Способ переключения каналов связи в мобильной системе связи, поддерживающей диверсификацию передач

Реферат

 

Заявлен способ выполнения процедуры переключения каналов связи, когда мобильная станция, принимающая сигнал в режиме диверсификации передачи (ДП), перемещается от первой базовой станции, передающей сигнал в режиме ДП, к второй базовой станции, передающей сигнал в режиме ДП. Мобильная станция осуществляет связь с первой базовой станцией в режиме ДП. Перед переключением каналов связи мобильная станция осуществляет связь с первой базовой станцией в режиме без ДП. В процессе процедуры гибкого переключения каналов связи мобильная станция осуществляет связь с первой и второй базовыми станциями в режиме без ДП. После завершения процедуры гибкого переключения каналов связи мобильная станция осуществляет связь со второй базовой станцией в режиме ДП. Также заявлены другие способы выполнения переключения каналов связи, например, когда мобильная станция и базовые станции работают в режиме ДП и в режиме без ДП. Техническим результатом является создание способа гибкого переключения каналов связи, который может быть осуществлен между мобильной станцией с функцией диверсификации передач с временной коммутацией (ДПВК) и двумя базовыми станциями с функцией ДВПК. 22 с. и 8 з.п.ф-лы, 47 ил.

Изобретение относится к мобильным системам связи, в частности к способу переключения каналов связи в мобильной системе связи, поддерживающей диверсификацию передач для базовой станции.

В мобильной системе связи функция, определяемая как "диверсификация передач", обычно используется для мультиплексирования тракта передачи сигналов, передаваемых от базовой станции к мобильной станции. Это обеспечивает повышение надежности принимаемых сигналов, имеющих одну и ту же мощность, как в принимающей мобильной станции, так и в базовой станции. В данном случае термин "тракт" использован для обозначения физического тракта, через который сигнал может быть передан от передатчика к приемнику. Физический тракт зависит от различных факторов, таких как направление распространения от передающей антенны, поляризация передаваемого сигнала, местоположение передающей антенны, различное значение несущей на частотной оси, различное время передачи на оси времени. Термин "тракт" не обязательно относится к пространственному тракту. Термин "микродиверсификация передач", как он используется в данном описании, относится к функции диверсификации передач, реализованной в одной базовой станции, а термин "макродиверсификация передач" относится к функции диверсификации передач, реализованной в множестве базовых станций. Принцип TSTD (диверсификация передач с временной коммутацией - ДПВК) поясняется в заявке на патент Кореи 1998-5526 заявителя данной заявки. В беспроводной связи не используется метод переключения каналов связи, основанный на принципе ДПВК.

Для простоты базовая станция, имеющая функцию диверсификации передач, будет определяться в настоящем описании как базовая станция с ДПВК-функцией, а базовая станция, не поддерживающая функцию диверсификации передач, - как базовая станция без ДПВК-функции. Кроме того, мобильная станция, поддерживающая функцию диверсификации передач, будет определяться в настоящем описании как мобильная станция с ДПВК-функцией, а мобильная станция, не поддерживающая функцию диверсификации передач, - как мобильная станция без ДПВК-функции.

В качестве примера на фиг.1 и 2 приведены соответственно передатчик для базовой станции без ДПВК-функции и передатчик для базовой станции с ДПВК-функцией, на фиг. 4А и 4В приведен приемник мобильной станции с ДПВК-функцией, а операция переключения каналов связи описана затем со ссылками на фиг.5А и 5В.

На фиг.1 представлена блок-схема передатчика базовой станции для мобильной системы связи множественного доступа с кодовым разделением каналов (МДКР). Канальный кодер и перемежитель 110 является обычным канальным кодером и перемежителем, обеспечивающим повышение надежности передачи сигналов, принимаемых по каналу трафика. Мультиплексор 112 мультиплексирует символы пилот-сигнала, биты управления мощностью передачи (УМП), биты информации о скорости (ИС) и биты данных с выхода канального кодера и перемежителя 110. Последовательно-параллельный преобразователь 114 принимает выходной сигнал мультиплексора 112 и выдает символы с нечетными номерами в синфазный I-канал, а символы с четными номерами - в квадратурный Q-канал. Преобразователи 116 и 117 сигналов преобразуют логические сигналы "0" и "1" с выхода последовательно-параллельного преобразователя 114 в "+1" и "-1" соответственно.

Генератор 128 ортогонального кода генерирует ортогональный код, используемый для разделения каналов передачи в базовой станции. Смесители 118 и 119 перемножают преобразованные сигналы с преобразователей 116 и 117 сигналов на ортогональный код, сформированный генератором 128 ортогонального кода. Генератор 130 псевдошумового (ПШ) кода генерирует ПШ коды PN_I и PN_Q и выдает их на комплексный ПШ расширитель 120, который перемножает выходные сигналы смесителей 118 и 119 на ПШ коды PN_I и PN_Q соответственно. Коммутатор 147 используется для реализации макроДПВК-функции в состоянии гибкого переключения каналов связи и осуществляет прерывание передачи посредством антенны.

В традиционном передатчике коммутатор, реализующий прерывистый режим передачи, может использоваться в качестве коммутатора 147. Фильтры нижних частот (ФНЧ) 122 и 123 представляют собой обычные ФНЧ для ограничения передаваемых сигналов конкретной полосой частот. Генератор несущей 132 генерирует несущую для передаваемых сигналов и подает несущую на смеситель 124 и фазовращатель на 90o 134. Фазовращатель на 90o 134 сдвигает фазу несущей с генератора несущей 132 на 90o для обеспечения ортогональности между I-каналом и Q-каналом. Смеситель 124 перемножает выходной сигнал ФНЧ 122 на выходной сигнал генератора несущей 132 и выдает полученный результат на сумматор (или схему ИСКЛЮЧАЮЩЕЕ ИЛИ) 126. Смеситель 125 перемножает выходной сигнал ФНЧ 123 на выходной сигнал фазовращателя на 90o 134 и выдает полученный результат на сумматор 126. Сумматор 126 суммирует выходные сигналы смесителей 124 и 125 и передает полученный суммарный сигнал через антенну.

На фиг.2 представлена блок-схема, иллюстрирующая передатчик базовой станции, поддерживающей ДПВК-функцию. Базовая станция содержит множество антенн и мультиплексирует сигнальный тракт от базовой станции к мобильной станции путем коммутации сигнала, подаваемого на передатчик с использованием коммутатора. Это повышает надежность приема сигнала с той же средней мощностью передачи в мобильной станции и в базовой станции.

фиг. 4А иллюстрирует приемник для мобильной станции с ДПВК-функцией, включающий в себя приемник для мобильной станции без ДПВК-функции. Смеситель 212 умножает сигнал, принятый посредством антенны, на выходной сигнал генератора несущей 210, включающего в себя генератор несущей 132 и фазовращатель на 90o 134 по фиг.1, для преобразования принятого сигнала в полосу частот модулирующих сигналов. ФНЧ 214 осуществляет низкочастотную фильтрацию выходного сигнала смесителя 212. Дискретизатор 216 дискретизирует и квантует выходной сигнал ФНЧ 214 для преобразования отфильтрованного аналогового сигнала в цифровой сигнал. Блок временной оценки 218 отслеживает ПШ код для устранения разности фаз между принятым сигналом и ПШ-кодом, генерируемым в мобильной станции. Блок временной оценки 218 управляет комплексным генератором 222 ПШ кода и генератором 224 ортогонального кода.

Комплексный ПШ блок сжатия 220 осуществляет сжатие выходного сигнала генератора 222 комплексного ПШ кода и дискретизатора 216. Смеситель 226 умножает сжатый ПШ сигнал на выходной сигнал генератора 224 кода. Накопитель (или интегратор) 228 накапливает выходной сигнал смесителя 226 на длительности символа для генерирования значения оценки символа. Блок выделения 232 пилот-сигнала оценивает канал от антенны базовой станции до мобильной станции для выделения пилот-сигналов, являющихся немодулированными сигналами, для надежной оценки символов. Выделенные сигналы подаются на канальный блок оценки 244, который выполнен с возможностью взаимодействия как с мобильной станцией с ДПВК-функцией, так и с мобильной станцией без ДПВК-функции. Детальная структура канального блока оценки 244 показана на фиг.4В.

В общем случае можно считать, что каждый пилот-сигнал для сигналов с выхода базовой станции без ДПВК-функции передается по тому же самому пути распространения. Кроме того, можно считать, что сигналы с выхода одной и той же антенны базовой станции с ДПВК-функцией передаются по одному и тому же пути распространения. Однако нельзя считать, что сигналы с выходов разных антенн передаются к мобильной станции по одному и тому же пути распространения. Соответственно оценка каналов должна выполняться независимо для соответствующих антенн. Кроме того, параметры оценки каналов C0(m), C1(m), C2(m), . . . должны изменяться в соответствии с периодом символов пилот-сигнала, используемого для оценки соответствующих каналов.

На фиг.4В представлена детальная иллюстрация канального блока оценки 244 для мобильной станции с ДПВК-функцией, который оценивает каналы с использованием двух символов пилот-сигнала, переданных посредством одной и той же антенны базовой станции, имеющей две передающие антенны. Поэтому канальный блок оценки 244 включает в себя два каскадно соединенных буфера для хранения выходных сигналов блока выделения 232 пилот-сигнала. Селектор 250 селектирует выходной сигнал смесителя 247 в режиме работы с использованием функции ДПВК и выходной сигнал смесителя 248 в режиме работы без использования функции ДПВК. Входные параметры смесителей 247 и 248 установлены независимо от режима работы, так как смесители 247 и 248 выбираются селектором 250, но параметр Со(m) смесителя 249 должен варьироваться в соответствии с режимом работы.

Кроме того, поскольку временная задержка оценки канала зависит от режима работы, линия задержки 236 в данном случае состоит из двух линий задержки 234 и 237 с разным временем задержки, и использованы два селектора 234 и 238. Селекторы 234 и 238 работают синхронно с селектором 250. Сумматор 251 суммирует выходные сигналы смесителей 247, 248 и 249 в канальном блоке оценки 244. Блок 242 комплексного сопряжения обеспечивает комплексное сопряжение выходного сигнала сумматора 251. Смеситель 240 умножает выходной сигнал блока 242 комплексного сопряжения 242 на выходной сигнал селектора 238 для синхронной демодуляции символов данных. Выходной сигнал смесителя 240 подается на блок объединения 260, который объединяет сигналы, принятые посредством множества трактов распространения, в том случае, когда сигналы, переданные одной и той же передающей антенной в базовой станции, поступают в мобильную станцию по множеству трактов распространения сигналов.

Для наглядности на фиг.4А показана схема только одного конкретного тракта распространения сигнала, причем каждый приемник, имеющий такую структуру, называется "отводом" многоканального приемника. Блок объединения 260 суммирует с соответствующими весами выходные сигналы соответствующих отводов. Выходной сигнал блока объединения 260 подается на селектор 262, который выполняет процедуру демультиплексирования, соответствующую процедуре мультиплексирования в передатчике. Деперемежитель и канальный декодер 264 удаляет перемежение и декодирует сигналы с селектора 262, которые были кодированы и подвергнуты обработке перемежением в канальном кодере и перемежителе 110 по фиг.1-3.

Различие между мобильной станцией с функцией ДПВК и мобильной станцией без функции ДПВК будет пояснено со ссылками на фиг.4В. В случае канального блока оценки мобильной станции без функции ДПВК селектор 250 селектирует смеситель 248, игнорируя смеситель 247 и буфер 246. Кроме того, параметр C0(m) фиксирован (используется), а параметр С2(m) игнорируется. А также, поскольку приемник для мобильной станции без функции ДПВК должен оценивать канал только для одной антенны, линия задержки 236 состоит только из линии задержки 235, и селекторы 234 и 235 коммутируются для селекции линии задержки 235.

Известная процедура гибкого переключения каналов связи будет описана ниже со ссылками на фиг.5А и 5В для случая, когда операция гибкого переключения каналов связи осуществляется между мобильной станцией без функции ДПВК и двумя базовыми станциями без функции ДПВК. Ясно, что операция переключения каналов связи выполняется в мобильной системе связи, использующей передатчик и приемник, описанные выше со ссылками на фиг.1-4В.

Согласно фиг. 5А, обмен сигналами производится между мобильной станцией без функции ДПВК и двумя базовыми станциями А и В без функции ДПВК; т.е. когда мобильная станция без функции ДПВК перемещается от базовой станции А без функции ДПВК (БС-А) к соседней базовой станции В без функции ДПВК (БС-В). Непосредственно перед операцией гибкого переключения каналов связи только базовая станция А без функции ДПВК (БС-А) передает сигнал, а мобильная станция без функции ДПВК принимает переданный сигнал (320). В процессе операции гибкого переключения каналов связи базовые станции А и В одновременно передают ту же самую информацию, а мобильная станция назначает отводы трактам распространения сигналов от соответствующих базовых станций для приема переданной информации (330). После завершения операции гибкого переключения каналов связи только базовая станция А (БС-А) передает сигнал, а мобильная станция принимает переданный сигнал (340).

На фиг. 5В показана временная диаграмма сигналов управления и сигналов трафика, передаваемых между базовыми станциями и мобильной станцией в процессе операции гибкого переключения каналов связи, иллюстрируемой на фиг.5А. На этапе 511 базовая станция А без функции ДПВК (БС-А) и мобильная станция без функции ДПВК осуществляют связь между собой в режиме работы без функции ДПВК. В процессе осуществления связи мобильная станция на этапе 513 проверяет, является ли уровень принимаемого сигнала от базовой станции А меньшим, чем порог, для определения того, требуется ли переключение каналов связи. Если переключение каналов связи не требуется, то мобильная станция возвращается на этап 511 и непрерывно осуществляет связь с базовой станцией А.

В противном случае, если переключение каналов связи требуется, то мобильная станция переходит к этапу 515 для передачи запроса переключения каналов связи к базовой станции А. Базовая станция А затем передает сообщение подтверждения переключения каналов связи (или сообщение разрешения переключения каналов связи) к мобильной станции на этапе 517. Мобильная станция может осуществить запрос переключения каналов связи непосредственно путем передачи сигнала управления или может осуществить запрос переключения каналов связи косвенным образом. Например, в случае прямого запроса переключения каналов связи мобильная станция измеряет уровень сигналов от базовой станции, соседней с ней, и передает идентификатор (ИД) базовой станции, имеющей наивысший уровень сигнала (в данном случае базовой станции А), к базовой станции А. А в случае косвенного запроса переключения каналов связи мобильная станция не только измеряет уровень сигналов от базовой станции А, но и измеряет уровень сигналов от соседних базовых станций, имеющих уровень принимаемых сигналов выше, чем порог, чтобы позволить базовой станции А определить, требуется ли выполнять переключение каналов связи на целевую базовую станцию (в данном случае на базовую станцию В), если процедура переключения каналов связи требуется.

В ответ на запрос переключения каналов связи базовая станция А запрашивает контроллер базовых станций (КБС), может ли базовая станция В принять запрос на переключение каналов связи, и передает результат запроса к мобильной станции. В тот же момент базовая станция В на этапе 519 может также передать информацию мобильной станции относительно того, допустимо ли переключение каналов связи. Если переключение каналов связи разрешено, то базовая станция А на этапе 521 передает сигнал в режиме работы без использования функции ДПВК, и в то же время базовая станция В на этапе 523 также передает сигнал в режиме работы без использования функции ДПВК. Мобильная станция принимает переданные сигналы путем назначения отводов для сигналов от соответствующих базовых станций, умножает принятые сигналы на веса, соответственно качеству сигналов от соответствующих базовых станций, с использованием блока объединения и накапливает умноженные значения, чтобы выполнить операцию гибкого переключения каналов связи.

Если качество сигнала от базовой станции А снижается ниже порогового значения, мобильная станция передает сообщение запроса разъединения для канала, соединенного с базовой станцией А на этапе 525, и затем базовая станция А передает сообщение подтверждения в ответ на сообщение запроса и разъединяет канал на этапе 527. В то же время мобильная станция также прекращает прием сигнала от базовой станции А. После этого на этапе 529 мобильная станция осуществляет связь с базовой станцией В в режиме работы без использования функции ДПВК.

Как описано выше, операция гибкого переключения каналов связи производится между базовыми станциями и мобильной станцией без учета функции ДПВК, упрощая тем самым осуществление процедуры переключения каналов связи. Но применение функции ДПВК в базовой станции является выгодным, так как при той же мощности передачи может быть получено более высокое качество связи. Однако функция ДПВК увеличивает стоимость мобильной системы связи, поскольку требуется дополнительное аппаратное обеспечение. Поэтому для минимизации затрат базовые станции с использованием функции ДПВК устанавливаются в районах с интенсивным трафиком, а базовые станции без использования функции ДПВК устанавливаются в районах с относительно слабым трафиком. Соответственно, если функция ДПВК вводится в базовую станцию, не использовавшую функцию ДПВК, установленную в районе с невысоким трафиком, чтобы повысить качество связи, то требуется новая процедура переключения каналов связи; т.е. мобильная станция должна иметь возможность переключаться на базовую станцию, поддерживающую функцию ДПВК. Настоящее изобретение обеспечивает новые способы выполнения операций переключения каналов связи в таких и иных обстоятельствах при минимизации стоимости и сложности функционирования.

Таким образом, задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен между мобильной станцией с функцией ДПВК и двумя базовыми станциями с функцией ДПВК.

Также задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен, когда мобильная станция с функцией ДПВК перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции с функцией ДПВК.

Кроме того, задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен между мобильной станцией с функцией ДПВК и двумя базовыми станциями, не использующими функцию ДПВК.

Также задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен, когда мобильная станция с функцией ДПВК перемещается от базовой станции, использующей функцию ДПВК, к базовой станции, не использующей функцию ДПВК.

Также задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен между мобильной станцией, не использующей функцию ДПВК, и двумя базовыми станциями с функцией ДПВК.

Еще одной задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен, когда мобильная станция, не использующая функцию ДПВК, перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции с функцией ДПВК.

Также задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен между мобильной станцией, не использующей функцию ДПВК, и двумя базовыми станциями, не использующими функцию ДПВК.

Еще одной задачей изобретения является создание способа гибкого переключения каналов связи, который может быть осуществлен, когда мобильная станция, не использующая функцию ДПВК, перемещается от базовой станции, использующей функцию ДПВК, к базовой станции, не использующей функцию ДПВК.

Для достижения этих и других результатов предложены способы гибкого переключения каналов связи для мобильной системы связи, поддерживающей диверсификацию передач. В одном варианте заявлен способ выполнения процедуры переключения каналов связи, когда мобильная станция, не использующая функцию ДПВК, перемещается от базовой станции А, не использующей функцию ДПВК, к соседней базовой станции В, не использующей функцию ДПВК. Непосредственно перед гибким переключением каналов связи базовая станция А передает сигнал в режиме работы без функции ДПВК, и мобильная станция принимает переданный сигнал. В процессе процедуры гибкого переключения каналов связи базовые станции А и В попеременно передают те же самые данные через выбранные антенны в режиме работы с функцией макроДПВК, а мобильная станция назначает отводы многоканального приемника для трактов распространения сигналов от соответствующих базовых станций для приема передаваемых данных. В данном варианте назначаются всего два отвода. После завершения процедуры гибкого переключения каналов связи базовая станция В работает в режиме без использования функции ДПВК, и мобильная станция также работает в режиме без использования функции ДПВК для приема данных от базовой станции В.

В процессе процедуры гибкого переключения каналов связи базовая станция А, не использующая функцию ДПВК, и мобильная станция, не использующая функцию ДПВК, осуществляют связь друг с другом в режиме работы без использования функции ДПВК. В процессе осуществления связи мобильная станция определяет, не является ли принимаемый уровень сигнала базовой станции А меньшим, чем пороговое значение, для определения того, когда необходимо осуществить переключение каналов связи. Если переключение каналов связи не требуется, то мобильная станция непрерывно осуществляет связь с базовой станцией А. В противном случае, если переключение каналов связи требуется, то мобильная станция передает запрос переключения каналов связи в базовой станции А. Базовая станция А затем передает сообщение подтверждения переключения каналов связи к мобильной станции в ответ на упомянутый запрос переключения каналов связи. Вместе с запросом переключения каналов связи мобильная станция передает информацию о целевой базовой станции В, на которую должно быть осуществлено переключение каналов связи, и информацию о передающей антенне, выбранной для режима без использования функции ДПВК, из передающих антенн базовой станции А. После приема запрос переключения каналов связи базовая станция А запрашивает контроллер базовых станций (КБС) о том, может ли базовая станция В принять переключение каналов связи, и передает результат этого запроса к мобильной станции. В этот же момент базовая станция В может также передать мобильной станции информацию о том, допустимо ли переключение каналов связи.

Затем после перехода в состояние переключения каналов связи базовая станция А передает сигнал в режиме работы с использованием функции макроДПВК, и в то же время базовая станция В также передает тот же самый сигнал в режиме работы с использованием функции макроДПВК. Мобильная станция затем принимает передаваемые сигналы путем назначения отводов многоканального приемника для приема сигналов от соответствующих базовых станций, умножает принятые сигналы на веса, соответствующие качеству сигналов от соответствующих базовых станций с использованием блока объединения, и накапливает умноженные значения для выполнения процедуры гибкого переключения каналов связи.

При этом если качество сигнала от базовой станции А снижается ниже порогового значения, то мобильная станция передает сообщения запроса освобождения канала, соединенного с базовой станцией А. Базовая станция А затем передает сообщение подтверждения в ответ на сообщение запроса и освобождает канал. В момент передачи запроса освобождения канала мобильная станция передает запрос освобождения режима макроДПВК к базовой станции В, и базовая станция В передает сообщение подтверждения в ответ на запрос. После приема сообщения подтверждения мобильная станция переключает режим приема с режима с использованием функции макроДПВК на режим без использования функции ДПВК и осуществляет связь с базовой станцией В в режиме работы без использования функции ДПВК.

На фиг.1 представлена блок-схема, иллюстрирующая передатчик для базовой станции без использования функции ДПВК, согласно настоящему изобретению; фиг. 2 - блок-схема передатчика базовой станции с использованием функции микроДПВК согласно настоящему изобретению; фиг. 3 - блок-схема передатчика базовой станции с использованием функции макроДПВК согласно настоящему изобретению; фиг.4А - блок-схема приемника мобильной станции с использованием функции ДПВК согласно настоящему изобретению; фиг.4В - блок-схема канального блока оценки приемника по фиг.4А согласно настоящему изобретению; фиг. 5А и 5В - диаграммы, иллюстрирующие известную из предшествующего уровня техники процедуру гибкого переключения каналов связи между мобильной станцией, не использующей функцию ДПВК, и двумя базовыми станциями, не использующими функцию ДПВК; фиг. 6А и 6В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно первому варианту осуществления настоящего изобретения; фиг. 7А и 7В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно второму варианту осуществления настоящего изобретения; фиг. 8А и 8В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно третьему варианту осуществления настоящего изобретения; фиг. 9А и 9В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно четвертому варианту осуществления настоящего изобретения; фиг.10А и 10В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно пятому варианту осуществления настоящего изобретения; фиг.11А и 11В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно шестому варианту осуществления настоящего изобретения; фиг.12А и 12В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, использующая функцию ДПВК, перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции, использующей функцию ДПВК, в мобильной системе связи согласно седьмому варианту осуществления настоящего изобретения; фиг.13А и 13В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, использующая функцию ДПВК, перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции, использующей функцию ДПВК, в мобильной системе связи согласно восьмому варианту осуществления настоящего изобретения; фиг.14А и 14В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, использующая функцию ДПВК, перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции, использующей функцию ДПВК, в мобильной системе связи согласно девятому варианту осуществления настоящего изобретения; фиг.15А и 15В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, использующая функцию ДПВК, перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции, использующей функцию ДПВК, в мобильной системе связи согласно десятому варианту осуществления настоящего изобретения; фиг.16А и 16В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, не использующими функцию ДПВК, в мобильной системе связи согласно одиннадцатому варианту осуществления настоящего изобретения; фиг.17А и 17В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, использующей функцию ДПВК, и двумя базовыми станциями, не использующими функцию ДПВК, в мобильной системе связи согласно двенадцатому варианту осуществления настоящего изобретения; фиг.18А и 18В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, использующая функцию ДПВК, перемещается от базовой станции, использующей функцию ДПВК, к базовой станции, не использующей функцию ДПВК, в мобильной системе связи согласно тринадцатому варианту осуществления настоящего изобретения; фиг.19А и 19В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, не использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно четырнадцатому варианту осуществления настоящего изобретения; фиг.20А и 20В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, не использующей функцию ДПВК, и двумя базовыми станциями, использующими функцию ДПВК, в мобильной системе связи согласно пятнадцатому варианту осуществления настоящего изобретения; фиг. 21 А и 21В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, не использующая функцию ДПВК, перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции, использующей функцию ДПВК, в мобильной системе связи согласно шестнадцатому варианту осуществления настоящего изобретения; фиг.22А и 22В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, не использующая функцию ДПВК, перемещается от базовой станции, не использующей функцию ДПВК, к базовой станции, использующей функцию ДПВК, в мобильной системе связи согласно семнадцатому варианту осуществления настоящего изобретения; фиг.23А и 23В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи между мобильной станцией, не использующей функцию ДПВК, и двумя базовыми станциями, не использующими функцию ДПВК, в мобильной системе связи согласно восемнадцатому варианту осуществления настоящего изобретения; фиг.24А и 24В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, не использующая функцию ДПВК, перемещается от базовой станции, использующей функцию ДПВК, к базовой станции, не использующей функцию ДПВК, в мобильной системе связи согласно девятнадцатому варианту осуществления настоящего изобретения; фиг.25А и 25В - диаграммы, иллюстрирующие процедуру гибкого переключения каналов связи, когда мобильная станция, не использующая функцию ДПВК, перемещается от базовой станции, использующей функцию ДПВК, к базовой станции, не использующей функцию ДПВК, в мобильной системе связи согласно двадцатому варианту осуществления настоящего изобретения.

Предпочтительные варианты осуществления настоящего изобретения описываются ниже со ссылками на иллюстрирующие чертежи. В последующем описании хорошо известные устройства или функции детально не описываются в целях наглядности описания сущности изобретения. Хотя изобретение описано со ссылками на конкретные варианты его осуществления, поддерживающие функцию ДПВК, однако также можно использовать изобретение в мобильных системах связи, которые не поддерживают функцию диверсификации передач.

В мобильной системе связи, соответствующей настоящему изобретению, базовая станция распределяет пользовательские данные на множество антенн на базе временного разделения для реализации функции диверсификации передач, а мобильная станция демодулирует принимаемые диверсифицированные данные с использованием демодулятора.

Как упомянуто выше, термин "микроДПВК", использованный в данном описании, означает, что базовая станция, имеющая множество антенн, передает данные к мобильной станции путем чередования антенн на базе временного разделения. Т.е. термин "микроДПВК" относится к обычной функции ДПВК. Кроме того, термин "макроДПВК" относится к передаче данных к мобильной станции с использованием антенн множества базовых станций в режиме гибкого переключения каналов связи, путем выбора базовой станции и затем выбора передающей антенны в выбранной базовой станции.

А. Мобильная система связи Перед описанием различных новых способов выполнения процедур переключения каналов связи в соответствии с настоящим изобретением будет представлено описание передатчика и приемника мобильной системы связи, в которой реализуются способы, соответствующие настоящему изобретению.

1. Передатчик Как упомянуто выше, на фиг.1 представлена блок-схема, иллюстрирующая схему передатчика базовой станции. Данный передатчик, хотя и не имеющий возможности поддерживать функцию микроДПВК, однако поддерживает функцию макроДПВК путем передачи данных в режиме диверсификации передач (ДП) в состоянии гибкого переключения каналов связи соответственно состоянию включения/выключения селектора 147. На фиг.2 представлена блок-схема, иллюстрирующая схему передатчика базовой станции, поддерживающей функцию микроДПВК, а на фиг. 3 - блок-схема, иллюстрирующая схему передатчика для базовой станции, поддерживающей функцию макроДПВК. Два передатчика имеют практически одну и ту же структуру и незначительное различие между ними состоит в способе работы селектора 148 и селекторов 149 и 150.

Со ссылками на фиг.2 и 3 ниже описан передатчик базовой станции, поддерживающий функцию ДПВК в мобильной системе связи МДКР. Как упомянуто выше, канальный кодер и перемежитель 110 является обычным канальным кодером и перемежителем, обеспечивающим повышение надежности передачи сигналов, принимаемых по каналу трафика. Мультиплексор 112 мультиплексирует символы пилот-сигнала, биты управления мощностью передачи (УМП), биты информации о скорости передачи (ИС) и биты данных с выхода канального кодера и перемежителя 110. Последовательно-параллельный преобразователь (ППП) 114 принимает выходной сигнал с мультиплексора 112 и выдает символы с нечетными номерами в I -канал, а символы с четными номерами - в Q-канал. Преобразователи сигналов 116 и 117 преобразуют логические сигналы "0" и "1" с выхода ППП 114 в "+1" и "-1" соответственно. Генератор 128 ортогонального кода генерирует ортогональный код, используемый для разделения каналов передачи в базовой станции. Смесители 118 и 119 умножают преобразованные сигналы с преобразователей сигналов 116 и 117 на ортогональный код, генерируемый генератором 128 ортогонального кода. Генератор 130 ПШ кода генерирует ПШ коды PN_I и PN_Q и подает их на комплексный блок 120 ПШ расширения спектра, который умножает выходные сигналы смесителей 118 и 119 на ПШ коды PN_I и PN_Q соответственно.

В передатчике базовой станции по фиг.2, который поддерживает функцию микроПДВК, селектор 148 селектирует передающие антенны в режиме с использованием функции ПДВК и передает выходной сигнал комплексного блока 120 ПШ расширения спектра в соответствующую антенну. В передатчике базовой станции по фиг. 3, который поддерживает функцию макроПДВК, либо селектор 14