Оптический логический элемент и способы его соответствующего изготовления и оптической адресации, а также его использование в оптическом логическом устройстве

Реферат

 

Использование: оптическое хранение данных и оптическая обработка данных. В мультистабильном оптическом логическом элементе со светочувствительным органическим материалом (1), который подвергается фотохимическому циклу с несколькими физическими состояниями посредством облучения светом и в котором физическое состояние приписывается логическому значению, которое может изменяться посредством оптической адресации элемента, причем элемент в исходном состоянии, перед тем как к нему происходит адресация, находится в метастабильном состоянии, созданном заранее. Мультистабильный оптический логический элемент выполнен как непосредственно адресуемый, посредством обеспечения по меньшей мере источника (2) хроматического света для оптической адресации и по меньшей мере одного светочувствительного оптического детектора (5) смежно со светочувствительным материалом. В способе приготовления светочувствительного материала (1) желательное исходное метастабильное состояние создается в фотохимическом цикле и элементу присваивается определенное логическое значение. В способе оптической адресации оптического логического элемента, шаги, соответственно, записи и сохранения, считывания, стирания и переключения содержат возбуждаемые переходы между состояниями в фотохимическом цикле, а также детектирование состояний. Используется в оптическом логическом устройстве для сохранения и обработки данных. Технический результат: обеспечение оптического логического элемента, который дает существенное упрощение операций адресации, в котором операции адресации реализованы в виде непосредственной адресации для записи, считывания, хранения и т.д. 5 с. и 29 з.п. ф-лы, 12 ил.

Изобретение касается мультистабильного оптического логического элемента и, более конкретно, непосредственно адресуемого мультистабильного оптического логического элемента, который является непосредственно адресуемым с помощью адресации, имеющей место для него с использованием оптических излучателей и детекторов непосредственно без вмешательства активных оптических средств, содержащий светочувствительный органический материал, который может подвергнуться фотохимическому циклу при облучении светом одной или более подходящих длин волн, в котором фотохимический цикл в дополнение к основному физическому состоянию содержит одно или более метастабильных физических состояний, в котором физическое состояние логического элемента изменяется в фотохимическом цикле посредством возбуждения перехода из одного метастабильного состояния в другое метастабильное состояние, или посредством возбуждения перехода из основного состояния и метастабильное состояние и наоборот, в котором физическому состоянию присваивается определенное логическое значение и в котором изменение физического состояния логического элемента вызывает изменение его логического значения и происходит посредством оптической адресации логического элемента для записи, считывания, сохранения, стирания и переключения присвоенного логического значения. Изобретение также касается способа изготовления светочувствительного органического материала, который может подвергнуться фотохимическому циклу облучением светом одной или более подходящих длин волн, в котором фотохимический цикл, в дополнение к основному физическому состоянию, содержит одно или более метастабильных физических состояний и в котором светочувствительный органический материал используется в мультистабильном логическом элементе в качестве переключаемого носителя или носителя данных, как заявлено выше.

Изобретение также содержит способ оптической адресации оптического логического элемента, как заявлено выше, со светочувствительным органическим материалом, приготовленным вышеупомянутым способом, так, что оптический логический элемент находится в исходном метастабильном физическом состоянии, и в котором оптическая адресация содержит шаги записи, считывания, сохранения, стирания и переключения логического значения, присвоенного оптическому логическому элементу.

Наконец, изобретение касается использования мультистабильного оптического логического элемента и способа оптической адресации мультистабильного оптического логического элемента.

Цифровые компьютеры сегодня по существу основаны на использовании полупроводниковой технологии, то есть на электронных схемах, которые запускаются и переключаются электрическими токами. В случае, если желательно особенно быстрое сохранение и выборка данных, имеются используемые для этой цели носители данных, которые также основаны на полупроводниковой технологии. Для массового хранения данных более чем десятилетия используются магнитные носители данных, которые имеют то преимущество, что сохраненные данные могут быть быстро стерты, а новые данные могут быть еще раз сохранены в этих носителях данных. Для запоминания больших объемов данных, которые должны быть сохранены только однажды, а затем после этого должны только считываться, в последние годы заметно возрастающее использование имеют оптические носители данных типа WORM (оптический диск для однократной записи и многократного считывания). Примерами таких носителей являются CD-ROM (постоянное запоминающее устройство на компакт-диске) и лазерный диск, которые не только используются для хранения баз данных и других по существу информационно-несущих файлов, но которые получили широкое распространение и популярность как носители данных для программных продуктов, используемых в аудиовизуальных средствах информации, например, для сохранения музыки и кино.

В более поздние годы также были предложения сохранять и обрабатывать данные посредством только оптических устройств. Оптическая обработка данных вообще имеет ряд преимуществ по сравнению с обработкой данных, основанной на обычной полупроводниковой технологии, например, такой, как кремниевая технология. Оптическая обработка данных может в любом случае теоретически увеличивать емкость, доступную для обработки и хранения данных, по меньшей мере на один порядок величины выше той, которая возможна с известной на сегодня полупроводниковой технологией. Дополнительно ожидается, что оптическая обработка данных должна дать повышенные защищенность от ошибок и скорость обработки, и, хотя это соответствует возможности быстрой обработки данных, вместе с тем устройства для оптического хранения и обработки данных могут быть сделаны существенно меньшими.

Чтобы реализовать потенциальную возможность, которую, по-видимому, подразумевают оптическое сохранение и оптическая обработка данных, необходимо найти носитель, который позволяет реализовать технологию подходящим способом. В частности, интерес был сконцентрирован на светочувствительных органических материалах, например, различных протеинах, и в этой связи должна быть вообще говоря сделана ссылка на статью Robert R. Birge, "Protein-Based Computers", Scientific American, March 1995, pp. 2-7. Примером светочувствительного органического материала такого типа служит бактериородопсин, который является биологически создаваемым белковым соединением и подробно обсуждается в вышеупомянутой статье Birge. Он может производиться в крупных масштабах посредством ферментации и имеет высокую химическую и физическую стабильность. Когда бактериородопсин освещается светом подходящей длины волны, он испытывает изменения, которые проявляют себя различными способами, включая модификацию оптических поглощающих свойств. Эти изменения, как описано в статье Birge, соединяются с переходом из основного состояния bR в разнообразные отчетливо выделенные энергетические состояния, обозначаемые как К, L, М и т.д., каждое из которых имеет время жизни, на которое можно повлиять тепловым и/или оптическим воздействием. Последовательное продвижение из основного состояния и далее через набор таких состояний впоследствии обозначается как фотохимический цикл бактериородопсина.

Возможность оптического хранения данных и оптической обработки данных в бактериородопсине была реализована несколько лет назад. Способ сохранения данных, в этой связи, должен был заключаться в том, чтобы перевести бактериородопсин из состояния bR, которое, например, может представлять логический 0, в промежуточное состояние в фотохимическом цикле, имеющее длительное время жизни; это промежуточное состояние может быть обозначено как метастабильное состояние и, например, представлять логическую 1. Когда натуральный бактериородопсин возбуждается светом, он, однако, проходит через полный фотохимический цикл и возвращается в основное состояние bR в течение миллисекунд, причем самым долгоживущим промежуточным состоянием является М состояние. Большие исследовательские усилия были направлены на то, чтобы изменить первоначальную молекулу BR таким образом, чтобы ее время жизни в М состоянии увеличилось, например, посредством экспериментов с мутантами и использованием химических модификаций. Они закончились тем, что время жизни М состояния было увеличено до нескольких секунд и даже минут, однако это все же слишком короткое время относительно того времени, которое считается необходимым для архивного хранения данных, а именно, многие годы или даже десятилетия. Как бы то ни было, М состояние исследовалось с целью использования для оптического хранения данных, при котором информация должна сохраняться и воспроизводиться в течение коротких интервалов времени, или при котором сохраненные данные постоянно должны подвергаться регенерации. Также возможно прерывать время пребывания в М состоянии посредством освещения синим светом, что эффективно соответствует операции удаления или стирания. Ограниченное время жизни в М состоянии, однако, является отрицательным фактором в отношении практического использования, поскольку последние подразумевали бы относительно сложные аппаратные средства, и все это дает ограниченную емкость. Другой недостаток базовых схем хранения данных на М состоянии бактериородопсина - временная задержка, которая является неотъемлемым фактором в фотохимическом цикле, соответствуя типичной задержке порядка 100 мкс от момента, когда основное состояние bR, например, возбуждается световым импульсом, и до того момента, когда достигается состояние М.

Также были сделаны попытки разработать подходящий носитель для оптического хранения данных, посредством такой модификации светочувствительного материала, при которой он подвергался бы необратимому изменению при освещении светом подходящей длины волны. Такие материалы могут сделать возможной простую операцию записи, сопровождаемую произвольным числом операций считывания, но данные не могут быть стерты и записаны еще раз. Следовательно, эти материалы способны реализовать оптическую память типов ROM (постоянное запоминающее устройство) и WROM (оптический диск для однократной записи и многократного считывания), но не "стираемого" типа.

Недавно были предложены, и это очевидно из вышеупомянутой статьи Birge, базовые схемы оптического хранения данных на ветвящихся процессах в фотохимическом цикле бактериородопсина. С начальной точкой в основном состоянии bR, короткий импульс желтого/зеленого света инициирует фотохимический цикл, после чего бактериородопсин спонтанно подвергается последовательности состояний в фотохимическом цикле и достигает О состояния приблизительно через 6 мс. Если бактериородопсин хранится в темноте, то он возвращается в состояние bR через несколько миллисекунд, причем точный временной масштаб зависит от температуры. Однако, если бактериородопсин освещается красным светом, когда он находится в О состоянии, то он перейдет в Р состояние, из которого он спонтанно переходит в Q состояние в течение нескольких минут. Состояние Q является стабильным в течение длительных периодов времени, даже нескольких лет, если бактериородопсин хранится в темноте. Однако, при облучении синим светом, он возвратится к состоянию bR.

Должно быть сразу очевидно, что этот ветвящийся процесс в фотохимическом цикле бактериородопсина доведет до совершенства возможности операций записи, считывания и стирания в накопителях на основе бактериородопсина, которые могут удерживать сохраненную информацию в течение длительных периодов времени. Опубликованное международное патентное описание WO 96/21228 (автор Birge) с названием "Branched photocycle optical memory device" раскрывает, например, объемную оптическую память, которая хранит информацию с высокой плотностью в трех измерениях, посредством селективного активизирования фотохимической ветвящейся реакции из краткосрочного теплового промежуточного состояния в первичном фотохимическом цикле в светочувствительном носителе данных на основе протеина. В этой связи используется так называемый лазер "выборки страницы", который активизирует выбранный плоский слой или страницу носителя данных на некоторой длине волны света, а также используются лазеры данных, которые излучают выбранные лучи данных на другой длине волны света, и которые являются ортогональными к выбранному слою или странице. В предпочтительном варианте воплощения, носитель раскрывается как бактериородопсин, а луч выборки страницы инициирует фотохимический цикл из основного состояния, или состояния покоя bR, в промежуточное состояние О, в котором луч данных взаимодействует с промежуточным состоянием О таким образом, чтобы сформировать ветвящиеся состояния Р и Q. Лучи данных не взаимодействуют до большой степени с состоянием bR, или с состояниями Р или Q. Различные операции считывания используют одну и ту же длину волны для выборки страницы и данных.

Если бактериородопсин используется в устройстве согласно патенту WO 96/21228, то фотохимический цикл инициируется в основном состоянии bR посредством короткого желтого/зеленого светового импульса; после чего бактериородопсин пройдет ряд состояний в фотохимическом цикле и достигнет О состояния приблизительно через 6 мс. Если теперь бактериородопсин больше не освещается, то состояние О возвратится в основное состояние bR через несколько миллисекунд, причем точный временной масштаб зависит от температуры. Однако, если бактериородопсин в состоянии О освещается красным светом, то он ответвится в состояние Q, откуда он спонтанно переходит через состояние Q в течение нескольких минут. Если бактериородопсин не освещается, то состояние Q устойчиво в течение длительных периодов времени, возможно многих лет. Однако, если бактериородопсин освещается синим светом, то он переходит обратно в основное состояние bR. В способе для осуществления хранения данных согласно патенту WO 96/21228, объемный элемент в пределах, например, тела кубической формы, которое содержит бактериородопсин, выбирается посредством специально сформированного освещения объемного элемента желтым или зеленым светом. Следовательно, молекулы бактериородопсина в освещенном объемном элементе проходят через фотохимический цикл, и перейдут в состояние Р, если они после этого освещаются красным светом. Обычно свет фокусируется таким образом, что создается подобный пластинке тонкий световой луч, и этим определяется сечение в форме слоя или страницы данных бактериородопсина в объеме. Это сечение в форме слоя дает слой с позициями памяти, в которых страница данных может быть записана и считана раздельно от бактериородопсина в объемных элементах, которые не подвергались действию желтого или зеленого света выборки страницы. Таким образом, становится возможным хранить данные в трехмерном объеме бактериородопсина.

Однако, вышеупомянутый способ не просто осуществить в практических устройствах хранения данных, он также имеет некоторые существенные слабости. Для того, чтобы достичь высокой объемной плотности данных, свет выборки страницы должен быть очень интенсивным и равномерным в пределах очень четко определенной пространственной области, с резкими границами интенсивности. Для того, чтобы сформировать луч, подразумевается использование лазерного луча и относительно сложной оптики. Во-вторых, необходимо очень точно управлять последовательностью освещения, которая содержит использование трех отдельных длин волн. Оптимальная синхронизация последовательности является температурно-зависимой. В-третьих, скорости считывания и записи ограничиваются постоянными времени фотохимического цикла, которые приводят к временам доступа в диапазоне миллисекунд. В-четвертых, считывание сохраненных данных будет снижать их контраст, так, что становится необходимой регенерация после некоторого числа, например 1000, операций считывания.

Из норвежского патентного описания 980407, вытекающего из патента РCT/ 97/00154, который получает приоритет из норвежского патентного описания 962475, принадлежащего настоящему заявителю и тем самым включенного здесь ссылкой, известен оптический логический элемент, в частности, метастабильный логический элемент с многими состояниями, содержащий оптический запоминающий материал, который под влиянием электромагнитного или электрического поля или приложенной энергии может переходить из одного физического или химического состояния в другое физическое или химическое состояние. Запоминающий материал в этом оптическом логическом элементе обеспечивается в виде первого слоя, а также обеспечивается смежный к этому слою активатор, который подводит энергию в запоминающий материал. Активатор может быть выполнен в виде второго слоя, смежного к первому слою, или обеспечиваться интегрированным в первом слое. Оптический детектор, который детектирует состояние запоминающего материала, обеспечивается, например, в виде третьего слоя, смежного к первому слою, таким образом, что оптический логический элемент образует один целый компонент из всех трех интегрированных слоев. Оптический логический элемент может функционировать как отдельная ячейка хранения данных, так и как бистабильный оптический переключатель. Активатор, который вызывает изменение состояния в запоминающем материале, формируется посредством одного или более, прямого или косвенного средства испускания излучения, обращение и адресация к которому может осуществляться электрически. Предпочтительно, средством испускания излучения является светоизлучающий диод и, в частности, полимерный диод. Дополнительно, средством испускания излучения также может быть полупроводниковый лазер. Способ создания оптического логического элемента раскрывается в норвежском патентном описании 980407, в котором элемент был выполнен непосредственно-адресуемым, то есть, активация запоминающего материала и детектирование его состояния изменения имеет место в пределах самого оптического логического элемента и смежно с запоминающим материалом, так, что нет необходимости использования сложной внешней оптики для того, чтобы вводить свет в запоминающий материал. Оптические логические элементы, согласно этому патентному описанию, могут дополнительно быть объединены в планарных структурах в интегральное оптическое логическое устройство, и эти планарные структуры могут снова быть сложены таким образом, что обеспечивается истинно объемное оптическое логическое устройство, содержащее большое число оптических логических элементов, которые все могут быть непосредственно адресованы по отдельности. Реализация оптического логического элемента с непосредственной адресацией имеет, как следствие, то, что они могут быть выполнены с размерами, которые гораздо меньше, чем, например, размеры ячеек хранения, выполненных в известной полупроводниковой технологии, или размеры оптических ячеек хранения, которые адресуются посредством света, поступающего снаружи по оптически активным структурам, таким как преломляющие и дифракционные элементы, для которых подразумевается, что размеры ячейки хранения, то есть оптического логического элемента, будут ограничиваться длиной волны используемого света.

Как упомянуто выше, согласно норвежскому патентному описанию 980407, для непосредственной адресации могут использоваться испускающие излучение средства в виде светоизлучающих полимерных диодов. Такие светоизлучающие полимерные диоды раскрыты в опубликованном международном патентном описании WO 95/31515 под названием: "Colour source and method for its fabrication", права на которое были переданы настоящему заявителю и которое тем самым включено ссылкой. Такие светоизлучающие полимерные диоды могут излучать свет на нескольких длинах волн, посредством изменения напряжения возбуждения диодов. Диоды могут излучать свет на различных длинах волн, например, в основном красный - при низком напряжении возбуждения и синий - при более высоком напряжении возбуждения, в то время как промежуточные напряжения могут давать пик излучения как в красной, так и в синей области спектра с изменяющимися интенсивностями. Диоды изготовили в виде тонкой полимерной пленки, с толщиной приблизительно 10 нм и с протяженностью отдельных диодов незначительно большей. Интегрированные в качестве средства испускания излучения в оптическом логическом элементе, они, следовательно, будут совместимы с оптическими логическими элементами соответствующих размеров.

Теперь, основываясь на вышеупомянутом уровне предшествующей техники, первая задача настоящего изобретения заключается в том, чтобы обеспечить оптический логический элемент, который дает существенное упрощение операций адресации.

Вторая задача настоящего изобретения заключается в том, чтобы обеспечить оптический логический элемент, в котором операции адресации могут быть реализованы в виде непосредственной адресации для записи, считывания, хранения, переключения или стирания информации, сохраненной в оптическом логическом элементе.

Третья задача настоящего изобретения заключается в том, что информационно несущее состояние оптического логического состояния элемента будет неизменным в течение очень длительного периода времени, так что данные могут быть сохранены в течение нескольких лет без потери и без необходимости какой-либо регенерации.

Четвертая задача настоящего изобретения заключается в том, что, в особенности операции записи, считывания и адресации будут происходить очень быстро и без того, чтобы на них существенно влияли термически управляемые постоянные времени в фотохимическом цикле используемого светочувствительного материала.

Пятая задача настоящего изобретения заключается в том, что считывание данных должно происходить неразрушающим способом, т.е. регенерация состояния, которое представляет выходную информацию в оптическом логическом элементе, не является необходимой.

Шестая задача настоящего изобретения заключается в том, что данные должны записываться и считываться в оптическом логическом элементе в очень компактных и дешевых устройствах записи/считывания, которые потребляют небольшую мощность.

Седьмая задача настоящего изобретения заключается в том, что оптический логический элемент должен быть миниатюризован таким образом, что может быть достигнута очень высокая пространственная, а также объемная плотность хранения данных в устройствах хранения данных, основанных на использовании таких оптических логических элементов, и в котором адресация должна происходить посредством простой непосредственной процедуры.

Дополнительной задачей настоящего изобретения является реализация логических операций в этих пленках из светочувствительного органического материала, которые могут подвергаться фотохимическому циклу, например, из бактериородопсина и материалов, подобных бактериородопсину.

Наконец, задача настоящего изобретения также состоит в том, чтобы обеспечить оптический логический элемент, который является энергонезависимым, который может быть объединен в оптическое логическое устройство с возможностью параллельной адресации с высокой емкостью, которое может работать при циклическом функционировании без проблем, и кроме того, может быть изготовлено с очень низкой стоимостью.

Эти вышеупомянутые и другие задачи и преимущества реализуются согласно изобретению с помощью оптического логического элемента, который отличается тем, что логический элемент в исходном состоянии, а также перед тем как к нему происходит адресация, находится в метастабильном состоянии, созданном заранее, со значительной долей молекулярной населенности упомянутого органического материала, находящейся в упомянутом метастабильном состоянии, или с оптическим логическим элементом, который является непосредственно адресуемым и, согласно изобретению, кроме этого, отличающийся тем, что логический элемент в исходном состоянии, а также перед тем как к нему происходит адресация, находится в метастабильном состоянии, созданном заранее, со значительной долей молекулярной населенности упомянутого органического материала, находящейся в упомянутом метастабильном состоянии, что светочувствительный органический материал обеспечивается в структуре, в значительной степени подобной пленке, или в виде структуры, подобной пленке, и что в смежной или в этой же структуре для оптической адресации светочувствительного органического материала обеспечивается по меньшей мере источник хроматического света, и по меньшей мере один цветочувствительный оптический детектор для детектирования физического/логического состояния светочувствительного органического материала.

Предпочтительно, светочувствительным материалом согласно изобретению являются молекулы протеина или подобные протеину соединения, и даже еще предпочтительнее, бактериородопсин или относящееся к нему соединение.

Далее, согласно изобретению, исходным метастабильным состоянием предпочтительно является М состояние бактериородопсина или Q состояние бактериородопсина. Согласно изобретению, также предпочтительно, чтобы источник хроматического света являлся источником света с перестраиваемой длиной волны, и даже более предпочтительно, чтобы источником освещения с перестраиваемой длиной волны являлся светоизлучающий полимерный диод, причем перестройка длины волны излучения осуществляется посредством управления напряжением возбуждения диода. Согласно изобретению, цветочувствительным оптическим детектором может предпочтительно быть мультиспектральный оптический детектор. Также предпочтительно, когда, согласно изобретению, цветочувствительным оптическим детектором является светопоглощающий полимерный диод. Если обеспечивается более чем один цветочувствительный оптический детектор, предпочтительно, чтобы детекторы настраивались на длины волн или спектральные полосы, которые соответственно согласуются с длинами волн возбуждения или с полосами поглощения основного состояния, а также с одним или более метастабильным состоянием фотохимического цикла.

Способ изготовления светочувствительного органического материала, согласно настоящему изобретению отличается тем, что, посредством облучения светочувствительного органического материала в основном состоянии светом со спектральной полосой мощности или длиной волны, которая инициирует фотохимический цикл и создает желательное исходное метастабильное состояние в фотохимическом цикле, посредством упомянутого облучения, происходящего в течение достаточно длительного времени для того, чтобы заставить значительную фракцию молекулярной населенности органического материала перейти в упомянутое исходное метастабильное состояние, причем упомянутое исходное метастабильное состояние присваивается определенному логическому значению логического элемента.

Если светочувствительным органическим материалом является бактериородопсин, то, согласно изобретению, М состояние бактериородопсина или Q состояние бактериородопсина предпочтительно создаются в качестве желательного исходного метастабильного состояния.

Способ оптической адресации оптического логического элемента согласно настоящему изобретению, отличается тем, что включает в себя: шаг записи и сохранения, содержащий возбуждение перехода из исходного метастабильного состояния в другое метастабильное состояние или в основное состояние, если логическое значение, присвоенное в предыдущем состоянии, должно быть изменено на логическое значение, присвоенное другому метастабильному состоянию или основному состоянию, а в противоположном случае - сохранение неизменным исходного метастабильного состояния; шаг считывания, содержащий детектирование фактического состояния оптического логического элемента для того, чтобы определить присвоенное логическое значение; шаг стирания, содержащий возбуждение перехода из основного состояния, если оптический логический элемент находится в этом состоянии, еще раз инициируя фотохимический цикл, который переключает оптический логический элемент обратно в метастабильное состояние, или, если оптический логический элемент уже находится в исходном метастабильном состоянии, сохранение последнего неизменным, или возбуждение перехода из другого метастабильного состояния, если оптический логический элемент находится в этом состоянии, и обратно в исходное метастабильное состояние, либо сначала обратно в основное состояние, для того, чтобы затем инициировать фотохимический цикл, который переключает оптический логический элемент обратно в исходное метастабильное состояние, либо, без прохождения через основное состояние, непосредственно к исходному метастабильному состоянию; и шаг переключения, содержащий возбуждение перехода из текущего состояния в другое состояние с одновременным или немедленным последующим детектированием другого состояния.

Согласно изобретению, мультистабильный оптический логический элемент и способ для его адресации используется в оптическом логическом устройстве для сохранения и обработки данных.

Дополнительные признаки и преимущества различных задач настоящего изобретения будут очевидны из остальных зависимых пунктов формулы изобретения.

В дальнейшем изобретение поясняется описанием конкретных вариантов его воплощения со ссылками на сопровождающие чертежи, на которых: фиг. 1 а, б, в схематично изображает фотохимический цикл светочувствительного органического материала, в данном случае - бактериородопсина; фиг. 2 изображает электронные спектры поглощения бактериородопсина для различных состояний в фотохимическом цикле; фиг.3 изображает непосредственно адресуемый оптический логический элемент согласно настоящему изобретению; фиг. 4 а, б, в изображают электролюминесцентные спектры светоизлучающего полимерного диода, который используется в настоящем изобретении; фиг. 5 изображает светоизлучающие домены в светоизлучающем полимерном диоде, который используется в настоящем изобретении; фиг. 6 схематично изображает приготовление светочувствительного органического материала и фотохимический цикл, который создает желательное метастабильное состояние; фиг. 7 схематично изображает приготовление светочувствительного органического материала и фотохимический цикл, который создает другое желательное метастабильное состояние; фиг.8 схематично изображает первый вариант воплощения способа оптической адресации согласно изобретению, в котором светочувствительным органическим материалом является бактериородопсин; фиг.8а изображает шаг записи и сохранения; фиг.8б - шаг считывания; фиг.8в - шаг стирания; фиг.9 схематично изображает другой вариант воплощения способа оптической адресации, в котором светочувствительным органическим материалом является бактериородопсин; фиг.9а изображает шаг записи и сохранения; фиг.9б - шаг считывания; фиг.9в - шаг стирания; фиг.10 схематично изображает различные варианты воплощения шага переключения в соответствии с настоящим изобретением, в котором светочувствительным органическим материалом является бактериородопсин; фиг.10а изображает операцию первого переключения; фиг.10б - операцию второго переключения; фиг.10в - операцию третьего переключения; фиг.10г - операцию четвертого переключения; фиг.11 изображает предпочтительный вариант воплощения оптического логического элемента, в котором применяется настоящее изобретение; фиг. 12 а, б изображают другие предпочтительные варианты воплощения оптического логического устройства, в котором применяются признаки настоящего изобретения.

Известно несколько светочувствительных органических материалов, которые все имеют свойство, состоящее в том, что они могут подвергаться фотохимическому циклу посредством облучения светом различных длин волн. Фотохромные органические материалы, основанные на фульгиде или на производных фульгида, например, подвергаются фотохимическому циклу перехода из не обесцвеченного к окрашенному состоянию и обратно посредством облучения светом на длинах волн поглощения для обесцвеченного и окрашенного состояний, соответственно (Kirkby и соавторы. Optical nonlinearity and bistability in photochromic thin films. Optics Communications, 56,4, pp. 288-292 (1985)).

Для голографической регистрации данных было предложено использовать фотохромные системы красителей, основанные на полимерах, в которые легированы фотохромные красители спирооксазина или спиропирана, которые образуют стабильные и бесцветные формы посредством фотохимических переходов, генерируемых с помощью света на соответствующей длине волны возбуждения (Weiss и соавторы. Holographic recording and all-opticai modulation in photochromic polymers. Optics Letters 18,3, pp.1089-1091 (1993)).

Частным случаем, однако, является оптический логический элемент согласно изобретению, предназначенный для использования с молекулами протеина или соединения, подобного протеину, и в качестве таких примеров может быть упомянут хлорофилловый протеиновый комплекс и ретинальный протеиновый комплекс (Bazhenor и соавторы. Biopolymers for Real- Time Optical Processing, in Optical Processing and Computing, pp.103-144. Academic Press (1989)).

Бактериородопсин принадлежит к ретинальному протеиновому комплексу и используется в виде мембран в полимерных матрицах, в качестве мембран на стеклянной подложке или в качестве низкотемпературных мембран. При температуре жидкого азота тепловые реакции фотохимического цикла подавляются, и фотохимический цикл содержит только основное состояние bR и промежуточное состояние К, которые являются устойчивыми при этой температуре. Фотохимическая постоянная времени для переходов из состояния bR в состояние К составляет приблизительно 10 пкс и посредством облучения красным светом (длина волны 600 нм) бактериородопсин возвращается в основное состояние bR. При температуре - 50oС этот фотохимический цикл прервется состоянием М, а из него молекулы бактериородопсина могут возвратиться в состояние bR посредством облучения светом на длине волны 410 нм (там же, стр. 120).

Согласно настоящему изобретению, особенно предпочтительно, что протеином является бактериородопсин или относящееся к нему соединение. Бактериородопсин и его мутанты или химические модификации представляют собой соединения, которые в настоящее время являются наиболее полно исследованными с целью оптического хранения данных. Следовательно, дальнейшее обсуждение вариантов воплощений оптического логического элемента и способов согласно изобретению будет направлено особенно на варианты воплощений, которые основаны на бактериородопсине или его мутантах и химических модификациях, а также на фотохимический цикл бактериородопсина.

Бактериородопсин представляет собой светособирающий протеин в фиолетово-окрашенной мембране микроорганизма, который формально известен как Halobacterium salinarium, обычно как Наlobacterium halobium. Бактериородопсин имеет молекулярный вес порядка 26000. Halobacterium salinarium растет в соленых болотах, в которых концентрация солей приблизительно в шесть раз выше, чем в морской воде. Фиолетово-окрашенная мембрана образуется бактериями, когда концентрация кислорода становится слишком низкой для того, чтобы поддерживать дыхание. Посредством поглощения света протеин выделяет протон над мембраной и создает химический осмотический потенциал, который служит как альтернативный источник энергии. Тот факт, что бактериородопсин должен выживать во враждебно относящейся к нему окружающей среде, такой, как соленое болото, в котором тем