Полинуклеотидная противотуберкулезная вакцина

Реферат

 

Полипептид содержит промотор транскрипции СМV, связанный с первым цистроном. Первый цистрон содержит транскрипции CMV и представляет собой ген, кодирующий микобактериальный белок 85А, или В, или С. Указанный ген связан контрольной последовательностью. Последняя включает терминатор и промотор транскрипции BGH или JRES. Контрольная последовательность может быть связана со вторым цистроном - геном, кодирующим GM-CSF, IL-12, интерферон или член семейства В7 Т-клеточных костимулирующих белков. Указанный ген может быть связан с терминатором транскрипции BGH, геном устойчивости к ампициллину или канамицину, связанным с участком, включающим точку начала репликации. Способ индукции антимикобактериальных иммунных ответов, а также иммунных ответов против эпитопа микобактериального белка 85А заключается во введении позвоночному указанного выше полинуклеотида. Вакцина содержит эффективное количество указанного выше полинуклеотида и фармацевтически приемлемый носитель и обеспечивает индукцию иммунного ответа у позвоночного против микобактериального белка 85А. Изобретение позволяет получать иммунные сыворотки против антигенов Mycobacterium tuberculosis. 5 с.п. ф-лы, 20 ил.

Предпосылки создания изобретения Основным препятствием при разработке вакцин против вирусов и бактерий, особенно против вирусов и бактерий со многими серотипами или высокой скоростью мутации, против которых требуется выявление нейтрализующих антител и/или защитные клеточно-опосредованные иммунные ответы, является многообразие наружных белков среди изолятов или штаммов. Так как цитотоксические Т-лимфоциты (ЦТЛ) как у мышей, так и у людей способны распознавать эпитопы, образованные из консервативных внутренних вирусных белков [J.W. Yewdell et al., Proc. Natl. Acad. Sci. (USA) 82, 1785 (1985); A.R.M. Townsend, et al., Cell 44, 959 (1986); A.J. McMichael., et al., J. Gen. Virol. 67, 719 (1986); J. Bastin et al. , J. Exp. Med. 165, 1508 (1987); A.R.M. Townsend and H. Bodmer, Annu. Rev. Immunol. 7, 601 (1989)] и, как полагают, важны при иммунной реакции против вирусов [Y. -L. Lin and В.А. Askonas, J. Exp. Med. 154, 225 (1981); I. Gardner et al., Eur. J. Immunol. 4, 68 (1974); K.L. Yap and G.L. Ada, Nature 273, 238 (1978); A.J. McMichael et al., New Engl. J. Med. 309, 13 (1983); P. M. Taylor and B.A. Askonas, Immunol. 58, 417 (1986)]; усилия направлялись на разработку ЦТЛ-вакцин, способных обеспечить гетерологичную защищу против различных вирусных штаммов.

Известно, что ЦТЛ убивают клетки, инфицированные вирусом или бактериями, когда их Т-клеточные рецепторы распознают чужеродные пептиды, связанные с молекулами ГКГС класса I и/или класса II. Эти пептиды могут образоваться из эндогенно синтезированных чужеродных пептидов, независимо от расположения или функции белка в пределах патогена. Посредством распознавания эпитопов из консервативных белков ЦТЛ могут обеспечить гетерологичную защиту. В случае внутриклеточных бактерий белки, секретированные бактериями или выделенные из бактерий, процессируются и представляются молекулами ГКГС класса I и класса II, причем посредством этого генерируются Т-клеточные реакции, которые могут играть роль в ослаблении или уничтожении инфекции.

В большинстве работ по генерации ЦТЛ-реакций использовались либо векторы репликации для получения белкового антигена в клетке [J.R. Bennink et al., там же, 311, 578 (1990); J.R. Bennink and J.W. Yewdell, Curr. Top. Microblol. Immunol. 163, 153 (1990); С.К. Stover et al./ Nature 351, 456 (1991); A. Aldovini and R.A. Young, Nature 351, 479 (1991); R. Schafer et al., J. Immunol. 149, 53 (1992); C.S. Hahn et al., Proc. Natl. Acad. Sci. (USA) 89, 2679 (1992)], либо они фокусировались на введении пептидов в цитозоль [F.R. Carbone and M.J. Bevan, J. Exp. Med. 169, 603 (1989); К. Deres et al., Nature 342, 561 (1989); H. Takahashi et al., там же, 344, 873 (1990); D.S. Collins et al., J. Immunol. 148, 3336 (1992); M.J. Newman et al., там же, 148, 2357 (1992)] . Оба эти подхода имеют ограничения, которые могут снизить их полезность для вакцин. Ретровирусные векторы имеют ограничения по размеру и структуре полипептидов, которые могут экспрессироваться как слитые белки при сохранении способности рекомбинантного вируса к репликации [A.D. Miller, Curr. Top. Microbiol. Immunol. 158, 1 (1992)], и эффективность таких векторов как вакциния для последующих иммунизации может быть поставлена под угрозу иммунными реакциями против вакцинии [E.L. Cooney et al., Lancet 337, 567 (1991)] . Вирусные векторы и модифицированные патогены также небезопасны по природе, что может ограничить их применение для людей [R.R. Redfield et al., New Engl. J. Med. 316, 673 (1987); L. Mascola et al., Arch. Intern. Med. 149, 1569 (1989)]. Кроме того, селекция пептидных эпитопов, которые представлены, зависит от строения антигенов ГКГС индивидуума, и, следовательно, пептидные вакцины могут иметь ограниченную эффективность из-за многообразия гаплотипов ГКГС в аутбредных популяциях.

Benvenisty, N., и Rescef, L. [PNAS 83, 9551-9555, (1986)] показали, что можно экспрессировать осаждаемую СаСl2 ДНК, введенную мышам интраперитонеально (и. п. ), внутривенно (в.в.) или внутримышечно (в.м.). Показано, что внутримышечная (в.м.) инъекция ДНК-экспрессионных векторов мышам приводит, в результате, к поглощению ДНК мышечными клетками и экспрессии белка, кодированного данной ДНК [J.A. Wolff et al., Science 247, 1465 (1990); G. Ascadi et al. , Nature 352, 815 (1991)]. Показано, что плазмиды сохраняются эписомально и не реплицируются. Впоследствии наблюдали устойчивую экспрессию после в.м. инъекции в скелетные мышцы крыс, рыб и приматов, и в сердечную мышцу крыс [Н. Lin et al., Circulation 82, 2217 (1990); R.N. Kitsis et al., Proc. Natl. Acad. Sci. (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73 (1991); S. Jiao et al., Hum. Gene Therapy 3, 21 (1992); J.A. Wolff et al., Human Mol. Genet. 1, 363 (1992)]. О методах с использованием нуклеиновых кислот в качестве терапевтических агентов сообщается в WO90/11092 (4 октября 1990), где простые полинуклеотиды используются для вакцинации позвоночных.

Недавно рассматривались координированные роли В7 и представления главного комплекса гистосовместимости (ГКГС) эпитопов на поверхности антигенпредставляющих клеток при активации ЦТЛ для удаления опухолей [Edgington, Biotechnology 11, 1117-1119, 1993]. Когда молекула ГКГС на поверхности антигенпредставляющей клетки (АПК) представляет эпитоп к Т-клеточному рецептору (ТКР), В7, экспрессированный на поверхности той же АПК, действует как второй сигнал, связываясь с ЦТЛА-4 или с CD28. Результатом является быстрое деление CD4+ хелперных Т-клеток, которые дают сигнал CD8+ Т-клеткам пролиферировать и убивать АПК.

Для успеха метод иммунизации не обязательно является внутримышечным. Так, Tang с сотр. [Nature, 356, 152-154 (1992)] сообщают, что введение золотых микропулек (microprojectile), покрытых ДНК, кодирующей бычий гормон роста (BGH), в кожу мыши приводит к продуцированию у мыши антител против BGH. Furth с сотр. [Analitical Biochemistry, 205, 365-368 (1992)] показали, что для трансфекции кожной, мышечной, жировой ткани и ткани молочных желез живых животных можно использовать безыгольный инъектор. В последнее время сообщается о различных способах введения нуклеиновых кислот [Friedman, Т., Science, 244, 1275-1281 (1989)]. См. также Robinson et al. [Abstracts of Papers Presented at the 1992 meeting on Modern Approaches to New Vaccines, Including Prevention of AIDS, Cold Spring Harbor, p.92; Vaccine 11, 957 (1993)], где сообщается, что в.м., и.п. и в.в. введение цыплятам ДНК птичьего гриппа обеспечило защиту от смертельного контрольного заражения. Zhu с сотр. [Science 261, 209-211(9 July 1993); см. также WO93/24640/ 9 декабря 1993] сообщают, что внутривенная инъекция мышам комплекса ДНК с катионогенными липосомами приводит к системной экспрессии клонированного трансгена. Недавно Ulmer с сотр. [Science 259, 1745-1749 (1993)] сообщили о гетерологичной защите против заражения вирусом гриппа путем инъекции ДНК, кодирующей белки вируса гриппа.

Wang с сотр. [P.N.A.S. USA 90, 4156-4160 (May, 1993)] сообщают, что иммунных реакций у мышей против ВИЧ удалось добиться путем внутримышечной инокуляции клонированным геномным (без сплайсинга) геном ВИЧ. Однако достигнутый уровень иммунных ответов был очень низким, и система использовала части промотора длинного концевого повтора (LTR) вируса опухоли молочной железы мыши (MMTV) и части промотора вируса обезьян 40 (SV40) и терминатор. Известно, что SV40 трансформирует клетки, вероятно, через объединение с клеточной ДНК хозяина. Таким образом, система, описанная Wang с сотр., совершенно не подходит для введения людям, а такое введение является одной из целей настоящего изобретения.

В WO93/17706 описывается способ вакцинации животных против вируса, при котором на частицы носителя наносят покрытие из генной конструкции, и покрытые частицы ускоренно развиваются в клетках животного.

Исследования Wolff с сотр. (см. выше) впервые показали, что внутримышечная инъекция плазмидной ДНК, кодирующей репортерный ген, приводит к экспрессии такого гена в миоцитах в и вблизи места инъекции. Недавние сообщения описывают успешную иммунизацию мышей против гриппа посредством инъекции плазмид, кодирующих гемагглютинин гриппа A (Montgomery, D.L. et al., 1993, Cell Blol., 12, pp. 777-783), или нуклеопротеин (Montgomery, D.L. et al. , см. выше; Ulmer, J.B. et al., 1993, Science, 259, pp. 1745-1749). Сообщается о первом применении ДНК-иммунизации против вируса герпеса (Сох et al. , 1993, J. Virol. , 67, pp. 5664-5667). Инъекция плазмиды, кодирующей гликопротеин g IV бычьего герпесвируса 1 (BHV-1), вызывает появление антител против g IV у мышей и телят. После интраназального контрольного заражения BHV-1 у иммунизированных телят симптомы ослабевают, и выделение вируса в среду значительно меньшее, чем у контрольных животных.

Туберкулез (ТБ) является хроническим инфекционным заболеванием легких, вызванным патогенным микроорганизмом Mycobacterium tuberculosis. ТБ является одним из наиболее клинически существенных инфекционных заболеваний, широко распространенным во всем мире, с частотой смертельных случаев 3 миллиона в год и 10 миллионами новых случаев заболевания каждый год. Подсчитано, что приблизительно треть мирового населения может быть инфицирована, и сообщается о 55 миллионах случаев активного ТБ в развивающихся странах. До начала нынешнего века ТБ был основной причиной смерти в Соединенных Штатах. Но с улучшением санитарных условий и появлением противомикробных лекарственных средств смертность постепенно снизилась до уровня, исходя из которого предсказывали, что заболевание будет искоренено к 2000 году. Однако в большинстве развитых стран число случаев активного ТБ растет с середины 80-х годов с каждым годом. Частично это возрождение связано с иммиграцией и возрастающим числом людей с ослабленным иммунитетом и ВИЧ-инфицированных. Если ситуация не изменится, предсказано, что ТБ унесет более 30 миллионов человеческих жизней в следующем десятилетии. Даже большее беспокойство, чем эта тревожная картина, вызывает появление штаммов М.tuberculosis со множественной лекарственной устойчивостью (МЛУ, MDR). Такие МЛУ-штаммы не поддаются лечению обычными лекарственными средствами и ответственны за несколько последних вспышек ТБ, в частности, в городских районах. Поэтому одним из ключевых моментов в устранении ТБ на продолжительное время станет эффективная вакцина [для общего представления см. Bloom and Murray, 1993, Science 257, 1055].

M. tuberculosis является внутриклеточным патогеном, который инфицирует макрофаги и способен выживать в суровой окружающей среде фаголизосомы в клетке этого типа. Большинство попавших с дыханием бацилл разрушается активированными альвеолярными макрофагами. Однако выживающие бациллы могут размножаться в макрофагах и выделяться после гибели клетки, которая подает сигналы инфильтрации лимфоцитов, моноцитов и макрофагов к этому месту. Лизис нагруженных бациллами макрофагов опосредуется гиперчувствительностью замедленного типа (DTH) и приводит к развитию твердого казеозного туберкулезного бугорка, окружающего пространство инфицированных клеток. Продолжительная DTH заставляет туберкулезный бугорок разжижаться, причем при этом выселяются захваченные бациллы. Большая доза внеклеточных бацилл инициирует дальнейшую DTH, вызывая поражение бронхов и распространение инфекции лимфатическими, кроветворными и бронхиальными путями, и давая возможность, в конце концов, инфекционным бациллам распространяться при дыхании.

Иммунитет к ТБ включает несколько типов эффекторных клеток. Активация макрофагов цитокинами, такими как -интерферон, является эффективным способом снижения до минимума внутриклеточного микобактериального размножения. Однако полное искоренение бацилл таким способом часто не достигается. Приобретение защиты против ТБ требует Т-лимфоцитов. Из их числа оказываются важными как CD8+ так и CD4+ Т-клетки [Orme et al, 1993, J. Infect. Dis. 167, 1481]. Эти типы клеток секретируют -интерферон в ответ на микобактерии, что является признаком hl-иммунной реакции, и обладают цитотоксической активностью в отношении отмеченных микобактериями клеток-мишеней. В недавних исследованиях с использованием мышей с дефицитом -2-микроглобулина и CD8 показано, что ЦТЛ-реакции критичны при обеспечении защиты против М.tuberculosis [Flynn et al., 1992, Proc. Natl. Acad. Sci. USA 89, 12013; Flynn et al., 1993, J. Exp. Med. 178, 2249; Cooper et al., J. Exp. Med. 178, 2243]. В противоположность этому оказалось, что В-лимфоциты не включаются, и пассивный перенос антител против микобактерий не обеспечивает защиты. Следовательно, эффективные вакцины против ТБ должны генерировать клеточно-опосредованные иммунные реакции.

Антигенная стимуляция Т-клеток требует представления молекулами ГКГС. Чтобы микобактериальным антигенам приобрести доступ к антигенпредставленному пути, они должны выделиться из бактерий. В инфицированных макрофагах это может осуществиться путем секреции или бактериального лизиса. Микобактерии обладают многими потенциальными антигенами к Т-клеткам, и некоторые из них в настоящее время идентифицированы [Andersen 1994, Dan. Med. Bull. 41, 205].

Некоторые из этих антигенов секретированы бактериями. Вообще, считается, что иммунитет против ТБ опосредуется Т-клетками CD8+ и CD4+, направленными к этим секретированным антигенам. На мышиных моделях ТБ и моделях ТБ с морскими свинками защита от контрольного бактериального заражения, при измерении по уменьшению потери в весе, достигнута с использованием смеси секретированных микобактериальных антигенов [Pal and Horowitz, 1992, Infect. Immunity 60, 4781; Andersen 1994, Infect. Immunity 62, 2536; Collins, 1994, Veterin. Microbiol. 40, 95].

Несколько возможных Т-клеточных антигенов идентифицировано в М.tuberculosis, и некоторые из них иследовались в качестве мишеней для вакцин. В недавно опубликованной работе указано, что доминирующие Т-клеточные антигены представляют собой белки, которые секретированы микобактериями во время их нахождения в макрофагах, а именно, I) антигенный 85 комплекс белков (85А, 85В, 85С) [Wiker and Harboe, 1992, Microbiol. Rev. 56, 648], II) белок в 6 кДа, названный ESAT-6 [Andersen 1994, Infect. Immunity 62, 2536], III) липопротеин в 38 кДа с гомологией к PhoS [Young and Garbe, 1991, Res. Microbiol. 142, 55; Andersen, 1992, J. Infect. DIs. 166, 874], IV) хитшоковый белок GroEL в 65 кДа [Siva and Lowrie, 1994, Immunol. 82, 244], V) белок в 55 кДа, обогащенный пролином и треонином [Remain et al., 1993, Proc. Natl. Acad. Scl. USA 90, 5322], и VI) липопротеин в 19 кДа [Faith et al., 1991, Immunol. 74, 1].

Гены для каждого из трех антигенных 85 белков (А, В и С) клонированы и секвенированы [Borremans et al., 1989, Infect. Immunity 57, 3123; Content et al. , Infect. Immunity 59, 3205; DeWit et al., 1994, DNA Seq. 4, 267]. Кроме того, эти структурно родственные белки являются мишенями для сильных Т-клеточных реакций как после заражения, так и после вакцинации [Huygen et al., 1988, Scand. J. Immunol. 27, 187; Launois et al., 1991, Clin. Exp. Immunol. 86, 286; Huygen et al., 1992, Infect. Immunity 60, 2880; Munk et al., 1994, Infect. Immunity 62, 726; Launois et al., 1994, Infect. Immunity 62, 3679]. Поэтому считается, что 85 антигенные белки являются хорошими вакцинными мишенями.

Краткое изложение сущности изобретения Чтобы проверить эффективность ДНК-иммунизации при предупреждении заболевания М.tb, ДНК-последовательности, кодирующие М.tb, клонируют в эукариотных экспрессионных векторах. Эти ДНК-конструкции при инъекции животным выявляют иммунную реакцию. Иммунизированных животных заражают микобактериями, чтобы оценить, может или нет прямая ДНК-иммунизация геном (или другими генами М.tb) защитить животных от заболевания. Также описываются нуклеиновые кислоты, включая ДНК-конструкции и РНК-транскрипты, способные индуцировать in vivo экспрессию белков М. tb после прямого введения в ткани животного посредством инъекции или иным путем. Инъекция таких нуклеиновых кислот может выявить иммунные реакции, которые приводят к продуцированию цитотоксичных Т-лимфоцитов (ЦТЛ), специфических для антигенов M.tb, так же, как и к генерации М.tb-специфических хелперных Т-лимфоцитных реакций, которые являются защитными при последующем контрольном заражении. Эти нуклеиновые кислоты полезны в качестве вакцин для индуцирования иммунитета к М.tb, который может предотвратить инфекцию и/или уменьшить интенсивность заболевания, вызванного М. tb.

Краткое описание чертежей На фиг. 1 показаны общие принципы клонирования генов M.tb в экспрессионных векторах.

На фиг.2 приводится векторная карта V1Jns.tPA85A.Cl.

На фиг.3 приводится векторная карта V1Jns.85A.C2.

На фиг.4 приводится векторная карта V1Jns.85A.C3.

На фиг.5 приводится векторная карта VlJns.tPA 85В.С1.

На фиг.6 приводится векторная карта V1Jns. tPA85C.Cl.

На фиг.7 показано подтверждение N-концевых последовательностей конструкций.

На фиг.8 показана экспрессия белков M.tb в тканевой культуре.

На фиг. 9. показано продуцирование антиген-85А-специфических антител у мышей, вакцинированных ДНК.

На фиг. 10 показано продуцирование ИЛ-2 у мышей BALB/c ДНК-вакциной против ТБ.

На фиг. 11 показано продуцирование ИЛ-2 у мышей C57BL/6 ДНК-вакциной против ТБ.

На фиг.12 показано продуцирование -интерферона у мышей BALB/c ДНК-вакциной против ТБ.

На фиг.13 показано продуцирование -интерферона у мышей C57BL/6 ДНК-вакциной против ТБ.

На фиг. 14 показано отсутствие продуцирования ИЛ-4 у мышей BALB/c ДНК-вакциной против ТБ.

На фиг. 15 показано отсутствие продуцирования ИЛ-6 у мышей ДНК-вакциной против ТБ.

На фиг.16 показано отсутствие продуцирования ИЛ-10 у мышей ДНК-вакциной против ТБ.

На фиг. 17 показано уменьшение размножения ВЦЖ в легких мышей C57BL/6, вакцинированных ДНК-вакциной против ТБ.

На фиг. 18 показано уменьшение размножения ВЦЖ в легких мышей BALB/c, вакцинированных ДНК-вакциной против ТБ.

На фиг.19 показано уменьшение размножения ВЦЖ в селезенке мышей BALB/c, вакцинированных ДНК-вакциной против ТБ.

На фиг.20 показано уменьшение размножения ВЦЖ в селезенке мышей C57BL/6, вакцинированных ДНК-вакциной против ТБ.

Подробное описание изобретения Настоящее изобретение относится к полинуклеотидам, которые при непосредственном введении in vivo позвоночному, включая млекопитающих, например людей, индуцируют экспрессию кодированных белков в организме животного. Используемый здесь термин "полинуклеотид" означает нуклеиновую кислоту, которая содержит основные регуляторные элементы, такие как после введения в клетку живого позвоночного, и способна управлять клеточным комплексом, который продуцирует продукты трансляции, кодированные генами, содержащими полинуклеотид. В одном из вариантов осуществления изобретения полинуклеотид представляет собой полидезоксирибонуклеиновую кислоту, содержащую гены Micobacterium tuberculosis (M. tb), оперативно связанные с промотором транскрипции. В другом варианте осуществления изобретения полинуклеотидная вакцина содержит полирибонуклеиновую кислоту, кодирующую гены М. tb, которые поддаются трансляции эукариотным клеточным комплексом (рибосомы, тРНК и другие факторы трансляции). Когда белок, кодированный полинуклеотидом, представляет собой белок, который обычно не встречается у животного, за исключением патологических состояний (т.е. гетерологичный белок), как, например, белки, ассоциированные с М. tb, иммунная система животного активируется, чтобы запустить защитную иммунную реакцию. Так как эти экзогенные белки продуцированы собственными тканями животного, экспрессированные белки процессируются главным комплексом гистосовместимости (ГКГС) аналогично случаю, когда имеет место фактическое заражение M. tb. Результатом, как описано здесь, является индукция иммунных реакций против М. tb. Полинуклеотиды для цели генерации иммунных реакций к кодированному белку названы здесь полинуклеотидными вакцинами или ПНВ (PNV).

Существует много вариантов осуществления настоящего изобретения, которые специалисты в данной области техники могут представить на основании описания. Так, могут успешно использоваться различные промоторы транскрипции, терминаторы, векторы-носители или специфические генные последовательности.

Настоящее изобретение относится к способу применения полинуклеотида, который после введения в ткань млекопитающего индуцирует экспрессию in vivo полинуклеотида, продуцируя посредством этого кодированный белок. Для специалистов в этой области техники совершенно очевидно, что можно получить вариации или производные нуклеотидной последовательности, кодирующей белок, которые изменяют аминокислотную последовательность кодированного белка. Измененный экспрессированный белок может иметь измененную аминокислотную последовательность, но еще выявляет иммунные ответы для реакции с микобактериальным белком и считается функциональным эквивалентом. Кроме того, можно также создать фрагменты непроцессированных генов, которые кодируют части непроцессированного белка. Эти фрагменты могут кодировать белок или пептид, которые выявляют антитела, которые реагируют с микобактериальным белком, и считаются функциональными эквивалентами.

В одном из вариантов осуществления настоящего изобретения ген, кодирующий генный продукт М.tb, включается в экспрессионный вектор. Вектор содержит промотор транскрипции, распознаваемый эукариотной РНК-полимеразой, и терминатор транскрипции на конце последовательности, кодирующей ген М.tb. В предпочтительном варианте осуществления изобретения промотор представляет собой цитомегаловирусный промотор с последовательностью интрона-А (CMV-intA), хотя специалистам в этой области техники известно, что можно использовать любой промотор из числа других известных промоторов, например сильнодействующий иммуноглобулин, или другие эукариотные генные промоторы. Предпочтительным терминатором транскрипции является терминатор бычьего гормона роста. Предпочтительно сочетание CMVintA с терминатором BGH. Кроме того, для содействия в получении полинуклеотидов в прокариотных клетках также, необязательно, включают маркер устойчивости к антибиотикам в экспрессионный вектор под транскрипционным контролем подходящего прокариотного промотора. Могут быть использованы гены устойчивости к ампициллину, гены устойчивости к неомицину или любой другой подходящий маркер устойчивости к антибиотику. В предпочтительном варианте осуществления настоящего изобретения ген устойчивости к антибиотику кодирует генный продукт для устойчивости к неомицину/ канамицину. Кроме того, чтобы содействовать высокому уровню продуцирования полинуклеотида путем роста в прокариотных организмах, выгодно, чтобы вектор содержал прокариотный ориджин репликации и состоял из большого числа копий. Любой вектор из числа коммерчески доступных прокариотных клонирующих векторов обеспечивает эти элементы. В предпочтительном варианте осуществления настоящего изобретения эти функции обеспечиваются коммерчески доступными векторами, известными как серия pUC. Однако может быть желательно удалить несущественные ДНК-последовательности. Так, могут быть удалены lacZ- и -lacI-кодирующие последовательности pUC. Также желательно, чтобы векторы были неспособны к репликации в эукариотных клетках. Это сводит к минимуму опасность слияния последовательностей полинуклеотидной вакцины с геномом реципиента.

В другом варианте осуществления изобретения используют экспрессионный вектор pnRSV, при этом длинный концевой повтор (LTR) вируса саркомы Рауса (RSV) используют в качестве промотора. В еще одном варианте осуществления изобретения используют Vl-мутированный вектор pBR322, в котором клонированы CMV-промотор и терминатор транскрипции BGH. В предпочтительном варианте осуществления настоящего изобретения для получения экспрессионного вектора, названного V1J, объединены элементы V1 и pUC19.

В V1J, VlJtPA или другом нужном экспрессионном векторе клонируют ген М. tb, например один из генов антигенного комплекса 85 или любой другой ген М. tb, который может индуцировать иммунные реакции против М.tb (ЦТЛ, хелперные Т-лимфоциты и антитела). В другом варианте осуществления изобретения из V1J удаляют ген устойчивости к ампициллину и заменяют геном устойчивости к неомицину, чтобы генерировать V1J-neo, в котором можно клонировать любой ген из числа различных генов М.tb для применения по настоящему изобретению. Еще в одном варианте осуществления изобретения вектором является V1Jns, который такой же, как вектор Vl-neo, за исключением того, что уникальный сайт рестрикции Sfil создан в одном сайте Kpnl в положении 2114 V1J-neo. Частота появления сайта Sfil в человеческой геномной ДНК очень низкая (приблизительно 1 сайт на 100000 оснований). Таким образом, этот вектор дает возможность тщательного контроля за слиянием экспрессионного вектора с ДНК хозяина просто путем переваривания Sfil экстрагированной геномной ДНК. В другом варианте осуществления изобретения вектором является V1R. В этом векторе "убрано" столько несущественных ДНК, сколько возможно, чтобы получить высококомпактный вектор. Этот вектор дает возможность использования большего числа вставок с меньшим беспокойством по поводу кодирования нежелательных последовательностей и оптимизирует поглощение клетками, когда конструкция, кодирующая специфические вирусные гены, вводится в близлежащую ткань. Способы, применяемые при продуцировании вышеупомянутых векторных модификаций, и процедуры их развития могут осуществляться в соответствии с методами, известными специалистам в этой области техники.

Из настоящей работы специалисты в данной области техники узнают, что полезность настоящего изобретения состоит в предоставлении системы тестирования и анализа как in vivo, так и in vitro, так что можно осуществить корреляцию между многообразием последовательностей М. tb и пролиферативными реакциями ЦТЛ и Т-клеток, как и другими параметрами. Выделение и клонирование этих различных генов можно осуществить в соответствии с методами, известными специалистам в этой области техники. Настоящее изобретение также относится к способу систематичной идентификации штаммов М. tb и последовательностей для получения вакцин. Включение генов из первичных изолятов штаммов М. tb дает иммуноген, который индуцирует иммунные реакции против клинических изолятов организма, и, таким образом, удовлетворяет потребность, которая пока в этой области не удовлетворена. Кроме того, если вирулентные изоляты изменяются, можно модифицировать иммуноген, чтобы отразить необходимые последовательности.

В одном из вариантов осуществления настоящего изобретения ген, кодирующий белок М.tb, непосредственно связан с промотором транскрипции. Применение тканеспецифических промоторов или энхансеров, например энхансерного элемента мышечной креатинкиназы (МСК), может быть желательным для ограничения экспрессии полинуклеотида к ткани определенного типа. Например, миоциты являются окончательно дифференцированными клетками, которые не делятся. Слияние чужеродной ДНК с хромосомами появляется как требование как деления клеток, так и синтеза белка. Таким образом, может быть предпочтительным ограничение экспрессии белка до неделящихся клеток. Однако использование CMV-промотора является адекватным для достижения экспрессии во многих тканях, в которые вводят ПНВ.

М. tb и другие гены лигируют предпочтительно с экспрессионным вектором, который специфически оптимизирован для полинуклеотидных вакцинаций. Элементы включают промотор транскрипции, иммуногенные эпитопы и дополнительные цистроны, кодирующие гены иммуноусиления или иммуномодуляторные гены, с их собственными промоторами, терминатор транскрипции, бактериальный ориджин репликации и ген устойчивости к антибиотику, как описано здесь. Вектор может содержать, необязательно, аминоацильные сайты внутренних рибосом (IRES) для экспрессии полицистронной мРНК. Специалисты в этой области техники поймут, что РНК, которая транскрибирована in vitro для продуцирования многоцистронных мРНК, кодированных эквивалентами ДНК, входит в объем настоящего изобретения. Для этой цели желательно использовать в качестве промотора транскрипции такие сильные РНК-полимеразные промоторы, как промоторы Т7 или SP6, и осуществлять in vitro продолжение транскрипции с линеаризованной ДНК-матрицей. Эти способы хорошо известны в технике.

Защитная эффективность полинуклеотидных иммуногенов М. tb против последующего контрольного заражения демонстрируется с помощью иммунизации ДНК настоящего изобретения. Это выгодно, так как не включается никакой инфекционный фактор, не требуется сборки/ репликации бактерий, и разрешена селекция антигенных детерминант. Кроме того, так как последовательность микобактериальных генных продуктов может быть сохранена среди различных штаммов М. tb, получают защиту против последующего контрольного заражения другим штаммом.

Инъекция ДНК-экспрессионного вектора, кодирующего антиген 85А, В или С, может привести к образованию существенного защитного иммунитета против последующего контрольного заражения. В частности, могут быть получены специфические реакции ЦТЛ и хелперных Т-лимфоцитов.

Так как каждый из генных продуктов М. tb обнаруживает высокую степень сохранности в различных штаммах М. tb, и так как иммунные реакции могут генерироваться в ответ на интрацеллюлярную экспрессию и процессинг ГКГС, ожидается, что многие различные конструкции ПНВ против М.tb могут дать начало кросс-реактивным иммунным ответам.

Настоящее изобретение относится к способу индуцирования гетерологичного защитного иммунитета, не требующему самореплицирующихся факторов или адъювантов. Генерация антител с высоким титром против экспрессированных белков после инъекции вирусного белка и ДНК человеческого гормона роста [Tang et al., Nature 356, 152, 1992] указывает, что такая инъекция является простым и высокоэффективным способом получения вакцин на основе антител, либо одних, либо в сочетании с цитотоксическими Т-лимфоцитными и хелперными Т-лимфоцитными вакцинами, нацеленными на консервативные антигены.

Легкость продуцирования и очистки ДНК-конструкций выигрывает при сравнении с традиционной очисткой белка, облегчая образование комбинированных вакцин. Таким образом, могут быть получены, смешаны и введены совместно множественные конструкции, например кодирующие гены антигенного комплекса 85 и любой другой ген M.tb, также включающий не М.tb гены. Кроме того, после инъекции ДНК сохраняется экспрессия белка [Н. Lin et al., Circulation 82, 2217 (1990); R. N. Kitsis et al., Proc. Natl. Acad. Sci. (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73 (1991); S. Jiao et al., Hum. Gene Therapy 3, 21 (1992); J.A. Wolff et al., Human Mol. Genet. 1, 363. (1992)] , может быть усилена устойчивость В- и Т-клеточной памяти [D. Gray and P. Matzinger, J. Exp. Med. 174, 969 (1991); S. Oehen et al., там же, 176, 273 (1992)], причем посредством этого создают длительный гуморальный и клеточно-опосредованный иммунитет.

Количество экспрессируемой ДНК или транскрибированной РНК, которое вводят реципиенту вакцины, будет иметь очень широкий интервал дозирования и может зависеть от силы используемых промоторов транскрипции и трансляции. Кроме того, интенсивность иммунной реакции может зависеть от уровня экспрессии белка и от иммуногенности экспрессированного генного продукта. Как правило, эффективные дозы от 1 нг до 5 мг, от 100 нг до 2,5 мг, от 1 мкг до 750 мкг и предпочтительно от 10 мкг до 300 мкг ДНК вводят непосредственно в мышечную ткань. Также подходящими являются подкожная инъекция, интрадермальное введение, вдавливание через кожу и другие способы введения, такие как интраперитонеальная, внутривенная доставка или доставка путем ингаляции. Также ожидается, что можно осуществлять активную вакцинацию. После вакцинации полинуклеотидным иммуногеном М.tb предполагается также ревакцинация иммуногенами белков М.tb, например генными продуктами антигенного комлекса 85. Может быть выгодным парентеральное введение, например внутривенное, внутримышечное подкожное, или другими способами введения, белка интерлейкина 12 (или другого цитокина, например, ГМ-КСФ), одновременное или следующее за парентеральным введением ПНВ настоящего изобретения.

Полинуклеотид может быть простым, т.е. неассоциированным с какими-либо белками, адъювантами или другими факторами, которые действуют на иммунную систему реципиента. В этом случае желательно, чтобы полинуклеотид находился в физиологически приемлемом растворе, например в стерильном физиологическом растворе или в стерильном забуференном физиологическом растворе, но возможно использование и других растворов. С другой стороны, ДНК может быть соединена с липосомами, например, с лецитиновыми липосомами, или с другими липосомами, известными в технике, в виде ДНК-липосомной смеси, или ДНК может быть соединена с адъювантом, известным в технике для усиления иммунных реакций, таким как белок, или с другим носителем. Также могут использоваться средства, которые содействуют клеточному поглощению ДНК, например ионы кальция, или другие агенты. Вообще, эти агенты упоминаются здесь как реагенты, облегчающие трансфекцию, и фармацевтически приемлемые носители. Методы нанесения полинуклеотида на микрочастицы известны в технике и также применяются в связи с настоящим изобретением. Может быть полезным, чтобы конечный продукт ДНК, предназначенной для использования людьми, находился в фармацевтически приемлемом носителе или буферном растворе. Фармацевтически приемлемые носители или буферные растворы известны в технике и включают вещества, описанные в различных работах, например в Remington's Pharmaceutical Sciences.

В еще одном варианте осуществления изобретения присутствует полинуклеотид, который содержит соседние нуклеотидные последовательности, способные, будучи экс-прессированными, продуцировать генный продукт после введения упомянутого полинуклеотида в эукариотные ткани in vivo. Кодированный генный продукт действует предпочтительно или как иммуностимулятор, или как антиген, способный генерировать иммунную реакцию. Так, в этом варианте осуществления изобретения нуклеотидные последовательности кодируют иммуногенный эпитоп M. tb и, необязательно, цитокин или Т-клеточный костимулирующий элемент, например, из семейства белков В7.

Существуют некоторые преимущества иммунизации геном, а не его генным продуктом. Первое преимущество заключается в относительной простоте, с которой нативный или почти нативный антиген может быть представлен иммунной системе. Белки млекопитающего, экспрессированные рекомбинантно в бактериях, дрожжах или даже в клетках млекопитающего, часто требуют для обеспечения соответствующей антигенности длительной обработки. Вторым преимуществом ДНК-иммунизации является возможность для иммуногена принимать участие в каскаде реакций ГКГС класса I и вызывать цитотоксичные Т-клеточные реакции. Иммунизация мышей ДНК, кодирующей нуклеопротеин (NP) гриппа А, облегчает реакцию CD8+ на NP, которая защищает мышей от контрольного заражения гетерологичными штаммами гриппа (Montgomery, D.L., et al., см. выше; Ulmer J., et al., см. выше).

Совершенно очевидно, что клеточно-опосредованный иммунитет важен для борьбы с инфекцией М. tb [Orme et al., 1993, J. Infect. Dis. 167, 1481; Cooper et al., 1993, J. Exp. Med. 178, 2243; Flynn et al., 1993, J. Exp. Med. 178, 2249; Orme et al. , 1993, J. Immunol. 151, 518]. Так как иммунизация ДНК может вызвать как гуморальный, так и клеточно-опосредованный иммунитет, большим преимуществом может быть то, что она дает относительно простой способ исследования большого числа генов M.tb на их вакцинный потенциал.

Иммунизация посредством инъекции ДНК также дает возможность, как описано выше, легкой сборки многокомпонентных субъединичных вакцин. Недавно опубликовано сообщение об одновременной иммунизации множественными генами гриппа (Donnelly, J., et al., 1994, Vaccines, pp. 55-59). Включение в вакцину против M.tb генов, продукты которых активируют различные ветви иммунной системы, также может предоставить защиту от последующего контрольного заражения.

Вакцины настоящего изобретения пригодны для введения домашним или сельскохозяйственным животным, а также людям. Вакцины настоящего изобретения могут использоваться для предотвращения и/или борьбы с инфекцией любых сельскохозяйственных животных, включая, но не ограничиваясь им, молочный скот, который восприимчив к микобактериальной инфекции. Методы введения этих вакцин животным и людям известны специалистам в области ветеринарии и здравоохранения соответственно.

Приведенные ниже примеры приводятся для иллюстрации настоящего изобрете