Усиление ядерного магнитного резонанса (ямр) и магниторезонансной визуализации (мрв) в присутствии гиперполяризованных благородных газов
Реферат
Изобретение в целом относится к методам ядерного магнитного резонанса как для спектроскопии, так и для визуализации, в частности к способам, при которых используют гиперполяризованные благородные газы (например, Хе и Не) для усиления и улучшения ЯМР и МРВ. Кроме того, растворы гиперполяризованных газов по изобретению пригодны как in vitro, так и in vivo для исследования динамики или структуры систем. При использовании в биологических системах либо in vitro, либо in vivo в объем изобретения включены направление и доставка гиперполяризованного газа в конкретные области внутри системы. Техническим результатом изобретения является улучшение пространственной разрешающей способности при получении пациентом нулевой дозы радиации. 8 с. и 28 з. п. ф-лы, 22 ил.
Область изобретения Изобретение в целом относится к методам ядерного магнитного резонанса (ЯМР) применительно и к спектроскопии, и к визуализации. В частности, настоящее изобретение относится к применению гиперполяризованных благородных газов (например, Хе и Не) для усиления и улучшения ЯМР и МРВ.
Предпосылки изобретения Ядерный магнитный резонанс (ЯМР) является признанным методом и для спектроскопии, и для визуализации. Спектроскопия ЯМР является одним из наиболее мощных доступных методов определения первичной структуры, конформации и локальных динамических свойств молекул в жидкой, твердой и даже газообразной фазах. Как метод визуализации всего организма магниторезонансная визуализация (МРВ) дает изображения мягких тканей, обладающие таким великолепным разрешением, что МРВ стала методом выбора на многих клинических установках. МРВ может продуцировать изображения, которые позволяют клиницисту установить различие между патологическим состоянием и здоровой тканью. Например, МР изображения позволяют четко дифференцировать опухоли от окружающей ткани. Кроме того, при использовании МРВ возможна визуализация специфических зон в организме и возможно получение анатомической (морфология и патология) и/или функциональной информации о различных процессах, включая кровоток и тканевую перфузию. Функциональная визуализация мозга в настоящее время также хорошо подтверждена документально. Структурную и функциональную информацию, доступную через МРВ, дополняют спектроскопией ЯМР всего организма. ЯМР-спектроскопические исследования на организмах обеспечивают средства для изучения химических процессов, происходящих в исследуемой ткани. Например, можно исследовать локализацию и количество внутренних ЯМР-спектроскопических маркеров, таких как лактат и цитрат, чтобы проанализировать химические процессы, лежащие в основе болезненного состояния [Kurhanewicz, J. , et al., Urology 45: 459-466 (1995)]. Спектроскопию ЯМР можно применять для наблюдения за действием вводимых лекарственных средств на биохимию организма или изменениями лекарственного средства, которые происходят после его введения [Maxwell, R.J., Cancer Surv. 17: 415-423 (1993)]. Усилия, направленные на увеличение информационного выхода от МРВ и спектроскопии ЯМР путем повышения их чувствительности или использования соответственно сконструированных поверхностных зондов, прилагаются с момента возникновения этих методов. Чувствительность является постоянным препятствием для применения ЯМР как в визуализации, так и в спектроскопии. В протонной МРВ контраст регулируется прежде всего количеством протонов в ткани и собственным временем релаксации этих протонов (то есть T1 и Т2). Сопредельные ткани, которые отличимы гистологически, но все же сходны по магнитным свойствам, выглядят в такой же степени ярко на МР изображении. Поскольку содержание протонов в ткани не является параметром, которым можно легко манипулировать, подход, предпринятый для обеспечения различия между тканями, сходными по магнитным свойствам, состоит во введении в биологическую систему парамагнитного фамацевтического средства (то есть агента, увеличивающего контраст), такого как Gd(DTPA) (DTPA - диэтилентриаминпентауксусная кислота) [Niendorf, H.P., et al., Eur. J. Radiol., 13: 15 (1991)]. Взаимодействие между протонами ядер и неспаренными спинами на ионе Gd+3 значительно сокращает время протонной релаксации, что приводит к повышению яркости тканей в сайте взаимодействия. Gd(DTPA) и аналогичные агенты представляют собой агенты, состоящие из небольших молекул, которые остаются в значительной степени ограниченными в своем распространении во внеклеточный компартмент и не без труда проходят интактный гематоэнцефалический барьер. Таким образом, эти агенты малопригодны в функциональной визуализации мозга. Так же, как МРВ, ЯМР-спектроскопические исследования, как правило, основаны на детектировании ЯМР-активных ядер, которые присутствуют в виде естественной примеси изотопов (например, 1H, 31Р, 13С) [Sapega, A.A., et al., Med. Sci. Sports Exerc., 25: 656-666 (1993)]. Кроме того, исследуемые химические молекулярные типы должны быть спектроскопически отличимыми от других соединений в пределах окна визуализации. Таким образом, чувствительность в спектроскопии ЯМР является функцией как относительного содержания естественной примеси изотопов, так и спектральных характеристик молекул(ы), которые хотят исследовать. Диапазон ЯМР-спектроскопических исследований был некоторым образом расширен путем использования экзогенных зондов, которые содержат ЯМР-активные ядра, например 19F [Aiken, N.R., et al., Biochim. Biophys. Acta, 1270: 52-57 (1995)]. Благородные газы представляют интерес в качестве изотопных индикаторов и зондов для МРВ и спектроскопии ЯМР [Middleton, Н., et al., Маgn. Res. Med. 33: 271 (1995)] , однако чувствительность МРВ и спектроскопии ЯМР для этих молекул является относительно низкой. Недостаточная чувствительность этих методов в отношении благородных газов обусловлена тем, что спиновая поляризация, или результирующий магнитный момент, образца благородного газа является низкой. Например, типичная молекула при тепловом равновесии при комнатной температуре обладает избытком спинов, ориентированных в одном направлении с приложенным магнитным полем, по отношению к спинам, ориентированным в противоположном направлении, в общем менее чем 10-5. Более низкие температуры и более высокие поля до той степени, до которой они могут быть приложены, обеспечивают только ограниченное преимущество. Альтернативные подходы основаны на прерывании равновесной намагниченности путем принуждения молекул в образце переходить в поляризованное состояние. Два известных специалистам метода усиления спиновой поляризации заселенности ядер представляют собой динамическую ядерную поляризацию и оптическую накачку. Динамическая ядерная поляризация, первоначально применявшаяся для металлов, является результатом поперечной релаксации между спаренными спинами. Это явление известно как эффект Оверхаузера, раскрытый ранее Оверхаузером и др. [Overhauser, A. W. , "Polarization of nuclei in metals", Phys. Rev. 92 (2): 411-415 (1953), Solomon, I., "Relaxation processes in a system of two Spins", Phys. Rev. 99 (2): 559-565 (1955), и Carver, T.R. et al., Experimental verification of the Overhauser nuclear polarization effect", Phys. Rev. 102 (4): 975-980 (1956)]. Ядерный эффект Оверхаузера между ядерными спинами широко используется для определения межатомных расстояний в ЯМР-исследованиях молекул в растворе. Оптическая накачка представляет собой метод усиления спиновой поляризации газов, который состоит в облучении щелочного металла в присутствии благородного газа циркулярно поляризованным светом. Образующиеся в результате гиперполяризованные газы использовали для ЯМР-исследований поверхностей и визуализации полых пространств и поверхностей. Примерами являются усиленный поверхностный ЯМР гиперполяризованного 129Хе, как описано Raftery, D., et al. [Phys. Rev. Lett. 66: 584 (1991)]; усиление сигнала протона и 13С ЯМР путем теплового перемешивания от гиперполяризованного 129Хе, как описано Driehuys, В., еt al. [Phys Lett. A184: 88-92 (1993)] и Bowers, С. R. et al. [Chem. Phys. Lett. 205: 168(1993)], и путем поперечной поляризации Хартмана-Хана, как описано Long, Н. W. , et al. [J. Am. Chem. Soc., 115: 8491 (1993)] ; и улучшенная МРВ полых пространств в организмах (таких как легкое) и других материалах, как описано Albert, M.S., et al. [Nature 370: 199-201 (1994)] и Song, Y.-Q., et al. [J. Magn. Reson. AH 5: 127-130 (1995)]. Хотя было доказано, что гиперполяризованные благородные газы применимы в качестве зондов при исследовании воздушных полостей в легких, эффективность или чувствительность этих способов представляет собой нечто компромиссное для таких биологических материалов и органов, как кровь и части организма, которые доступны только через кровь. За время пребывания в крови гиперполяризованный газ значительно разбавляется, и задержка в переносе газа из легочного пространства в кровь потребляет много времени (например T1), которое требуется поляризованному газу, чтобы вернуться в негиперполяризованное состояние. Еще более усложняя ситуацию, проникание гиперполяризованного газа внутрь красных кровяных клеток значительно снижает T1 гиперполяризованного газа и, следовательно, крайне сокращает промежуток времени, в течение которого газ может служить как эффективный зонд. Значительного преимущества как в МРВ, так и в спектроскопии ЯМР можно было бы достичь путем введения универсального ЯМР-активного изотопного индикатора на основе гиперполяризованного благородного газа, который может функционировать также как увеличивающий контраст агент, или, напротив, воздействовать на ближайшие к зонду молекулы образца таким образом, чтобы их можно было различать спектроскопически. В числе других применений такой агент мог бы быть полезным в функциональной визуализации мозга, а также для изучения динамики обмена между внутриклеточным и внеклеточным компартментами различных тканей. Значительно более глубокое значение могли бы иметь средства доставки изотопного индикатора через кровь или путем прямой инъекции в интересующую ткань, которые сохраняют гиперполяризацию газа во время процесса доставки и на протяжении визуализации или спектроскопического эксперимента. Совершенно неожиданно согласно настоящему изобретению предложены и такой изотопный индикатор и способ доставки. Сущность изобретения Согласно настоящему изобретению предложены способы, относящиеся к использованию гиперполяризованных благородных газов в спектроскопии ЯМР и МРВ. Благородные газы пригодны как в качестве изотопных индикаторов, которые сами по себе являются обнаруживаемыми, так и в качестве агентов, которые воздействуют на магнитные свойства других ядер, присутствующих в образце. Таким образом, согласно первому аспекту настоящего изобретения предложен способ анализа образца, содержащего ЯМР-активные ядра, включающий в себя: (а) контактирование образца с гиперполяризованным благородным газом; (б) сканирование образца путем спектроскопии ядерного магнитного резонанса, магниторезонансной визуализации или как спектроскопии ядерного магнитного резонанса, так и магниторезонансной визуализации; (в) детектирование ЯМР-активного ядра, причем ЯМР-активное ядро представляет собой ядро, иное чем благородный газ. В другом аспекте настоящего изобретения предложен способ анализа образца, который включает в себя: (а) объединение гиперполяризованного благородного газа с текучей средой с образованием смеси; (б) контактирование образца с данной смесью; (в) сканирование образца, благородного газа или как образца, так и благородного газа путем спектроскопии ядерного магнитного резонанса, магниторезонансной визуализации или как спектроскопии ядерного магнитного резонанса, так и магниторезонансной визуализации. В следующем аспекте изобретения предложена фармацевтическая композиция, которая содержит гиперполяризованный благородный газ, растворенный в физиологически совместимом жидком носителе. Еще в одном аспекте настоящего изобретения предложен способ исследования свойства благородного газа в ткани. Этот способ по изобретению включает в себя: (а) гиперполяризацию благородного газа; (б) растворение гиперполяризованного благородного газа в физиологически совместимом жидком носителе с образованием смеси; (в) контактирование ткани со смесью из стадии (б); и (г) сканирование ткани путем спектроскопии ядерного магнитного резонанса, магниторезонансной визуализации или их обоих, посредством чего исследуют свойство благородного газа в ткани. В следующем аспекте изобретения предложен способ увеличения времени релаксации гиперполяризованного благородного газа в контакте с физиологической текучей средой. Этот способ включает в себя: (а) образование промежуточного раствора гиперполяризованного благородного газа путем растворения гиперполяризованного благородного газа в текучей среде, в которой время релаксации благородного газа является более длительным, чем время релаксации благородного газа в физиологической текучей среде; и (б) контактирование физиологической текучей среды с промежуточным раствором. Еще в одном дополнительном аспекте настоящего изобретения предложен способ измерения сигнала, передаваемого от по меньшей мере одного атома гиперполяризованного благородного газа по меньшей мере одному ЯМР-акгивному ядру, иному чем благородный газ, включающий в себя: (а) контактирование ЯМР-активного ядра, иного чем благородный газ, с атомом гиперполяризованного благородного газа; (б) приложение радиочастотной энергии к ЯМР-активному ядру, иному чем благородный газ, в магнитном поле; и (в) измерение сигнала, передаваемого от атома гиперполяризованного благородного газа ЯМР-активному ядру, иному чем благородный газ, с использованием спектроскопии ядерного магнитного резонанса, магниторезонансной визуализации либо их обоих. В еще одном дополнительном аспекте изобретения предложена последовательность импульсов для индуцированного спиновой поляризацией ядерного эффекта Оверхаузера (SPINOE) ЯМР гетероядерного различия системы, содержащей по меньшей мере один атом гиперполяризованного благородного газа и по меньшей мере одно ЯМР-активное ядро, иное чем благородный газ, включающая в себя: (а) /2 импульс по меньшей мере одного ЯМР-активного ядра, иного чем благородный газ; (б) импульс ЯМР-активного ядра, иного чем благородный газ, приложенный одновременно с приложением импульса благородного газа; и (в) /2 импульс ЯМР-активного ядра, иного чем благородный газ. В дополнительном аспекте изобретения предложен аппарат для получения раствора гиперполяризованного благородного газа в текучей среде, включающий в себя: сосуд для приема текучей среды; резервуар для приема гиперполяризованного благородного газа, сообщающийся через первый запорный клапан с сосудом, причем резервуар имеет форму, которая дает возможность охлаждать его независимо от сосуда; входное отверстие для газа, сообщающееся через второй запорный клапан с резервуаром; и средства для удаления текучей среды из сосуда независимо от первого и второго запорного клапана. Другие признаки, назначения и преимущества изобретения и его предпочтительные воплощения станут видны из подробного описания, которое следует. Краткое описание графических материалов Фиг. 1. Схематически представлен использованный протокол эксперимента. Ксенон с обогащением изотопом 129Хе восемьдесят процентов поляризуют через спиновый обмен с атомами рубидия, подвергнутыми оптической накачке, с использованием методов, описанных ранее. Ксенон замораживают при температуре жидкого азота в боковом плече пробирки для образца в сильном магнитном поле, обеспечиваемом постоянным магнитом. Затем ксенон переводят в газовую фазу путем нагревания и вводят в раствор. Фиг.2. 129Хе ЯМР спектр раствора 129Хе в D2O. Фиг. 3А и 3В. Представлены стандартные и оптически поляризованные 129Хе ЯМР спектры ксенона в крови, снятые после инъекции 1 см3 смеси ксенон/вода в 1 см3 концентрированных красных кровяных клеток. Фиг. 4. Представлена временная зависимость интегралов двух пиков в типичном 129Хе ЯМР 129Хе в крови. Фиг. 5А и 5В. Собственный обмен ксенона между внеклеточным и внутриклеточным компартментами крови. На фиг.5А показан первоначальный равновесный спектр и временная зависимость спектров после избирательной инверсии. На фиг.5Б показана временная зависимость интенсивностей сигналов. Фиг. 6А и 6В. 129Хе спектр подвергнутого оптической накачке ксенона, доставленного в кровь в растворе INTRALIPID (А). Двухмерное 129Хе МР изображение лазер-поляризованного ксенона в смеси кровь/INTRALIPID (А, вставка). 129Хе спектр, снятый после перемешивания раствора ксенон/FLUOSOL в цельной крови (В). Сжатый 129Хе ЯМР спектр раствора ксенон/FLUOSOL в цельной крови (В, вставка). Фиг. 7. Двухмерное магниторезонансное изображение 129Хе, растворенного в свежей крови человека, полученное сразу после того, как кровь смешали с физиологическим раствором, насыщенным гиперполяризованным ксеноном. Изображения 128х64 получены методом эхо-планарной визуализации (EPI) на спектрометре Quest 4300. Диаметр пробирки для образца 10 мм, и раствор занимает регион длиной 20 мм. Фиг.8. Временная зависимость сигнала гиперполяризованного 129Хе ЯМР, наблюдаемая в бензольном растворе после его контактирования с гиперполяризованным ксеноном. На основной фигуре показаны данные для частично дейтерированного бензола (25% C6D5H, 75% С6D6); на вставке показаны данные для нормального бензола (С6Н6). В экспериментах, представленных пустыми кружками, ксенон вводили в бензол посредством открытия ксенонового резервуара; начальный рост сигнала соответствует прониканию ксенона в растворитель. В эксперименте, представленном заштрихованными кружками, ксенон смешивали с бензолом посредством взбалтывания образца после открытия ксенонового резервуара таким образом, чтобы получить однородный насыщенный раствор. Спиновую поляризацию 129Хе усиливали путем оптической накачки с использованием циркулярно поляризованного света при 794,7 нм. Обычно в одном эксперименте использовали 4х10-4 моль обогащенного 129Хе. Различие в сигнале 129Хе между бензолом и дейтерированным бензолом демонстрирует влияние магнитного дипольного взаимодействия между спинами 1H и 129Хе на релаксацию 129Хе. Для исходных NOE экспериментов использовали частично дейтерированные жидкости, чтобы поддерживать эффекты поперечной релаксации выше эффектов, которые способствуют авторелаксации 1Н. 129Хе ЯМР осуществляли при 51 МГц на спектрометре Quest 4300 с использованием зонда собственной конструкции и под углом наклона 3o. Фиг. 9. Временная зависимость 1H ЯМР сигнала, наблюдаемая после экспонирования частично дейтерированного бензола (25% C6D5H, 75% C6D6) гиперполяризованным 129Хе. Образец экспонировали ксеноном при нулевом магнитном поле, а затем вводили в ЯМР зонд в течение нескольких секунд. Начальное увеличение 1H сигнала связано со спин-решеточной релаксацией. 1H ЯМР сигнал проявляет положительный (O) или отрицательный NOE в зависимости от знака вектора поляризации 129Хе. По вариации сигнала 1H в присутствии неполяризованного ксенона определено, что 1Н T1 раствора бензол-ксенон составляет приблизительно 160 с. Вставка: временная зависимость сигнала 1H ЯМР после того, как поляризованный 129Хе был растворен в частично дейтерированном бензоле. Перед введением ксенона образец помещали в ЯМР магнит примерно на 10 минут, чтобы дать возможность установиться тепловому равновесию намагничивания 1H. После того как ксеноновый резервуар был открыт, образец взбалтывали, чтобы гарантировать эффективное перемешивание ксенона и бензола. Плавные линии представляют собой соответствие временной зависимости раствора [J. Н. Noggle, R. E. Schirmer, The Nuclear Overhauser Effect^ Chemical Applications (Academic Press, New York - London - Toronto - Sidney - San Francisco, 1971)] уравнению 1, с временными константами 120 с и 1050 с (), и 140 с и 1020 с 1H ЯМР осуществляли при 185 МГц с использованием зонда собственной конструкции и под углом наклона 3o. Фиг. 10. Двухмерные магниторезонансные изображения растворенного в бензоле 129Хе, с разрешением во времени, полученные после экспонирования бензола гиперполяризованным 129Хе. Градиент концентрации Хе существует сразу после введения Хе, изменяясь со временем до более однородного раствора. Изображения 64х128 пикселей получали методом визуализации быстрый снимок под малым углом (FLASH) на спектрометре Quest 4300, с углом наклона 3o для каждой из 64 регистрации сигналов. Градиент частотного кодирования составлял 3,5 Г/мм. Размер шага градиентных импульсов фазового кодирования, которые были 500 мкс длиной, составлял 0,063 Г/мм. Диаметр пробирки для образца составляет 7 мм, и раствор занимает регион длиной 15 мм. Фиг. 11. Распределение, с разрешением во времени, намагничивания 129Хе в частично дейтерированном бензоле по МРВ проекции вдоль оси пробирки (z). Образец не взбалтывали после введения ксенона в бензол, чтобы предотвратить начальную однородную концентрацию. На первом изображении, полученном через 47 с после введения газообразного ксенона в раствор, можно различить три области. Интенсивность сигнала выше уровня раствора (выше 18 мм) возникает от ксенона в газовой фазе, которая смещена от сигнала растворенного 129Хе благодаря его иному химическому сдвигу. Падение сигнала газа выше 21 мм вдоль оси z происходит вследствие снижения ЯМР чувствительности вне радиочастотной спирали, представленной на схеме кружками. Максимум сигнала в позиции 15,2 мм соответствует верху раствора, где сигнал поступает от ксенона, диффундирующего в раствор из газообразной фазы. Максимальный сигнал в позиции примерно 1,3 мм соответствует нижнему концу пробирки. Таким образом, вначале ксенон аккумулируется на дне пробирки для образца, и заметный градиент концентрации ксенона продолжает существовать до 5 минут. Градиент концентрации, который является результатом естественной конвекции вследствие разности плотностей раствора ксенона и чистого бензола, в конечном счете прогрессирует до однородного насыщенного раствора ксенона. Градиент поля визуализации составлял 2,6 Г/мм. Фиг. 12. Двухмерное магниторезонансное изображение усиленных NOE 1H сигналов на 2 и 6 минутах после того, как гиперполяризованный ксенон был введен в пробирку для образца, содержащую нормальный бензол. Изображения усиления получают вычитанием показанного равновесного изображения, которое представляет собой среднее из четырех изображений, полученных через 25 минут. Шкала интенсивности относительно различия изображений увеличена в 8 раз для четкости. Максимальное усиление NOE на 2-минутном изображении составляет 0,05; на 6-минутном изображении оно составляет 0,12. Ощутимый градиент усиленного 1H сигнала наблюдается на 2-минутном изображении, что соответствует наблюдаемому градиенту концентрации ксенона, а 6-минутное изображение обнаруживает, что усиление становится однородным при уменьшении градиента концентрации ксенона. Отрицательная область на 2-минутном изображении возможно вызвана расширением жидкой фазы при растворении ксенона. Изображения получены методом эхопланарной визуализации [Mansfield, P., J. Phys. С 10, L55 (1977)] при 24 мс. Градиент частотного кодирования составлял 3,15 Г/мм; градиентные импульсы фазового кодирования составляли 0,14 Г/мм длительностью 50 мкс. Размер изображения был 128х32, и изображение было нуль-заполненным до 256х256 при обработке данных. Сдвиг изображения является следствием неоднородности статического магнитного поля. Фиг. 13. Схематическая диаграмма последовательности импульсов, использованной для получения SPINOE спектров гетероядерного различия. Протонную намагниченность насыщают сначала посредством серии /2 импульсов и прикладывают магнитное поле с z-осевым градиентом между импульсами, чтобы расфазировать поперечные компоненты намагниченности для оптимального насыщения, импульсы помогают снизить рост протонного сигнала вследствие спин-решеточной релаксации, импульс также прикладывают к 129Хе резонансу одновременно с протонными импульсами так, чтобы намагниченность 129Хе инвертировалась при синхронизации с протонной намагниченностью. Эта синхронизация гарантирует, что SPINOE сигналы будут аккумулироваться в течение всего времени смешивания. Как протонные, так и ксеноновые импульсы представляют собой адиабатические импульсы BIR4 продолжительностью 1 мс. Фиг. 14А и 14Б. (А) Протонные спектры 0,1 М раствора п-нитротолуола в пердейтерированном бензоле при тепловом равновесии; (В) SPINOE протонные спектры 0,1 М раствора п-нитротолуола в пердейтерированном бензоле с положительной и отрицательной спиновой поляризацией 129Хе. Общее время смешивания составляет 2,1 с. Фиг. 15. Протонные спектры 0,05М раствора -циклодекстрина в пердейтерированном ДМСО (диметилсульфоксиде) при тепловом равновесии. Фиг. 16. SPINOE спектр -циклодекстрина в присутствии отрицательно поляризованного 129Хе. Фиг. 17. SPINOE спектр -циклодекстрина в присутствии положительно поляризованного 129Хе. Положительная поляризация 129Хе определена по тепловой равновесной поляризации. Общее время смешивания составляет 1 с, и для каждого спектра требовалось два сигнала. Фиг. 18. Схематическая диаграмма, показывающая процесс, использованный для визуализации in vivo гиперполяризованного 129Хе у крысы. Фиг.19. 129Хе спектр ксенона, представляющий собой среднее из сканирований с шестого по двенадцатое в серии 129Хе спектров, полученных на областях груди и живота после внутривенной инъекции раствора ксенон/INTRALIPID крысе. Фиг.20. Схематическая диаграмма эксперимента по 129Хе визуализации, показывающая синхронизацию и соотношение между импульсом возбуждения, импульсом выборки среза, первым и вторым градиентами и детектированием сигнала. Фиг. 21. Двухмерные 129Хе изображения, полученные через интервалы примерно в 7 секунд. Изображения отображают интенсивность 129Хе сигнала в верхней части задней лапы крысы. Фиг. 22. Представление одного из возможных аппаратов для осуществления смешивания гиперполяризованного благородного газа с текучей средой, как предложено согласно данному изобретению. Аппарат имеет четыре главных подкомпонента: сосуд для приема текучей среды 10, резервуар для благородного газа 20, входное отверстие для газа 40 и средства для удаления текучей среды из сосуда 60. Резервуар и сосуд соединены посредством запорного клапана 30. Подобным же образом резервуар и входное отверстие для газа соединены посредством запорного клапана 50. Подробное описание изобретения и относящиеся к нему воплощения Было обнаружено, что когда гиперполяризованный благородный газ (например, 129Хе) растворяют в жидких растворителях, наблюдается зависимое от времени отклонение, например, спиновой поляризации протонов от ее теплового равновесия. Вариация намагниченности, положительная или отрицательная в зависимости от знака спиновой поляризации благородного газа, представляет собой неожиданное проявление ядерного эффекта Оверхаузера (NOE), следствие поперечной релаксации между спинами протонов раствора и растворенного гиперполяризованного благородного газа. Магниторезонансные изображения, с разрешением во времени, обоих ядер, 1Н и растворенного благородного газа, в растворе показывают, что намагничивание протона избирательно возмущается в зонах, содержащих спин-поляризованный благородный газ. Таким образом, теперь установлено, что оптическую накачку и ядерный эффект Оверхаузера можно эффективно использовать для передачи повышенной поляризации от гиперполяризованного благородного газа различным молекулярным формам фазы раствора без необходимости радиочастотного облучения возмущенных спинов. Этот эффект назван индуцированным спиновой поляризацией эффектом Оверхаузера (SPINOE). Таким образом, SPINOE можно выгодно использовать для повышения чувствительности ЯМР и, в свою очередь, для лучшего определения первичной структуры, конформации и локальных динамических свойств молекул в жидком растворе. Таким образом, в одном из аспектов настоящего изобретения предложен способ анализа образца, содержащего ЯМР-активные ядра. Этот способ включает в себя: (а) контактирование образца с гиперполяризованным благородным газом; (б) сканирование образца с использованием спектроскопии ядерного магнитного резонанса, магниторезонансной визуализации или как спектроскопии ядерного магнитного резонанса, так и магниторезонансной визуализации; (в) детектирование ЯМР-активного ядра, причем ЯМР-активное ядро представляет собой ядро, иное чем благородный газ. Термин "контактирование" здесь использован взаимозаменяемо со следующим: объединение с, добавление к, растворение в, смешивание с, пропускание через, течение через, введение в, инъецирование в, проглатывание кем-то и т.п. Образец может быть приведен в контакт с гиперполяризованным благородным газом в жидкой, твердой или газообразной фазе. Далее, исследуемый образец может представлять собой жидкость, твердое вещество, комбинацию жидкости и твердого вещества или граничное состояние между твердым веществом и жидкостью. Перед контактированием образца с гиперполяризованным благородным газом может быть желательно заморозить благородный газ, чтобы сохранить гиперполяризацию. Кроме того, замораживание газа в магнитном поле может сохранить гиперполяризацию в течение значительно более длительного периода, чем просто замораживание газа. Для тех благородных газов, которые замораживаются при температурах, которых трудно достичь, в объеме данного изобретения эти газы охлаждают до температуры выше их точки затвердевания. Эта процедура охвачена термином "замораживание". Согласно тому, что описано выше, такое охлаждение может также происходить в присутствии магнитного поля. Сразу после контакта образца с благородным газом его можно сканировать, используя ЯМР, МРВ или их оба. Образец сканируют, чтобы детектировать воздействия гиперполяризованного газа на ЯМР-активные ядра в образце. Можно детектировать любое ЯМР-активное ядро, иное чем благородный газ. В значении, используемом здесь, термин "ЯМР-активные ядра" обозначает те ядра, которые обладают ненулевым спиновым квантовым числом. Такие ЯМР-активные ядра включают в себя 1H, 13С, 15N, 19F, 29Si, 31P и их комбинации, но не ограничены ими. В предпочтительных воплощениях детектируют множество ЯМР-активных ядер. Путем детектирования воздействий гиперполяризованного благородного газа на образец можно легко проанализировать структуру, химию, пространственное распределение и т.д. образца. В другом аспекте настоящего изобретения предложен способ анализа образца, который основан на том, что благородный газ можно объединить с текучей средой с образованием смеси, и, в свою очередь, эта смесь может быть доставлена в кровь или другую ткань, пока еще благородный газ обладает большой неравновесной ядерной спиновой поляризацией. Таким образом, этот способ включает в себя: (а) объединение гиперполяризованного благородного газа с текучей средой с образованием смеси; (б) контактирование образца со смесью; (в) сканирование образца, благородного газа или как образца, так и благородного газа путем спектроскопии ядерного магнитного резонанса, магниторезонансной визуализации или как спектроскопии ядерного магнитного резонанса, так и магниторезонансной визуализации. Термин "текучая среда", как он использован здесь, включает в себя, но не ограничен ими, воду, физиологический раствор, забуференый фосфатами физиологический раствор, водные буферные растворы, фторуглероды, растворы фторуглеродов в воде или в органических растворителях, водные эмульсии фторуглеродов, липиды, растворы липидов в органических растворителях, водные эмульсии липидов, органические растворители (например, ДМСО, этанол и т. д.). Термин "водный" охватывает растворы и эмульсии, приготовленные на 1H2O, 2H2O или 1Н2О. Термины "текучая среда", "физиологическая текучая среда" и "жидкий носитель" использованы здесь взаимозаменяемо. В предпочтительных воплощениях благородный газ выбран из группы, состоящей из ксенона, гелия, неона, криптона и смесей этих газов. В более предпочтительных воплощениях благородный газ представляет собой ксенон и в особенно предпочтительных воплощениях благородный газ представляет собой либо 129Хе, либо 129Хе. При этом способе желательно предварительно растворить гиперполяризованный благородный газ в текучей среде, которая может, например, продлить его время релаксации, когда гиперполяризованный ксенон находится в контакте с физиологическими жидкостями. Например, если гиперполяризованный газ инъецируют в кровь, желательно сначала предварительно растворить гиперполяризованный газ в липиде, растворе липида или липидной эмульсии с образованием смеси, которую в свою очередь инъецируют в кровь. Желательно также растворять гиперполяризованный благородный газ во фторуглероде, растворе фторуглерода или фторуглеродной эмульсии. Методы получения таких липидных и фторуглеродных препаратов будут очевидны специалистам. Более того, при желании можно использовать гиперполяризованный благородный газ, чтобы поляризовать текучую среду, которую в свою очередь используют в качестве контрастного агента или зонда. Например, при желании можно поляризовать воду путем объединения ее с гиперполяризованным благородным газом и после этого использовать поляризованную воду в качестве контрастного агента или зонда. При желании может оказаться полезным растворение благородного газа в жидкости перед гиперполяризацией благородного газа. В другом аспекте настоящего изобретения предложена фармацевтическая композиция, содержащая гиперполяризованный благородный газ, растворенный в физиологически совместимом жидком носителе. В предпочтительных воплощениях жидкий носитель совместим с введением гиперполяризованного газа путем подкожного, внутривенного, орального, внутрибрюшинного, внутримышечного или ингаляционного введения. В некоторых более предпочтительных воплощениях жидкий носитель является пригодным для введения в организм путем внутривенного введения. Как отмечено выше, гиперполяризованный благородный газ объединяют с текучей средой или жидким носителем, который является химически, биологически или материально совместимым с образцом, который подлежит анализу, или во всяком случае растворяет столько благородного газа, сколько возможно. Текучие среды, подходящие для использования в способах по настоящему изобретению, включают в себя, но не ограничены ими, воду, физиологический раствор, изотонические буферы, липиды, липидные эмульсии, органические растворители, фторуглеродные кровезаменители и другие безопасные в медицине внутривенные или пероральные среды, в которых время релаксации благородного газа является достаточно длительным. В предпочтительных воплощениях текучая среда, в которой растворяют благородный газ, представляет собой фторуглерод или водную эмульсию перфторуглерода. Предпочтительными являются фторуглероды, включающие в себя, но не ограничивающиеся ими, перфтордекалин, перфтор-1,3-диметилциклогексан, перфторгексан(ы), перфторгексилиодид, перфтор(метилциклогексан), перфтор(метилдекалин), п