Вентильный электродвигатель с постоянными магнитами на роторе для системы электродвижения транспортных средств
Реферат
Использование: в электрических тяговых системах транспортных средств с вентильными электродвигателями с постоянными магнитами на роторе, для крупных двигателей большой мощности повышенной надежности судов, автомобилей и транспортных средств. Технический результат заключается в снижении пульсаций тока канала в многоканальных системах электродвижения. Система электродвижения содержит по меньшей мере один приводной вентильный электродвигатель с постоянными магнитами на роторе. Его многофазная статорная обмотка с общим числом фаз не менее девяти разделена на независимые каналы, объединяющие по три фазы. Система питания статорных обмоток включает для каждого канала преобразователь постоянного напряжения и автономный инвертор тока со сглаживающим трехобмоточным дросселем. Магнитопровод последнего составлен из трех отдельных замкнутых через воздушные зазоры магнитопроводов. Средний магнитопровод охвачен основной обмоткой и встречно включенными дополнительными обмотками. Один крайний магнитопровод охвачен только основной обмоткой, другой крайний магнитопровод охвачен согласно включенными дополнительными обмотками. Обмотки дросселя включены в разные каналы. Число витков каждой из дополнительных обмоток в два раза меньше, чем в основной обмотке. 3 ил.
Изобретение относится к электрическим тяговым системам транспортных средств с вентильными электродвигателями с постоянными магнитами на роторе и предназначено для использования в крупных двигателях большой мощности и повышенной надежности для судов, автомобилей и других транспортных средств.
Известна система управления бесколлекторным электродвигателем, который получает питание от преобразователя мощности, состоящего из конвертора и инвертора, соединенных через дроссель постоянного тока, зашунтированный тиристором [патент Японии JP-34913 B 4, Н 02 Р 6/02, H 02 m 7/515, заявл. 05.07.84, опубл. 25.05.93]. Однообмоточный сглаживающий дроссель, примененный в этой системе питания, может быть использован только в тех схемах, когда вес дросселя не играет роли, т.е. или в двигателях малой мощности, или в стационарных двигателях. В системах электродвижения транспортных средств, например, в приводных двигателях автомобиля на основе вентильных двигателей большой мощности порядка нескольких сотен киловатт, вес дросселя будет достигать нескольких тонн, что соизмеримо с весом самого двигателя и делает невозможным его применение в системах электродвижения. Известен вентильный электродвигатель, секции обмотки якоря которого соединены с цепью питания через тиристорный коммутатор циклоконверторного типа с многообмоточным сглаживающим дросселем и дополнительной обмоткой, к выводам которой подключен управляемый ключ, цепь управления которого связана с выходом системы управления [а.с. 1115173, Н 02 К 29/00, заявл. 21.04.83, опубл. 23.09.84] . Основные три обмотки дросселя включены каждая в свою фазу трехфазного вентильного двигателя и предназначены для сглаживания пульсаций тока в фазе, а дополнительная обмотка и управляемый ключ предназначены для уменьшения пусковых токов. Применение дросселя такого типа также практически исключено в системе электродвижения с вентильными двигателями с постоянными магнитами большой мощности, так как объем и вес дросселя сравним с объемом и весом двигателя. Изобретение решает задачу снижения пульсаций тока канала в многоканальных системах питания с многофазными статорными обмотками мощных вентильных двигателей, обеспечивая возможность использования сглаживающего трехобмоточного дросселя за счет существенного улучшения его весогабаритных показателей. Многоканальные системы позволяют обеспечить безостановочную работу системы электродвижения при выходе из строя одного из каналов в режиме пониженной мощности. Сущность изобретения заключается в вентильном электродвигателе с постоянными магнитами на роторе для системы электродвижения транспортных средств, содержащем многофазную статорную обмотку с общим числом фаз не менее девяти, разделенную на независимые каналы, объединяющие по три фазы, систему питания статорной обмотки, включающую для каждого независимого канала преобразователь постоянного напряжения и обеспечивающий преобразование постоянного тока в переменный и управление коммутацией фаз многофазной статорной обмотки в необходимой последовательности по сигналам датчика положения ротора автономный инвертор тока со сглаживающим трехобмоточным дросселем. В этом вентильном электродвигателе магнитопровод сглаживающего трехобмоточного дросселя составлен из трех отдельных замкнутых через воздушные зазоры магнитопроводов, причем средний магнитопровод охвачен основной обмоткой и встречно включенными дополнительными обмотками, один крайний магнитопровод охвачен только основной обмоткой, другой крайний магнитопровод охвачен согласно включенными дополнительными обмотками, обмотки сглаживающих трехобмоточных дросселей включены в цепи разных независимых каналов многофазной статорной обмотки и числа витков каждой из дополнительных обмоток в два раза меньше, чем в основной обмотке каждого сглаживающего трехобмоточного дросселя, так что преобразованное напряжение с подключенного к источнику питания постоянного напряжения преобразователя постоянного напряжения передается на подключенный к трем фазам каждого независимого канала многофазной статорной обмотки автономный инвертор через сглаживающий трехобмоточный дроссель, а магнитный поток, создаваемый дополнительными обмотками сглаживающего трехобмоточного дросселя направлен встречно магнитному потоку, создаваемому его основной обмоткой. Технический результат, получаемый при осуществлении изобретения, заключается в том, что в сглаживающем трехобмоточном дросселе, выполненном согласно изобретению, может быть запасено ~ 8-9 Дж/кг против 1-1,5 Дж/кг в однообмоточном дросселе, что позволяет существенно улучшить весогабаритные показатели дросселя и выполнять свою основную функцию по снижению пульсаций тока каждого независимого канала. Изобретение поясняется чертежами, где на фиг.1 изображена функциональная электрическая схема заявляемого вентильного электродвигателя, а на фиг.2 и фиг. 3 изображена конструкция магнитопровода сглаживающего трехобмоточного дросселя (фиг.2 - вид спереди, фиг.3 - вид сбоку). Вентильный электродвигатель (ВД) 1 с постоянными магнитами на роторе для системы электродвижения транспортных средств (фиг.1) имеет девятифазную статорную обмотку, разделенную на три независимых канала, объединяющие по три фазы, систему питания статорной обмотки, включающую для каждого независимого канала преобразователь постоянного напряжения (ППН) 2, подключенный к источнику питания (ИП) постоянного напряжения и автономный инвертор тока (АИТ) 3, подключенный к трем фазам статорной обмотки ВД 1. В систему питания статорной обмотки включен сглаживающий трехобмоточный дроссель 4, являющийся элементом схемы АИТ и выполняющий функцию ограничения пульсаций тока в статорной обмотке ВД 1. Цифровые обозначения 2, 3, 4 для ППН, АИТ и сглаживающего трехобмоточного дросселя даны для первого канала, для второго канала эти обозначения соответственно 5, 6, 7 и для третьего канала 8, 9, 10. ППН 2, 5 и 8 обеспечивают возможность регулирования величины напряжения (мощности, подводимой к электродвигателю) и могут быть выполнены на тиристорах, диодах и конденсаторах по схемам, приведенным в литературе [Ю.Г. Толстов. Автономный инвертор тока. М.: Энергия, 1978, с. 87-130]. АИТ 3, 6, 9 обеспечивают преобразование постоянного тока в переменный и коммутацию фаз статорной обмотки ВД 1 в необходимой последовательности. АИТ могут быть выполнены по трехфазной мостовой схеме на тиристорах [Р. Севернс, Г. Блюм. Импульсные преобразователи постоянного напряжения. М.: Энергоатомтиздат, 1982, с. 18-24]. Управление работой узла коммутации осуществляется системой управления по сигналам, Приходящим от датчика положения ротора (ДПР) 11. Каждый сглаживающий трехобмоточный дроссель 4, 7, 10 составлен из трех отдельных замкнутых через воздушные зазоры магнитопроводов с размещением обмоток W1, W2, W3, показанным на фиг.1 и фиг.2. В каждом магнитопроводе имеется по два воздушных зазора . Средний магнитопровод охвачен основной обмоткой W1 и встречно включенными дополнительными обмотками W2 и W3, один крайний магнитопровод охвачен только основной обмоткой W1, а другой крайний магнитопровод охвачен согласно включенными дополнительными обмотками W2 и W3. Соотношение витков обмоток каждого дросселя W1:W2:W3=2:1:1 и его обмотки включены в цепи разных независимых каналов многофазной статорной обмотки, как это показано на фиг.1. Вентильный электродвигатель работает следующим образом. Преобразованное в ППН 2, 5, 8 напряжение ИП подается соответственно на АИТ 3, 6, 9 через магнитосвязанные сглаживающие трехобмоточные дроссели 4, 7, 10 (фиг.1). По сигналам ДПР 11 осуществляется последовательная коммутация тока в трехфазной обмотке каждого независимого канала статорной обмотки ВД 1. Обмотки дросселей 4, 7, 10 включены в цепи разных каналов многофазной статорной обмотки ВД 1, причем поток, создаваемый дополнительными обмотками W1 и W3, направлен встречно потоку создаваемого основной обмоткой W1. Это делает магнитный поток в магнитопроводе, при равенстве постоянных составляющих токов каждого канала, практически близким к нулю. Величина магнитного потока определяется током разбаланса обмоток сглаживающего трехобмоточного дросселя, который, как правило, составляет (35)% от номинального тока. Сечение магнитопровода дросселя каждого независимого канала нужно выбрать таким, чтобы с учетом заданного разбаланса и максимальной амплитуды пульсаций, рабочая точка находилась на линейном участке кривой намагничивания, что обеспечит максимальную величину динамической индуктивности Ldin. Расчеты показывают, что в трехобмоточном дросселе может быть запасено ~89 Дж/кг против ~ 11,5 Дж/кг в однообмоточном дросселе, что позволяет существенно улучшить весогабаритные показатели дросселя. Однако выполнять функцию по снижению пульсаций тока канала трехобмоточный дроссель может только тогда, когда коэффициент связи между обмотками W1, W2, и W3 не равен единице. В противном случае, когда коэффициент связи между основной обмоткой дросселя W1 и дополнительными обмотками W2, и W3, входящими в другие каналы, близок к единице, за счет сильной связи между дросселями 4, 7, 10, эффективная динамическая индуктивность дросселя одного канала с учетом связи с другими каналами практически становится близкой к нулю и функцию дросселирования (сглаживания пульсаций) дроссель выполнять не может. Для получения коэффициента связи между обмотками W1, W2, и W3, неравного единице, предложена оригинальная конструкция магнитопровода сглаживающего трехобмоточного дросселя (фиг.2, 3) и схема размещения и соединения его обмоток. В такой конструкции дросселя и схеме соединения обмоток магнитный поток обмотки W1 будет состоять из двух независимых потоков: потока, связанного с обмотками W2, и W3 и потока рассеяния, связанного только с обмоткой W1. Аналогично часть магнитного потока обмоток W2, и W3 связана с обмоткой W1, а часть, проходящая через третий магнитопровод, связана только с обмотками W1, и W3 является по существу потоком рассеяния. Сечение среднего магнитопровода, охваченного основной обмоткой W1 и, создающими поток обратного знака, дополнительными обмотками W2, и W3, определяется током разбаланса и заданной величиной динамической индуктивности. Сечения крайних магнитопроводов определяются заданной величиной индуктивности рассеяния и ее зависимостью от рабочего тока. Величина тока насыщения крайних магнитопроводов, определяющая их сечения, зависит от величины воздушного зазора и, по существу, определяется заданными весогабаритными ограничениями.Формула изобретения
Вентильный электродвигатель с постоянными магнитами на роторе для системы электродвижения транспортных средств, содержащий многофазную статорную обмотку с общим числом фаз не менее девяти, разделенную на независимые каналы, объединяющие по три фазы, систему питания статорной обмотки, включающую для каждого независимого канала преобразователь постоянного напряжения и обеспечивающий преобразование постоянного тока в переменный и управление коммутацией фаз многофазной статорной обмотки в необходимой последовательности по сигналам датчика положения ротора, автономный инвертор тока со сглаживающим трехобмоточным дросселем, отличающийся тем, что магнитопровод сглаживающего трехобмоточного дросселя составлен из трех отдельных замкнутых через воздушные зазоры магнитопроводов, причем средний магнитопровод охвачен основной обмоткой и встречно включенными дополнительными обмотками, один крайний магнитопровод охвачен только основной обмоткой, другой крайний магнитопровод охвачен согласно включенными дополнительными обмотками, обмотки сглаживающих трехобмоточных дросселей включены в цепи разных независимых каналов многофазной статорной обмотки и числа витков каждой из дополнительных обмоток в два раза меньше, чем в основной обмотке каждого сглаживающего трехобмоточного дросселя, так что преобразованное напряжение с подключенного к источнику питания постоянного напряжения преобразователя постоянного напряжения передается на подключенный к трем фазам каждого независимого канала многофазной статорной обмотки автономный инвертор через сглаживающий трехобмоточный дроссель, а магнитный поток, создаваемый дополнительными обмотками сглаживающего трехобмоточного дросселя, направлен встречно магнитному потоку, создаваемому его основной обмоткой.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3