трубы 4 между электродами 20 и 22, равно V2/R2. Среднее значение тока, протекающего между электродами 18 и 20, будет слегка отличаться от среднего значения тока, протекающего между электродами 20 и 22, поскольку часть тока утекает из обсадной трубы 4 в формацию 6. Величину тока утечки I можно определить из выражения Напряжение, присутствующее на обсадной трубе 4, относительно бесконечности может быть определено как QIm При подстановке уравнений (3) и (4) в уравнение (1) кажущееся удельное сопротивление формации 6 может быть определено с помощью выражения где К есть постоянная пропорциональности, называемая "коэффициентом 25 прибора", который определяется выражением K = kz, (6) где z равно половине величины расстояния (шага) между электродами 18 и 22 и обозначается как "шаг прибора".

Разность тока между электродами 18 и 20 и тока между электродами 20 и 22 очень мала, как описано выше. Поэтому предпочтительно использовать два вышеописанных измерения "второй разности", выполняемые третьей измерительной схемой 30, как показано в электрической конфигурации на фиг.3 и 4. Подстановка измерений второй разности в уравнение (5) приводит к следующему выражению для кажущегося удельного сопротивления формации 6: где А в уравнении (7) равно Три электрические конфигурации, показанные на фиг.2, 3 и 4, обеспечивают проведение измерений, необходимых для определения удельного сопротивления формации 6, замеряемого с внутренней стороны токопроводящей обсадной трубы 4.

Конкретное ограничение, накладываемое на конфигурацию электродов в известном из уровня техники зонде 14, показанных на фиг.2, 3 и 4, наиболее наглядно представлено на фиг.2. На фиг.2 источник 38 показан включенным между электродом 16 для подвода тока и поверхностным электродом 34. Электрическая конфигурация по фиг.2 используется для подачи питания на обсадную трубу 4 и формацию 6 для определения волнового полного сопротивления (Q). Для электрической конфигурации, показанной на фиг. 2, в токовой цепи источника 38 требуется использование изолированного электрического проводника в кабеле 3. Использование проволоки для армирования на кабеле 3 для пропускания электрического тока приведет к его утечке в буровую скважину 2. На фиг.2 показано также, что четвертая схема 32 измерения напряжения включена между находящимся под напряжением электродом 21 на зонде 14 и поверхностным находящимся под напряжением электродом 36. Для электрического подключения четвертой схемы 32 измерения напряжения требуется другой, отдельный изолированный электрический проводник в кабеле 3. Поэтому дня измерения удельного сопротивления формации с использованием известного устройства необходимо использование электрического кабеля 3 по меньшей мере с двумя изолированными электрическими проводниками.

В некоторых буровых скважинах, в частности в тех буровых скважинах, в которых в обсадной трубе имеется значительное давление жидкости, на верхней части обсадной трубы устанавливают специальное оборудование (не показано) для поддержания давления в жидкости в то время, когда каротажные измерительные инструменты вводят в ствол скважины. Оборудование (не показано), используемое для поддержания давления в жидкости, хорошо известно специалистам в данной области техники. При использовании оборудования для поддержания давления жидкости обычно необходимо применение электрического кабеля с малым внешним диаметром. Известные бронированные электрические кабели с малым диаметром, которые пригодны для использования с оборудованием для поддержания давления жидкости, обычно имеют лишь один изолированный проводник. Поэтому невозможно использовать известную из уровня техники систему для измерения удельного сопротивления через обсадную трубу с применением электрического кабеля, имеющего только один изолированный электрический проводник.

На фиг. 5 показан зонд 14А согласно настоящему изобретению, который включает электрод 16А для подвода тока, измерительные электроды 18A, 20A и 22А, причем функциональное назначение всех их аналогично таковому у эквивалентных электродов на зонде (поз. 14 на фиг.2), известных из уровня техники. Аналогично этому зонд 14А по настоящему изобретению может содержать первую 26А, вторую 28А и третью 30А схемы измерения напряжения и телеметрический блок (не показан) для передачи на поверхность земли измерений, выполненных схемами измерения напряжения. Согласно настоящему изобретению третья измерительная схема 30А может избирательно включаться непосредственно между электродами 18А и 22А через переключающие схемы 30В и 30С. Альтернативно этому третья измерительная схема 30А может избирательно включаться для измерения второй разности между первой 26А и второй 28А схемами измерения напряжения, аналогично третьей измерительной схеме (поз. 30 на фиг.2) скважинного прибора, известного из уровня техники (как показано на фиг.2). Назначение избирательного переключения третьей измерительной схемы 30А между электродами 18А и 22А описано ниже.

Электрическая конфигурация зонда 14А, как показано на фиг.5, предназначена для выполнения измерений сопротивления обсадной трубы 4 между электродами 18А и 20А, а также 20А и 22А. Источник 38 подключен через первый переключатель 42, который может представлять собой телеметрически управляемый переключатель (известного типа и дистанционно управляемый системным оператором), размещенный внутри зонда 14А. Первый переключатель 42, как показано на фиг.5, установлен в положение, в котором источник 38 подключен между электродом 16А для подвода тока и электродом 24А для возврата тока. Измерения сопротивления обсадной трубы 4, осуществляемые в электрической конфигурации по фиг.5, эквивалентны измерениям, осуществляемым известным зондом (поз. 14 на фиг. 3), как показано на фиг.3. Переключатели 30В и 30С установлены в положение, в котором третьей схемой 30А измерения напряжения осуществляются измерения второй разности напряжений между первой 26А и второй 28А схемами измерения напряжения. Сопротивления обсадной трубы могут быть определены согласно соотношению из уравнения (3).

На фиг. 6 представлена электрическая конфигурация зонда 14А и источника 38 тока, которая предназначена для проведения измерений разности напряжений и второй разности на электродах 18А и 20А, а также 20А и 22А соответственно. Эти измерения соответствуют измерениям, выполняемым с использованием известного зонда (поз. 14 на фиг.4), как показано на фиг.4.

Новый аспект настоящего изобретения состоит в особом расположении электродов для выполнения измерений по определению волнового полного сопротивления Q, при котором исключена необходимость использовать кабель 3 более чем с одним изолированным электрическим проводником. Наиболее наглядно этот новый аспект настоящего изобретения пояснен на фиг.7. Электрическая конфигурация зонда 14А, показанная на фиг.7, используется для выполнения измерений по определению волнового полного сопротивления (Q). На зонде 14А установлен дополнительный электрод 21А для подвода тока, который можно избирательно электрически замыкать на обсадную трубу 4. Дополнительный электрод 21А для подвода тока расположен на зонде 14А в осевом направлении так, чтобы при замыкании цепи тока исходная и возвратная точки были расположены в осевом направлении с внешней стороны по отношению к позициям измерительных электродов 18А, 20А и 22А.

На фиг. 7 первый переключатель 42 соединяет один вывод источника 38 с дополнительным электродом 21А для подвода тока вместо электрода 16А для подвода тока. Второй переключатель 40, расположенный на поверхности земли (и также управляемый системным оператором), может избирательно соединять другой вывод источника 38 с электродом 24А для возврата тока. Схема 23 измерения тока может включаться в токовую цепь между источником 38 и дополнительным электродом 21А для подвода тока либо электродом 16А для подвода тока. Схема 23 измерения тока измеряет общий ток, выдаваемый источником 38; использование этого измерения пояснено ниже. Выход схемы 23 измерения тока может также подключаться к телеметрическому блоку (не показан) для передачи ее измерений на поверхность земли для регистрации и контроля, как очевидно для специалиста в данной области техники.

Источник 38 тока на фиг.7 размещен на поверхности земли, как и источник, показанный на фиг.2, 3 и 4 (известный прибор). Источник 38 (как в прототипе, так и согласно настоящему изобретению) используется для подачи напряжения на обсадную трубу 4 для измерений напряжений на электродах (18А, 20А и 22А на фиг. 7). Однако согласно настоящему изобретению источник 38 может быть помещен внутрь зонда 14А, т.к. путь тока в процессе измерения волнового сопротивления начинается и заканчивается на электродах (21А и 24А на фиг.7), размещенных на зонде 14А. Поскольку при измерениях волнового полного сопротивления (Q) оба вывода источника 38 подключены к электродам на зонде 14А, то исключена необходимость использования второго изолированного электрического проводника в кабеле 3 при выполнении этого измерения. Расположение источника 38 внутри зонда 14А имеет дополнительное преимущество, заключающееся при измерении волнового сопротивления в обеспечении для электрического тока пути с меньшим сопротивлением, т.к. в результате этого электрический проводник в кабеле 3 исключен из общей токовой цепи, благодаря чему при любом конкретном напряжении увеличивается протекание возможного электрического тока для выполнения измерения волнового сопротивления. Изолированный проводник в электрическом кабеле 3 обычно имеет сопротивление в несколько Ом на 100 футов (30 м) длины, а для обычной длины кабеля он вносил бы в схему сопротивление в несколько сотен Ом, значительно снижая возможный ток для любого конкретного напряжения.

На фиг. 8А изображен другой вариант конфигурации согласно настоящему изобретению, в котором источник электрического тока размещен внутри зонда. Источник показан позицией 38А. Выводы источника 38А (X и Y) можно избирательно электрически соединять с соответствующими электродами 34, 16А, 21А, 24А через телеметрически управляемые переключатели 50, 51, 52, 53. Телеметрически управляемые переключатели могут представлять собой известные переключатели, которыми может дистанционно управлять системный оператор.

На фиг. 8Б изображена таблица, в которой представлены рабочие положения каждого из переключателей (50, 51, 52, 53) для каждого из трех различных измерений, как описано выше, необходимых для определения удельного сопротивления формации, а именно, волнового полного сопротивления, сопротивления обсадной трубы и утечки тока. Конкретным преимуществом компоновки по фиг.8А является то, что для обеспечения протекания электрического тока между зондом 14А и поверхностью земли требуется лишь один изолированный электрический проводник. Поэтому систему по фиг.8А можно использовать с бронированным электрическим кабелем (поз. 3 на фиг.2), имеющим только один изолированный электрический проводник.

Необходимо отметить, что конфигурация источника 38А тока и переключателей 50, 51, 52, 53, показанная на фиг.8А, приведена лишь в качестве примера. Конфигурацию по фиг.8А не следует рассматривать как ограничивающую объем изобретения. Например, можно также использовать конфигурацию, содержащую расположенный на поверхности земли дополнительный источник тока (такой, как обозначенный поз. 38 на фиг.7) в комбинации с источником тока в зонде (поз. 38А на фиг.7).

Конкретное усовершенствование согласно настоящему изобретению по сравнению с известным уровнем техники состоит во введении дополнительного электрода 21А для подвода тока, который функционирует в качестве исходной точки для электрического тока во время измерения волнового сопротивления. Дополнительный электрод 21А для подвода тока исключает необходимость измерять напряжение на обсадной трубе 4 относительно поверхности земли при одновременной подаче напряжения на обсадную трубу 4 от источника, размещенного на земной поверхности. Поэтому зонд 14А с дополнительным электродом 21А для подвода тока пo настоящему изобретению может использоваться с электрическим кабелем, имеющим только один изолированный электрический проводник. Электрическая эквивалентность компоновки по настоящему изобретению и компоновке известного прибора более подробно описана ниже.

Возвращаясь к фиг.7, необходимо отметить, что третья схема 30А измерения напряжения избирательно подключается посредством телеметрически срабатывающих переключателей 30В и 30С для измерения падения напряжения непосредственно на электродах 18А и 22А вместо измерения второй разности первой 26А и второй 28А измерительных схем. Перераспределение измерений, выполняемых третьей измерительной схемой 30А при измерении волнового сопротивления, основано на том, что падение напряжения на электродах по существу пропорционально расстоянию между электродами и величине тока, протекающего по обсадной трубе. Посредством выбора электродов 18А и 22А измеряемая величина тока увеличится.

Для объяснения электрической эквивалентности измерений волнового сопротивления, выполняемых зондом по фиг.2 и зондом по фиг.7, ниже приведено описание теории измерения. В системе с практически однородной обсадной трубой 4 и практически однородной земной формацией 6 распределение электрического напряжения V (z), электрического тока I (z), протекающего вдоль обсадной трубы, и тока J(z), вытекающего из обсадной трубы, по длине z от точки ввода тока (в качестве которой согласно настоящему изобретению может служить дополнительный электрод для подвода тока, показанный позицией 21А на фиг.7) может быть определено выражениями