Способ рекуперации кинетической энергии и транспортное средство с рекуператором (варианты)

Реферат

 

Изобретение относится к автомобильному транспорту и может быть применено к любым электрифицированным транспортным средствам (автомобиль, троллейбус, трамвай, электропоезд и т. п.), которые в режимах движения имеют частые разгоны и торможения. Рекуперация кинетической энергии осуществляется через преобразование кинетической энергии торможения транспортного средства, преимущественно автомобиля с электротрансмиссией, в электрическую энергию с последующим ее аккумулированием в гиромоторном рекуператоре, обеспечивающим преобразование кинетической энергии вращения высокоскоростного ротора гиромотора в электрическую, и наоборот. Режим рекуперации кинетической энергии гиромотором осуществляют в три этапа. На первом этапе высокоскоростной ротор гиромотора раскручивают от внешнего источника электрической энергии до опорной частоты вращения, при этом стабилизируют величину опорной частоты вращения высокоскоростного ротора, а затем на втором этапе рекуперации преобразуют кинетическую энергию торможения автомобиля в кинетическую энергию высокоскоростного ротора гиромотора за счет того, что высокоскоростной ротор дополнительно раскручивают до рабочей частоты вращения больше опорной частоты от источника электрической энергии, получаемой в результате торможения автомобиля. На третьем этапе гиромоторный рекуператор переводят в генераторный режим и его энергию преобразуют в электрическую и направляют на разгон автомобиля, при этом частоту вращения высокоскоростного ротора и его кинетическую энергию уменьшают до опорной частоты и направляют освободившуюся при этом энергию на разгон автомобиля. Реализация предлагаемого способа рекуперации энергии по первому варианту осуществляется преимущественно на автомобиле, включающем двигатель внутреннего сгорания с электрогенератором и электротрансмиссию с мотор-колесами, который дополнительно снабжен двухроторным гиромоторным асинхронным рекуператором энергии. Второй вариант транспортного средства с рекуператором энергии реализуется преимущественно на троллейбусе, включающем контактную сеть, тяговый электродвигатель с электротрансмиссией, троллейбус дополнительно снабжен двухроторным асинхронным гиромоторным рекуператором энергии. Третий вариант транспортного средства с рекуператором энергии осуществляется преимущественно на автомобиле, включающем двигатель внутреннего сгорания с электрогенератором и электротрансмиссию с мотор-колесами, автомобиль снабжен асинхронным гиромоторным рекуператором энергии. В результате использования предлагаемого технического решения удается решить задачу рекуперации кинетической энергии при торможении и трогании автомобиля. Кроме того, применение гиромоторного рекуператора позволяет снизить установленную мощность двигателя внутреннего сгорания (ДВС) и электрогенератора в 3-4 раза, компенсировав недостающую импульсную мощность за счет энергии гиромоторного рекуператора. В условиях городского движения применение гиромоторного рекуператора позволяет снизить в 2 раза расход топлива автомобилем. 4 с.п. ф-лы, 10 ил., 1 табл.

Изобретение относится к автомобильному транспорту и может быть применено к любым электрифицированным транспортным средствам.

Известны способы рекуперации кинетической энергии при торможении и разгоне автомобиля за счет использования высокоскоростного маховичного накопителя. Торможение автомобиля осуществляется не тормозными фрикционными колодками, а путем раскручивания маховика при подключении его через редуктор к трансмиссии автомобиля. Кинетическая энергия движущегося автомобиля при торможении переходит в кинетическую энергию вращающегося маховика. При разгоне автомобиля накопленная энергия маховика через реверсивный редуктор передается колесам автомобиля, разгоняя его до определенной скорости. Работа маховичных накопителей эффективна только для высокоскоростных маховиков, энергоемкость которых достигает 0,1 МДж/кг и более. Такая энергоемкость аналогична энергоемкости свинцовых аккумуляторов электрической энергии, время зарядки которых составляет несколько часов, что не позволяет использовать их в рекуператорах кинетической энергии автомобиля. (Гулиа Н.В. Накопители энергии. - М.: Наука, 1980, с.137-138).

Недостатками известных способов рекуперации энергии с помощью высокоскоростных маховиков являются сложность механического преобразования, передачи и реверсирования рекуперируемой энергии, а также низкая надежность при реализации в конкретных технических устройствах, связанных с работой механических редукторов на высоких скоростях движущихся частей редукторов. К тому же развитие в автомобилестроении комбинированных гибридных систем электротрансмиссии с мотор-колесами, электроавтомобилей на аккумуляторах и топливных элементах с тяговым электродвигателем предполагает использование электрических систем накопления кинетической энергии, когда торможение автомобиля осуществляется в режиме генерации электрической энергии мотор-колесами или тяговым двигателем.

Известен способ рекуперации механической энергии в электрическую и наоборот за счет совмещения маховичного накопителя с высокоскоростным электродвигателем-генератором. Маховик разгоняется до определенной скорости электродвигателем, который в режиме рекуперации переводится в генераторный режим, и кинетическую энергию торможения маховика преобразует в электрическую энергию на выходе генератора, обеспечивая чисто электрический вход и выход энергии рекуператора (Джента Дж. Накопление кинетической энергии. - М. : Мир, 1988, с.179, рис.3.10).

Недостатком известного способа рекуперации энергии является его инерционность, связанная с большим временем разгона высокоскоростного маховика порядка 1 мин и более. Это не позволяет использовать известный способ рекуперации энергии на автомобиле, торможение и разгон которого определяется временем порядка 5 с. К тому же известный способ рекуперации энергии сопряжен с возникновением больших гироскопических моментов, действующих на высокоскоростные маховики. Наличие больших гироскопических моментов затрудняет управление транспортным средством при маневре и может привести к его опрокидыванию и аварии.

Наиболее близким по технической сущности является способ рекуперации кинетической энергии вращения в электрическую и наоборот, реализованный в двухроторном гиромоторе, у которого роль маховика выполняет сам высокоскоростной ротор асинхронного электродвигателя, работающего на повышенных частотах питающего напряжения 400 Гц и более. Основное применение гиромоторов связано со стабилизацией направления оси вращения в гироскопических приборах и системах ориентации в пространстве. С другой стороны, как обратимая электромашина, гиромотор способен накапливать в двигательном режиме кинетическую энергию в большом объеме и преобразовывать ее в энергию электрическую в генераторном режиме (Комисар М.И. Электрические машины гироскопических систем. -. М.: Оборонгиз, 1963, с. 194, рис. 176).

Недостатком известного способа рекуперации энергии является его инерционность. Применение гиромоторов на транспорте в качестве рекуператора кинетической энергии в электрическую, и наоборот, сдерживает большая длительность разгона ротора до частоты вращения 400-500 с-1 (24000-30000 об/мин), составляющая более 1 мин, а также наличие большого гироскопического момента, возникающего при повороте вала гиромотора в пространстве, которая неизбежна при маневре транспортного средства и может привести к опрокидыванию автомобиля.

В качестве аналога транспортного средства, наиболее просто реализующего предлагаемый способ рекуперации энергии, является троллейбус, включающий тяговый электродвигатель с электротрансмиссией и питанием от контактной электрической сети (Электротехнический справочник. Издание пятое, исправленное. Под ред. П.Г. Грудинского и др. Том 3. - М.: Энергия, 1976, с. 267).

Недостатком известного аналога транспортного средства является увеличение потерь электрической энергии в контактной сети в момент трогания троллейбуса с места, когда пусковые токи тягового двигателя превышают номинальные токи в несколько раз, увеличивая падение напряжение и потери энергии в сети. Если расчетные показатели номинальных потерь энергии в контактной сети составляют порядка 5-10%, то в момент разгона троллейбуса потери в сети могут достигать 15-30%. Существующие схемы рекуперации энергии торможения за счет перевода тягового двигателя в генераторный режим обеспечивают импульсный выброс тормозных токов, эквивалентных пусковым, а соответственно теряется в контактной сети 15-30% рекуперируемой энергии.

В качестве прототипа для устройства, реализующего гиромоторный способ рекуперации кинетической энергии, выбрано транспортное средство, преимущественно автомобиль с электротрансмиссией и приводом колес от электродвигателя в мотор-колесах автомобиля или тягового электродвигателя.

Автомобиль с электротрансмиссией включает двигатель внутреннего сгорания (ДВС), совмещенный с электрическим генератором в систему мотор-генератор, от которой приводятся в движение мотор-колеса или тяговый электродвигатель, реализуя принцип электротрансмиссии (Погарский Н.А. Электрические трансмиссии машин с мотор-колесами. - М.: Машиностроение, 1965, стр.98, с.9, табл.1).

Недостатком известных автомобилей с электротрансмиссией является низкая эффективность рекуперации кинетической энергии при частых разгонах и торможениях автомобиля, и при его трогании с места.

Задачей предлагаемого технического решения является повышение эффективности рекуперации энергии на транспорте (автомобиль, троллейбус, трамвай, электропоезд и т.п.) в режимах движения при частых разгонах и торможениях, а также повышение эффективности в момент трогания с места.

Реализация предлагаемого технического решения в автомобиле позволяет при его торможении и разгоне снизить расходы топлива порядка в 2 раза и уменьшить установленную мощность ДВС в 3-4 раза, но не снижая скоростных характеристик автомобиля. При питании электрифицированного транспортного средства от контактной сети исключаются пусковые и тормозные потери электрической энергии в контактной сети порядка 15-30%.

Указанный технический результат достигается тем, что рекуперация кинетической энергии осуществляется через преобразование кинетической энергии торможения транспортного средства, преимущественно автомобиля с электротрансмиссией, в электрическую энергию с последующим ее аккумулированием в гиромоторном рекуператоре, обеспечивающем взаимное преобразование кинетической энергии вращения высокоскоростного ротора гиромотора в электрическую, и наоборот, а режим рекуперации кинетической энергии гиромотором осуществляют в три этапа: на первом этапе высокоскоростной ротор гиромотора раскручивают от внешнего источника электрической энергии до опорной частоты вращения, при этом стабилизируют величину опорной частоты вращения высокоскоростного ротора; затем на втором этапе рекуперации преобразуют кинетическую энергию торможения автомобиля в кинетическую энергию высокоскоростного ротора гиромотора за счет того, что высокоскоростной ротор дополнительно раскручивают до рабочей частоты вращения больше опорной частоты от источника электрической энергии, получаемой в результате торможения автомобиля; на третьем этапе гиромоторный рекуператор переводят в генераторный режим, при этом частоту вращения высокоскоростного ротора уменьшают до опорной частоты и направляют освободившуюся при этом энергию на разгон автомобиля, а рабочую частоту вращения высокоскоростного ротора устанавливают по соотношению где np - рабочая частота вращения ротора гиромоторного рекуператора, с-1; Jp -момент инерции ротора гиромоторного рекуператора, кгм2; Wok, Wkp - энергии опорная и рекуперации, соответственно, Дж.

Реализация предлагаемого способа рекуперации энергии по первому варианту осуществляется преимущественно на автомобиле, включающем двигатель внутреннего сгорания с электрогенератором и электротрансмиссию с мотор-колесами, автомобиль дополнительно снабжен двухроторным гиромоторным асинхронным рекуператором энергии, состоящим из герметичного корпуса, оси, двух внешних роторов с шихтованными магнитопроводами и с короткозамкнутыми обмотками, двух пар подшипников, двух пар торцевых шайб, шихтованных статоров с двух- или трехфазными обмотками, соединенными между собой с противоположным чередованием фаз и с проходными изоляторами для вывода концов каждой фазы из герметичного корпуса, коммутатора со статическим преобразователем рабочей частоты электрического тока и с батареей конденсаторов для управления режимом работы двухроторного гиромоторного асинхронного рекуператора, причем оба шихтованных статора установлены на оси неподвижно, а роторы установлены на оси с помощью пары торцевых шайб на паре подшипников с возможностью вращения в противоположных направлениях, при этом двигатель внутреннего сгорания соединен с двухроторным гиромоторным асинхронным рекуператором через электрогенератор, который выполнен с возможностью работы на повышенной опорной частоте, а через коммутатор двухроторный гиромоторный асинхронный рекуператор соединен с электротрансмиссией и мотор-колесами с батареей конденсаторов и статическим преобразователем рабочей частоты электрического тока, который выполнен с возможностью получения рабочей частоты электрического тока выше опорной частоты электрогенератора.

Второй вариант транспортного средства с рекуператором энергии реализуется преимущественно на троллейбусе, включающего контактную сеть, тяговый электродвигатель с электротрансмиссией, а троллейбус дополнительно снабжен двухроторным асинхронным гиромоторным рекуператором энергии, состоящим из герметичного корпуса, двух высокоскоростных короткозамкнутых роторов, трех торцевых статоров с двух- или трехфазными обмотками, два вала, источника электрического тока повышенной частоты, коммутатора для управления режимом работы двухроторного гиромоторного асинхронного рекуператора, статического преобразователя частоты электрического тока, батареи конденсаторов и выпрямителя тока, причем высокоскоростными короткозамкнутые роторы установлены соосно на независимых валах, на которых располагают магнитопроводы, выполненные в виде дисков, намотанных на валу из непрерывной ленты электротехнической стали, с торцов дисков которых в пазах залиты стержни короткозамкнутых обмоток роторов, причем с внешней стороны роторы заключены в обойму, а торцевые статоры выполнены из трех отдельных магнитопроводов в виде дисков, намотанных из непрерывной ленты электротехнической стали, с торцов дисков которых в пазах уложены обмотки статоров, при этом один из статоров расположен в центре между роторами, а два других - с внешних торцов роторов, а средний статор содержит две группы торцевых обмоток, электрически соединенных между собой с противоположным чередованием фаз, при этом двухроторный гиромоторный асинхронный рекуператор электрически соединен коммутатором с тяговым электродвигателем и контактной сетью через батарею конденсаторов, выпрямитель тока и статический преобразователь частоты электрического тока, который выполнен двухчастотным с возможностью получения опорной и рабочей частот электрического тока, причем рабочая частота тока выше опорной частоты.

Третий вариант транспортного средства с рекуператором энергии осуществляется преимущественно на автомобиле, включающего двигатель внутреннего сгорания с электрогенератором и электротрансмиссию с мотор-колесами, а автомобиль снабжен асинхронным гиромоторным рекуператором энергии, состоящим из герметичного корпуса, высокоскоростного короткозамкнутого ротора, высокоскоростного подвижного статора с двух- или трехфазными обмотками и кольцевым коллектором, двух полых валов, двух пар подшипников, неподвижной оси, источника электрического тока повышенной частоты, коммутатора для управления режимом работы гиромоторного асинхронного рекуператора, батареи конденсаторов и выпрямителя тока, причем высокоскоростной короткозамкнутый ротор и высокоскоростной подвижный статор с двух- или трехфазными обмотками и кольцевым коллектором установлены соосно на независимых полых валах с подшипниками на неподвижной оси с возможностью вращения в противоположных направлениях, при этом магнитопроводы высокоскоростных ротора и статора выполнены в виде одинаковых по массе и размерам дисков, намотанных на полых валах из непрерывной ленты электротехнической стали, с торцов дисков которых в пазах уложены обмотки, для короткозамкнутого ротора - в виде стержней, для статора - в виде двух или трехфазных обмоток, причем с внешней стороны диски ротора и статора заключены в обойму, при этом двигатель внутреннего сгорания соединен с гиромоторным асинхронным рекуператором через электрогенератор, который выполнен с возможностью работы на повышенной опорной частоте, а через коммутатор двухроторный гиромоторный асинхронный рекуператор соединен с электротрансмиссией и мотор-колесами с батареей конденсаторов, выпрямителем тока и статическим преобразователем рабочей частоты электрического тока, который выполнен с возможностью получения рабочей частоты электрического тока выше опорной частоты электрогенератора.

На фиг. 1 представлена линейная зависимость частоты вращения ротора от времени при равноускоренном разгоне ротора гиромоторного рекуператора.

На фиг. 2 представлена квадратичная зависимость кинетической энергии вращения ротора гиромоторного рекуператора от частоты вращения.

На фиг. 3 представлена зависимость вращающего момента сверхвысокоскоростного асинхронного двигателя в функции скольжения.

На фиг. 4 представлены сравнительные тормозные и разгонные диаграммы автомобиля в режиме рекуперации энергии в предлагаемом способе (кривая А) и известном (кривая Б).

На фиг.5 представлен общий вид гиромоторного рекуператора с двумя внешними роторами (в разрезе).

На фиг.6 представлен общий вид гиромоторного рекуператора с двумя внешними роторами в виде дисков (в разрезе).

На фиг.7 представлен общий вид гиромоторного рекуператора с вращающимися в разные стороны ротором и статором, выполненных в виде дисков (в разрезе).

На фиг.8 показана общая электрическая схема гибридного силового энергетического агрегата для автомобиля с электротрансмиссией и гиромоторным рекуператором энергии.

На фиг.9 представлена схема легкового автомобиля с двигателем внутреннего сгорания (ДВС), электрогенератором, электротрансмиссией, мотор-колесами (или тяговым электродвигателем), снабженная гиромоторным рекуператором кинетической энергии.

На фиг. 10 представлена схема троллейбуса с гиромоторным рекуператором энергии.

Пример конкретной реализации способа Ниже приводятся расчетные параметры, анализ энергетических и скоростных характеристик транспортных средств и гиромоторного рекуператора и обоснование режимов его работы, определяющих предлагаемый способ рекуперации энергии, краткое описание которого дано со ссылками на фиг.1, 2, 3 и 4 на примере легкового автомобиля и троллейбуса.

1. Определяем кинетическую энергию рекуперации Wkp при торможении транспортного средства mа и его скоростью va, с которой начинается торможение до полной остановки: - для легкового автомобиля ma=1000 кг, va=28 м/с (100 км/ч) - для троллейбуса ma=20000 кг, va=14 м/с (50 км/ч) 2. Находим мощность Рр рекуператора кинетической энергии транспорта - для легкового автомобиля Wkp=0,4 МДж, время торможения tT=4 с - для троллейбуса Wkp=2 МДж, время торможения tT=8 с 3. Определяем расчетную массу mp ротора рекуператора в зависимости от его энергоемкости q=0,1-0,05 МДж/кг - для легкового автомобиля Wkp=0,4 МДж, q=0,05 МДж/кг - для троллейбуса Wkp=2 МДж, q=0,1 МДж/кг 4. Находим момент инерции Jp ротора рекуператора при замене его эквивалентным кольцом со средним радиусом Rк - для легкового автомобиля Rк=0,15м J = mpRk 2 = 80,152 = 0,18кгм2; (7) - для троллейбуса Rк=0,2м Jp = mpRk 2 = 200,22 = 0,18кгм2; (8) 5. Определяем кинетическую энергию Wok ротора при раскрутке его до опорной (базовой) частоты вращения n1=500 с-1 и проверяем соответствие условию Wok > Wkp - для легкового автомобиля - для троллейбуса где 1- угловая скорость вращения, рад/с.

6. Определяем суммарную кинетическую рабочую энергию Wk ротора с учетом энергии рекуперации (1) и (2) - для легкового автомобиля Wk = Wok+Wkp = 0,9+0,4 = 1,3МДж; (11) - для троллейбуса Wk = Wok+Wkp = 4+2 = 6МДж. (12) 7. Определяем рабочую частоту nр вращения ротора гиромотора в режиме рекуперации - для легкового автомобиля - для троллейбуса 8. Оценим разницу в частотах вращения np ротора в режиме рекуперации - для легкового автомобиля - для троллейбуса 9. Определяем частоту вращения nо ротора при разгоне из состояния покоя до кинетической энергии рекуперации Wkp (1) и (2) - для легкового автомобиля - для троллейбуса Как видно (фиг.1) из выражений (15, 16) и (17, 18), для того чтобы накопить требуемую кинетическую энергию рекуперации в предлагаемом способе, частоту вращения высокоскоростного ротора необходимо увеличить на 100-120 с-1 (6000-7200 об/мин). По известному способу для накопления эквивалентной кинетической энергии необходимо увеличить частоту вращения ротора на 340 с-1 (20400 об/мин). В предлагаемом способе время на разгон ротора меньше в несколько раз по сравнению с известным.

Чтобы определить время разгона ротора, запишем дифференциальное уравнение динамики для вращательного движения где М - момент вращения, Нм; - угловая скорость вращения, рад/с, t - время, с.

Угловая скорость связана с частотой вращения n соотношением = 2n. (20) Подставляя (20) в (19) запишем уравнение динамики для вращательного движения через частоты вращения ротора Интегрирование уравнения (21) при условии постоянства момента вращения для равноускоренного вращения позволяет определить зависимость частоты вращения n ротора как линейную функцию от времени t где w - угловое ускорение, рад/с2.

Частота вращения ротора от времени при равноускоренном разгоне ротора рекуператора представлена линейной зависимостью (фиг.1). Составляем пропорцию для расчетных параметров рекуператора легкового автомобиля Из (23) найдем отношение t0/t Как следует из (24) время t разгона ротора рекуператора по предлагаемому способу в представленных расчетных параметрах в 3,4 раза меньше, чем в известном. Это обусловлено тем, что время разгона ротора рекуператора кинетической энергии линейно от частоты вращения ротора, а кинетическая энергия ротора имеет квадратичную зависимость от частоты вращения (9) (фиг.2). При разгоне от нуля ротор очень медленно накапливает кинетическую энергию и чтобы достичь значений энергии рекуперации Wkp=0,4 МДж, требуемой для легкового автомобиля, ротор необходимо раскрутить до частоты n0= 340 с-1 (20400 об/мин). В то время как по предлагаемому способу, для того чтобы накопить дополнительно энергию рекуперации Wkp=0,4 МДж на предварительно раскрученном до опорной частоты n1=500 с-1 роторе, требуется докрутить ротор до рабочей частоты nр= 600 с-1, то есть всего на n = 100c-1 (6000 об/мин) за время в 3,4 раза меньшее (24) по сравнению с тем, если бы ротор раскручивали с нуля.

На самом деле время разгона рекуператора в новом способе еще меньше, поскольку момент вращения у асинхронных двигателей с короткозамкнутым ротором, применяемых в гиромоторах, увеличивается по мере раскрутки ротора.

Вращающий момент сверхвысокоскоростного асинхронного двигателя представлен функцией скольжения (фиг.3) (Шаров B.C. Сверхвысокоскоростные асинхронные электродвигатели. - М - Л.: Госэнергоиздат, 1963, с.103, рис.3-2), Скольжение s характеризует запаздывание частоты вращения n ротора асинхронного двигателя по отношению к синхронной частоте ns вращающегося магнитного поля в статоре При неподвижном роторе s=1. При разгоне ротора скольжение уменьшается и в номинальном режиме составляет sн=0,01-0,06. Зависимость (фиг.3) показывает, что для сверхскоростного асинхронного двигателя максимальный момент вращения достигает при скольжении в диапазоне s=0,1-0,2, при этом максимальный момент превышает номинальный в 2,5 раза. В предлагаемом способе рекомендуется вначале разогнать ротор до опорной частоты вращения, например до n1=500 с-1, а затем в режиме рекуперации перейти на рабочую частоту вращения nр= 600 с-1, близкую к синхронной. Ориентировочно скольжение ротора в этом случае составит Таким образом, предлагаемый способ с опорной частотой вращения ротора n1=500 с-1 в режиме рекуперации увеличивает рабочую частоту до np=600 с-1, и тем самым сразу же устанавливает режим скольжения ротора s=0,17 (26), а в режиме максимального момента вращения гиромоторного рекуператора, обеспечивает действие на ротор максимального момента в 2,5 раза выше номинального. Время разгона в соответствии с (21) обратно пропорционально моменту вращения. В итоге, время разгона ротора асинхронного рекуператора по предлагаемому способу уменьшается в 8,5 раз (3,42,5=8,5). Если переходной режим торможения легкового автомобиля составляет 5 с, и это время рекуперации в 5 с обеспечивает предлагаемый способ, то по известному способу время разгона ротора асинхронного рекуператора составит 42,5 с, что неприемлемо для режима рекуперации, или же необходимо сильно завышать установленную мощность и массу гиромоторного рекуператора.

С другой стороны, конструктивно асинхронный двигатель с питанием на повышенной частоте 500-600 Гц почти на порядок имеет меньшую массу по сравнению с асинхронным двигателем такой же мощности на промышленной частоте 50 Гц. Учитывая, что мощность рекуператора должна составлять 100-250 кВт, низкие удельные показатели по материалоемкости имеют существенное значение при установке его на автомобиле, и работа на опорной частоте порядка n1=500 с-1 в соответствии с предлагаемым способом позволяет использовать гиромоторные рекуператоры с небольшой массой в режиме максимального вращающего момента.

Естественно, что сами частоты вращения ротора в режиме рекуперации нельзя рассматривать отдельно от энергии, поскольку ротор с небольшим моментом инерции, но раскрученный до сверхвысоких частот вращения, не сможет аккумулировать требуемой энергии. Поэтому в предлагаемом способе частота вращения ротора привязана к требуемой энергии рекуперации, поскольку только вместе энергия и частота вращения определяют удельные показатели по материалоемкости и мощность гиромоторного рекуператора.

В целом, кинетическая энергия рекуперации Wkp ротора гиромотора в режиме рекуперации по предлагаемому способу определяется из (11) и (12) разностью энергий Wk и Wok на частотах вращения np и n1 (фиг.2) Преобразуем (27) Wkp = 22Jp(n2p-n21) = 22Jp(n1+np)(np-n1). (28) Учитывая, что np-n1 = n, (29) из(28) получаем Как видно из (30), кинетическая энергия рекуперации в предлагаемом способе определяется двумя слагаемыми, а не одним, как в известном способе. Причем дополнительное слагаемое W1 определяется не только разностью частот вращения n, но и величиной базовой (опорной) частоты вращения n1 W1 = 42Jpn1n. (31) Чем выше опорная частота n1, то тем меньше разность частот вращения n (29) при достижении требуемой энергии рекуперации. Естественно, что наличие дополнительного члена (31), обусловленное квадратичной зависимостью кинетической энергии от частоты вращения, делает разность частот вращения n в предлагаемом способе всегда меньше частоты вращения nо в известном способе n<n. (32) Наличие неравенства (32) еще раз убедительно доказывает большую эффективность предлагаемого способа рекуперации кинетической энергии с опорной частотой вращения ротора по сравнению с известным способом без опорной частоты.

На фиг. 4 представлены сравнительные тормозные и разгонные диаграммы автомобиля в режиме рекуперации энергии в предлагаемом способе (кривая А) и известном (кривая Б), привязанные к частоте вращения ротора гиромоторного рекуператора. По предлагаемому способу ротор рекуператора выводится на опорную частоту n1 и ему задается опорная величина энергии. На кривой А этот режим соответствует точке 1. В момент времени (точка 2) автомобиль начинает тормозить, например при подъезде к светофору. Кинетическая энергия торможения автомобиля преобразуется в кинетическую энергию ротора рекуператора, увеличивая его вращение до рабочей частоты np (точка 3). Время стоянки автомобиля в пределах 1 мин характеризуется вращением ротора рекуператора на холостом ходу с рабочей частотой nр на отрезке 3-4, пренебрегая небольшими потерями энергии на трение в подшипниках ротора рекуператора. При трогании автомобиля с места (точка 4) кинетическая энергия ротора рекуператора преобразуется в электрическую энергию и подается на разгон автомобиля. Частота вращения ротора падает с рабочей nр до опорной n1 (точка 5). Далее в следующем цикле рекуперации (точки 6, 7, 8, 9) процесс повторяется.

При движении по прямой система автоматического регулирования стабилизирует опорную частоту вращения ротора рекуператора (n1=const), пополняя небольшие расходы энергии на трение в подшипниках от энергоблока автомобиля. Если этого не делать, то со временем частота вращения ротора рекуператора упадет ниже опорной частоты, ухудшая скоростные и инерционные характеристики рекуператора. Если опорная частота n1 ротора стабилизирована, величина рабочей частоты nр его вращения в режиме рекуперации является величиной переменной и зависит от уровня требуемой энергии рекуперации, то есть от начальной скорости, с которой происходит торможение автомобиля.

Во всех известных способах рекуперации отсутствует опорная стабилизированная частота вращения ротора, задающая изначально кинетическую энергию ротору, превышающую требуемую энергию рекуперации в режиме торможения и разгона автомобиля. Поэтому все скоростные характеристики известных рекуператоров значительно хуже, по сравнению с режимами в предлагаемом способе. На кривой Б (фиг.4) представлены тормозная и разгонная диаграммы автомобиля в соответствии с известным способом, когда в режиме торможения автомобиля ротор раскручивается с нулевой частоты, и в режиме разгона автомобиля сбрасывает свое вращение до нулевой частоты. При одной и той же энергии рекуперации диаграмма Б убедительно демонстрирует, что все скоростные характеристики рекуперации кинетической энергии в известном способе превышают по времени характеристики рекуперации в предлагаемом способе (кривая А).

Естественно, что при высоких частотах вращения ротора гиромоторного рекуператора при повороте автомобиля могут возникать большие гироскопические моменты, которые приведут с затруднению управлением автомобиля. Артиллерийский снаряд, раскрученный до больших частот вращения в стволе орудия, сохраняет направление оси вращения в пространстве, обеспечивая высокую точность попадания. Все гироскопические приборы также стараются сохранить направление своей оси в пространстве. Этим же свойством обладает и гиромоторный рекуператор. Поэтому важно не только оценить величину гироскопического момента, действующего на ротор гиромотора, но и полностью его скомпенсировать. В предлагаемом способе решение поставленной задачи достигается тем, что в процессе рекуперации поток кинетической энергии вращения разбивают на два противоположных по направлению и одинаковых по величине потока. Под потоком кинетической энергии вращения имеется ввиду векторная внесистемная величина, соответствующая энергии вращающегося ротора в его сечении и направленная в сторону вращения ротора.

На высокоскоростной ротор действует гироскопический момент г, лежащий в плоскости, перпендикулярной плоскости возмущающей силе (или возмущающего момента) и определяемый векторным произведением Mг = Jp|1п|, (33) где 1 - вектор угловой скорости вращения ротора гиромоторного рекуператора на опорной частоте вращения n1, рад/с, п - вектор угловой скорости поворота автомобиля при его маневре, рад/с.

Учитывая, что масса высокоскоростного ротора составляет от нескольких килограмм до десяткой килограмм, обеспечивая необходимый момент инерции, величина возникающего гироскопического момента, действующего на ротор гиромоторного рекуператора, достаточна, чтобы затруднить управление автомобилем при резком маневре и даже привести к его аварии.

В предлагаемом способе рекомендуется поток кинетической энергии вращения разбить на два противоположных по направлению и одинаковых по величине потока. Это достигается тем, ротор гиромотора разделяют на два одинаковых ротора с моментом инерции 0,5Jp и закрученных в разные стороны. В этом случае вектор угловой скорости первого ротора примем со знаком плюс (+11), а вектор угловой скорости второго ротора, вращающегося в противоположном направлении к первому, будет со знаком минус (-12). Тогда в соответствии с (33) суммарный гироскопический момент двухроторного гиромоторного рекуператора будет определяться двумя гироскопическими моментами М11 и -M12, равными по величине, но противоположными по направлению, векторная сумма которых равна нулю Таким образом, предложение о разбиении потока кинетической энергии вращения на два противоположных по направлению и одинаковых по величине потока позволяет полностью компенсировать действие гироскопического мом