Механические и тепловые усовершенствования в никельметаллгидридных батареях, модулях батарей и пакетах батарей
Реферат
Раскрыты механически и термически усовершенствованные перезаряжаемые батареи, модули и охлаждаемые текучей средой системы батарей. Батарея является призматической по форме с оптимизированным отношением толщины к ширине и к высоте, которое обеспечивает батарею сбалансированными оптимальными свойствами по сравнению с призматическими батареями, испытывающими недостаток этого оптимизированного отношения. Оптимизированные толщина, ширина и высота обеспечивают максимальную емкость и выходную мощность, в то же время удаляя вредные побочные эффекты. Корпус батареи допускает расширение в одном направлении, которое легко компенсируют, прилагая внешнее механическое сжатие в этом направлении. В модуле 32 батареи связаны внутри средства связывания/сжатия под действием внешнего механического сжатия, которое оптимизировано, чтобы сбалансировать давление, направленное наружу из-за расширения, и обеспечить дополнительное направленное внутрь сжатие, чтобы уменьшить расстояние между положительными и отрицательными электродами, посредством этого увеличивая общую мощность батареи. Охлаждаемый текучей средой пакет батарей 39 включает в себя корпус 40 пакета батарей, имеющий входы 41 и выходы 42 для хладагента. Модули батареи расположены внутри корпуса так, что они удалены от стенок корпуса и друг от друга, чтобы сформировать каналы 43 для тока хладагента вдоль по меньшей мере одной поверхности связанных батарей и по меньшей мере одно средство 44 транспортировки хладагента. Изобретение позволяет создать легкую, простую и недорогую систему батарей с охлаждением. 4 c. и 21 з.п.ф-лы, 29 ил., 3 табл.
Настоящая заявка является частью продолжения заявки на патент США 08/140933, поданной 25 октября 1993.
Область изобретения Настоящее изобретение в целом относится к усовершенствованиям батарей на основе гидрида металла (металлгидридных батарей), изготовленных из них модулей батарей и пакетов батарей, изготовленных из модулей. Более конкретно, настоящее изобретение относится к механическим и тепловым усовершенствованиям в конструкции батареи, конструкции модуля батареи и конструкции пакета батарей. Предшествующий уровень техники Перезаряжаемые призматические батареи используются в ряде промышленных и коммерческих применений, таких как грузоподъемниках, тележках для гольфа, источниках бесперебойного питания и электромобилях. Перезаряжаемые свинцовые батареи - в настоящее время наиболее широко используемый тип батарей. Батареи свинцовых аккумуляторов являются полезным источником питания для стартеров двигателей внутреннего сгорания. Однако, их низкая плотность энергии, приблизительно 30 Вчас/кг, и их неспособность адекватно отводить теплоту делает их непрактичным источником питания для электромобиля. Электромобиль, использующий батареи свинцовых аккумуляторов, имеет малую дальность поездки перед перезарядкой, требует приблизительно 6-12 часов для перезарядки и содержит токсичные вещества. Кроме того, электромобили, использующие батареи свинцовых аккумуляторов, имеют медленный разгон, недостаточный допуск при глубоком разряде, а срок службы батареи составляет только приблизительно 32200 км. Никельметаллгидридные батареи (Ni-MH батареи) имеют намного лучшее качество по сравнению со свинцовыми батареями, и Ni-MH батареи - наиболее перспективный тип батареи, доступный для электромобилей. Например, Ni-MH батареи, такие как описаны в одновременно рассматриваемой заявке на патент США 07/934976 авторов Овшинского и Феценко (Ovshinsky и Fetcenko), раскрытие которой включено в качестве ссылки, имеют намного лучшую плотность энергии, чем батареи свинцовых аккумуляторов, могут снабжать энергией электромобиль свыше приблизительно 400 км перед тем, как потребуют перезарядки, могут быть перезаряжены в течение 15 минут и не содержат никаких токсичных веществ. Электромобили, использующие Ni-MH батареи, могут иметь исключительный разгон, а срок службы батареи больше, чем приблизительно 161000 км. В прошлом проводилось обширное исследование по улучшению электрохимических аспектов мощности и емкости заряда Ni-MH батарей, которое описано подробно в патентах США 5096667 и 5104617 и заявках на патент США 07/746015 и 07/934976. Содержание всех эти ссылок специально включено в качестве ссылки. Первоначально Овшинский и его группа сосредоточились на сплавах на основе гидридов металла, которые формируют отрицательный электрод. В результате их усилий они были способны значительно увеличить обратимые характеристики хранения водорода, необходимые для эффективных и экономичных применений батареи, и получать батареи, способные аккумулировать энергию с высокой степенью плотности, с эффективной обратимостью, высокой электрической эффективностью, эффективным объемным хранением водорода без структурных изменений или отравления, продолжительным сроком службы и повторяемым глубоким разрядом. Усовершенствованные характеристики этих овониковых ("Ovonic") сплавов, как они теперь называются, явились результатом выдерживания локальной химической упорядоченности и, следовательно, локальной структурной упорядоченности посредством объединения выбранных элементов модификатора в первичную матрицу. Неупорядоченные металлгидридные сплавы имеют, по существу, увеличенную плотность каталитически активных участков и участков хранения по сравнению с однофазными или многофазными кристаллическими веществами. Эти дополнительные участки являются ответственными за улучшенную эффективность электрохимического заряда/разряда и увеличение емкости хранения электрической энергии. Характер и количество участков хранения могут быть даже спроектированы независимо от каталитически активных участков. Более конкретно, эти сплавы изготовлены так, чтобы допустить объемное хранение диссоциированных атомов водорода при прочности связи в пределах обратимости, подходящее для использования во вторичных применениях батареи. Некоторые чрезвычайно эффективные электрохимические вещества аккумулирования водорода были получены на основании неупорядоченных веществ, описанных выше. Ими являются активные вещества типа Ti-V-Zr-Ni, такие как раскрытые в патенте США 4551400 ("патент '400"), раскрытие которого включено в качестве ссылки. Эти вещества обратимо образуют гидриды, чтобы аккумулировать водород. Все вещества, используемые в патенте '400, используют общую композицию Ti-V-Ni, где присутствуют по меньшей мере Ti, V и Ni и могут быть модифицированы с помощью Cr, Zr и Al. Вещества патента '400 - многофазные вещества, которые могут содержать, но не ограничиваться ими, одну или большее количество фаз с кристаллическими структурами типа С14 и С15. Другие Ti-V-Zr-Ni сплавы также используются для перезаряжаемых отрицательных электродов с аккумулированием водорода. Одним таким семейством веществ является то, что описано в патенте США 4728586 ("патент '586"), раскрытие которого включено в качестве ссылки. Патент '586 описывает специфический подкласс этих Ti-V-Ni-Zr сплавов, содержащий Ti, V, Zr, Ni и пятую составляющую, Gr. Патент '586 упоминает возможность добавок и модификаторов помимо Ti, V, Zr, Ni и Сr составляющих сплавов и вообще описывает специфические добавки и модификаторы количества и взаимодействия этих модификаторов, и определенные выгоды, которые могут ожидаться от них. В отличие от овониковых сплавов, описанных выше, известные ранее сплавы обычно рассматривались как "упорядоченные" вещества, которые имели отличные химизм, микроструктуру и электрохимические характеристики. Эффективность известных упорядоченных веществ была недостаточна, но в начале 1980-х годов, поскольку степень модификации увеличилась (т.е. когда увеличились количество и доза элементарных модификаторов), их эффективность начала значительно увеличиваться. Это происходит как из-за неупорядоченности, вносимой модификатором, так и из-за их электрических и химических свойств. Это развитие сплавов от определенного класса упорядоченных веществ до современных многокомпонентных, многофазных "неупорядоченных" сплавов показано в следующих патентах: (i) патент США 3874928; (ii) патент США 4214043; (iii) патент США 4107395; (iv) патент США 4107405; (v) патент США 4112199; (vi) патент США 4125688 (vii); патент США 4214043; (viii) патент США 4216274; (ix) патент США 4487817; (х) патент США 4605603; (xii) - патент США 4696873 и (xiii) патент США 4699856. (Эти ссылки пространно описаны в патенте США 5096667, и это описание специально включено в качестве ссылки). Проще говоря, установлено, что во всех металлгидридных сплавах при увеличении степени модификации роль первоначально упорядоченного основного сплава имеет меньшую важность по сравнению со свойствами и неупорядоченностью, присущим специфическим модификаторам. Кроме того, анализ многокомпонентных сплавов, в настоящее время доступных на рынке и полученных многими производителями, указывает, что эти сплавы модифицируются, следуя указаниям, установленным для систем на овониковых сплавах. Таким образом, как определено выше, все высокомодифицированные сплавы являются неупорядоченными веществами, отличающимися наличием многих компонентов и множеством фаз, то есть овониковыми сплавами. Ясно, что введение способов овоникового сплавления сделало значительные усовершенствования в активных электрохимических аспектах Ni-MH батарей. Однако, следует отметить, что до недавнего времени механическими и тепловыми аспектами эффективности Ni-MH батарей пренебрегали. Например, в электромобилях вес батарей является значительным фактором, так как вес батареи является наибольшей составляющей веса средства передвижения. По этой причине уменьшению веса отдельных батарей уделяют значительное внимание при проектировании батарей для средств передвижения, приводимых в действие от электричества. В дополнение к уменьшению веса батарей вес модулей батареи должен быть уменьшен, все еще обеспечивая необходимые механические требования модуля (то есть легкость транспортировки, прочность и т.д.). Также, когда эти модули батарей включены в пакетные системы батарей (такие как для использования в электромобилях) компоненты пакета батарей должны быть облегчены насколько это возможно. Следует особо отметить, что применения в электромобилях предъявляют критическое требование для теплового управления. Это имеет место потому, что отдельные ячейки (элементы) связываются вместе в непосредственной близости, и много элементов электрически и термически соединяются вместе. Поэтому, так как существует свойственная тенденция выделять значительное количество теплоты во время заряда и разряда, работоспособную конструкцию батареи для электромобилей оценивают тем, достаточно ли или нет осуществляется управление выделенной теплотой. Источников теплоты прежде всего три. Первый - тепло окружающей среды из-за работы средства передвижения в жарком климате. Второй - резистизный или I2R, нагрев при заряде и разряде, где I представляет собой ток, текущий в батарею или из нее, и R - сопротивление батареи. Третий - огромное количество теплоты образуется во время перезарядки из-за рекомбинации газа. В то время как вышеупомянутые параметры являются обычно общими для всех электрических систем батарей, они особенно важны для никельметаллгидридных систем батарей. Это имеет место из-за того, что Ni-MH имеет такую высокую удельную энергию, и токи заряда и разряда также являются большими. Например, чтобы зарядить батарею свинцовых аккумуляторов в течение одного часа, может быть использован ток 35 А, в то время как перезарядка Ni-MH батареи может использовать 100 А для такой же одночасовой перезарядки. Во-вторых, так как Ni-МН имеет исключительную плотность энергии (то есть энергия аккумулируется очень компактно), тепловое рассеивание более трудно, чем в батареях свинцовых аккумуляторов. Это имеет место из-за того, что отношение площади поверхности к объему намного меньше, чем в батареях свинцовых аккумуляторов, что означает, что в то время как образуемая теплота в 2,5 раза больше для Ni-MH батарей, чем для свинцовых аккумуляторов, поверхность рассеивания тепла уменьшена. Следующий иллюстративный пример полезен в понимании проблем управления теплом, с которыми сталкиваются при проектировании Ni-MH пакетов батарей для электромобилей. В патенте США 5378555, выданном "Дженерал Моторс" (включенном в качестве ссылки), описан пакет батарей электромобиля, использующего батареи свинцовых аккумуляторов. Пакетная система батарей, использующая батареи свинцовых аккумуляторов, имеет емкость приблизительно 13 кВтчас, весит приблизительно 363 кг и имеет дальность езды средства передвижения приблизительно 145 км. Заменяя пакет батарей свинцовых аккумуляторов пакетом овониковых батарей того же размера, емкость увеличивается до 35 кВтчас, и дальность езды средства передвижения увеличивается приблизительно до 400 км. Одно свойство этого сравнения заключается в том, что за 15 минут перезарядки энергия, поданная в Ni-MH пакет батарей, в 2,7 раза больше, чем поданная в пакет батарей свинцовых аккумуляторов с его соразмерно дополнительной теплотой. Однако, ситуация несколько отлична во время разряда. Чтобы питать энергией средство передвижения на скоростной дороге при постоянной скорости, ток, текущий через батарею, является таким же, как для Ni-MH батареи или батареи свинцовых аккумуляторов (или любого другого источника питания для этой цели). По существу, электродвигатель, который приводит в действие средство передвижения, "не знает" или "не заботится", откуда он получает энергию, или какая батарея подает питание. Различие между нагревом Ni-MH батареи и батареи свинцовых аккумуляторов при разряде заключается в длительности разряда. То есть, так как Ni-MН батарея будет приводить в действие средство передвижения в 2,7 раза дольше, чем свинцовая, ей нужно намного больше времени прежде, чем она имеет возможность "остыть". Далее, в то время как теплота, порождаемая во время заряда и разряда Ni-MH батареи, обычно не является проблемой в малых бытовых батареях или даже в больших батареях, когда они используются по отдельности в течение ограниченного периода времени, большие батареи, которые служат в качестве непрерывного источника питания, особенно, когда их более одной используют последовательно или параллельно, например в спутнике или электромобиле, выделяют достаточное количество теплоты при зарядке и разряде, чтобы воздействовать на предельную эффективность модулей батареи или пакетной системы батарей. Таким образом, существует потребность в батарее, модуле батарей и конструкции пакетной системы батарей, которая уменьшает ее общий вес и обладает необходимым управлением теплотой, необходимым для успешной работы в электромобилях без уменьшения ее емкости хранения энергии или выходной мощности, увеличивает надежность батарей и уменьшает стоимость. Недостатки предшествующего уровня техники Тепловое управление системы батарей электромобиля, использующее технологию высокоэнергетической батареи, никогда прежде не демонстрировалось. Некоторые устройства, такие как Na-S, которые функционируют при повышенных температурах, сильно изолированы, чтобы поддержать специфическую рабочую температуру. Такая организация нежелательна из-за большого проигрыша в общей плотности энергии из-за чрезмерного веса (средств) теплового управления, высокой сложности и чрезмерной стоимости. В других системах, таких как Ni-Cd, в попытках теплового управления использовали систему водяного охлаждения. Снова этот тип системы теплового управления добавляет вес, сложность и стоимость пакету батарей. Проще говоря, предшествующий уровень техники не предлагает конфигурацию/внутреннюю конструкцию интегрированной батареи, модуля батареи и термически управляемой пакетной системы батарей, которая была бы легкой, простой, недорогой и объединяла бы структурную основу батарей, модулей и пакетов с охлаждаемой воздухом системой управления теплотой. Сущность изобретения Один аспект настоящего изобретения предусматривает механически усовершенствованную перезаряжаемую батарею. Батарея включает в себя: корпус батареи, который включает в себя клемму положительного электрода батареи и клемму отрицательного электрода батареи; по меньшей мере один положительный электрод батарее, расположенный внутри корпуса батареи и электрически соединенный с клеммой положительного электрода батареи; по меньшей мере один отрицательный электрод батареи, расположенный внутри корпуса батареи и электрически соединенный с клеммой отрицательного электрода батареи; по меньшей мере один сепаратор электродов батареи, расположенный между положительными и отрицательными электродами внутри корпуса батареи, чтобы электрически изолировать положительный электрод от отрицательного электрода, но все еще допускающий их химическое взаимодействие; и электролит батареи, окружающий и смачивающий положительный электрод, отрицательный электрод и сепаратор. Корпус батареи является призматическим по форме и имеет оптимизированное отношение толщины к ширине, к высоте. Другой аспект настоящего изобретения включает в себя усовершенствованный модуль батареи высокой мощности. Модуль батареи, согласно настоящему изобретению включает в себя: множество отдельных батарей; множество электрических межсоединений, соединяющих отдельные батареи модуля друг с другом и обеспечивающих средство для электрического соединения отдельных модулей батареи друг с другом; и средство связывания/сжатия модуля батареи. Батареи связывают внутри средства связывания/сжатия модуля под действием внешнего механического сжатия, которое оптимизировано, чтобы сбалансировать направленное наружу давление из-за расширения компонентов батареи и обеспечить дополнительную направленную внутрь силу сжатия на электроды батареи внутри каждого элемента, чтобы уменьшить расстояние между положительными и отрицательными электродами, посредством этого увеличивая общую мощность элемента. Средство связывания/сжатия модуля сконструировано, чтобы: 1) допустить применение требуемого сжатия батареи; 2) выполнить требуемую механическую функцию стойкой к вибрациям связки модулей; и 3) быть как можно более легким. Еще один аспект настоящего изобретения заключается в механической конструкции легкой охлаждаемой текучей средой пакетной системы батарей. В своей наиболее общей форме настоящая охлаждаемая текучей средой пакетная система батарей включает в себя: корпус пакета батарей, имеющий по меньшей мере одно входное отверстие для хладагента и по меньшей мере одно выходное отверстие для хладагента; по меньшей мере один модуль батареи, расположенный и установленный внутри корпуса так, что модуль батареи удален от стенок корпуса и от любых других модулей батареи внутри корпуса, чтобы сформировать каналы для тока хладагента вдоль по меньшей мере одной поверхности связанных батарей, причем ширина каналов для тока хладагента имеет оптимальные размеры, чтоб допустить максимальную теплопередачу посредством конвективного, проводящего и излучающего механизмов теплопередачи от батарей хладагенту; и по меньшей мере одно средство транспортировки хладагента, которое вынуждает хладагент входить в средство ввода хладагента в корпусе, протекать по каналам для тока хладагента и выходить через средство вывода хладагента в корпусе. В предпочтительном варианте осуществления пакетную систему батарей охлаждают воздухом. В еще одном аспекте настоящего изобретения описанная выше механическая конструкция батареи, модуля и пакетной системы батарей интегрирована электронным образом посредством алгоритма зарядного устройства, разработанного так, чтобы быстро зарядить пакетную систему батарей, в то же время увеличивая срок службы батареи посредством минимизированной перезарядки и управления выделением тепла. В заключение, батареи, модули и пакеты могут также включать в себя средство обеспечения переменной термоизоляции, по меньшей мере, для той части перезаряжаемой системы батарей, которая наиболее непосредственно подвергается воздействию указанных окружающих тепловых условий так, чтобы поддержать температуру перезаряжаемой системы батарей внутри требуемого рабочего диапазона при переменных условиях окружающей среды. Краткое описание чертежей Фиг.1 - сильно стилизованное изображение вида поперечного сечения механически усовершенствованной перезаряжаемой батареи согласно изобретению, подробно изображающей электроды батареи, сепаратор, корпуса батареи и электрические клеммы батареи; фиг. 2 - стилизованное изображение разорванного вида поперечного сечения механически усовершенствованной перезаряжаемой батареи, подробно изображающей, сколько из компонентов батареи взаимодействуют при сборке; фиг. 3 - увеличенное изображение клеммы, верхней части оболочки, уплотнения клеммы и гребенки электрода, изображенного на фиг.2; фиг. 4 - стилизованное изображение вида поперечного сечения укупориванного обжимом соединения, осуществленного, чтобы герметично закрепить клемму батареи к верхней части оболочки батареи; фиг.5 - стилизованное изображение вида поперечного сечения одного варианта осуществления клеммы батарея, подробно изображающее, как клапан высокого давления может быть встроен в клемму; фиг. 6 - стилизованное изображение вида поперечного сечения другого варианта осуществления клеммы батареи, подробно изображающее, как электрический проводной соединитель гнездового типа может быть встроен в клемму; фиг.7 - стилизованное изображение гребенки электрода; фиг. 8 - стилизованное изображение вида сверху модуля батареи, согласно настоящему изобретению, подробно изображающее способ, каким связываются батареи, включающий их ориентацию, стержни и концевые пластины, которые удерживают батареи при внешнем механическом сжатии, и ось сжатия; фиг. 9 - стилизованное изображение вида сбоку модуля батареи, изображенного на фиг.8, конкретно изображающая способ, каким металлические стержни устанавливают в прорези в ребрах концевых пластин; фиг. 10 - стилизованное изображение вида с торца модуля батареи, изображенного на фиг.8 и 9, конкретно изображающее способ, каким взаимодействуют концевые пластины и стержни сжатия; фиг. 11 - стилизованное изображение вида сверху модуля батареи, согласно настоящему изобретению, конкретно изображающее модульные прокладки, согласно настоящему изобретению, и выводы прокладок, присоединенных к ним; фиг. 12 - стилизованное изображение вида сбоку модуля батареи, изображенного на фиг.11, конкретно изображающее способ, каким модульные прокладки размещены сверху и снизу модуля батареи; фиг. 13а - стилизованное изображение одного варианта осуществления концевых пластин модулей батареи, согласно настоящему изобретению, конкретно изображающее ребристую концевую пластину; фиг. 13b - стилизованное изображение вида поперечного сечения ребристой концевой пластины, изображенной на фиг.13а; Фиг.14 - стилизованное изображение одного варианта осуществления соединения из кабеля в оплетке, пригодного в модулях и пакетах батареи, согласно настоящему изобретению конкретно изображающее электрическое соединение из плоского кабеля в оплетке; фиг. 15 - стилизованное изображение вида сверху одного варианта осуществления охлаждаемого текучей средой пакета батарей, согласно настоящему изобретению, подробно изображающее матричное размещение модулей батареи в корпусе пакета, способ, которым модульные прокладки образуют каналы для тока хладагента, вводное и выводное отверстия для текучей среды и средство транспортировки текучей среды; фиг.16 - график температуры батареи в зависимости от нерабочего времени, указывающий способ, каким алгоритмы управляемого температурой вентилятора воздействуют на температуру батареи во время саморазряда пакета; фиг.17 - график сопротивления батареи и толщины батареи в зависимости от внешнего давления сжатия, ясно представлены оптимальные и функциональные диапазоны; фиг. 18 иллюстрирует влияние температуры на удельную энергию батареи, изображая график температуры батареи в зависимости от удельной энергии в Втчас/кг; фиг. 19 иллюстрирует влияние температуры на удельную мощность батареи, изображая график температуры батареи в зависимости от удельной мощности в Вт/кг; фиг. 20 - график объемного расхода хладагента и процентной части от максимальной теплопередачи и скорости хладагента в зависимости от интервала по средней оси разделения (относящейся к средней ширине канала хладагента) для вертикального потока хладагента через каналы для тока хладагента; фиг. 21 - график объемного расхода хладагента и процентной части от максимальной теплопередачи и скорости хладагента в зависимости от интервала по средней оси разделения (относящейся к средней ширине канала хладагента) для горизонтального потока хладагента через каналы для тока хладагента; фиг. 22 - график подъема температуры в зависимости от температуры окружающей среды и напряжения пакета в зависимости от времени во время циклов заряда и разряда, используя способ заряда с "температурно-компенсированным пределом напряжения"; фиг. 23 - график подъема температуры в зависимости от температуры окружающей среды и напряжения пакета в зависимости от времени во время циклов заряда и разряда, используя способ заряда с "фиксированным пределом напряжения"; фиг. 24 - график емкости батареи, измеряемой в Ачас, в зависимости от типа батареи для батарей М серии; фиг.25 - график мощности батареи, измеряемой в Вт, в зависимости от типа батареи для батарей М серии; фиг.26 - график нормализованной емкости батареи, измеряемой в мАчас/см2, в зависимости от типа батареи для батарей М серии; фиг. 27 - график нормализованной мощности батареи, измеряемой в мВт/см2, в зависимости от типа батареи для батарей М серии; фиг.28 - график удельной мощности батареи, измеряемой в Вт/кг, в зависимости от типа батареи для батарей М серии; и фиг. 29 - график удельной энергии батареи, измеряемой в Втчас/кг, в зависимости от типа батареи для батарей М серии. Описание изобретения Один аспект настоящего изобретения предусматривает механически усовершенствованную перезаряжаемую батарею, показанную в общем виде на фиг.1. Обычно в технике перезаряжаемых батарей, таких как система никельметаллгидридных батарей, много внимания уделяют электрохимическим аспектам батарей, в то время как намного меньше времени и энергии потрачено на улучшение механических аспектов батареи, модуля и конструкции пакета. Заявители исследовали усовершенствования в механической конструкции систем перезаряжаемых батареи, обращая внимание на такие аспекты, как плотность энергии (и объемную и гравиметрическую), прочность, долговечность, механические аспекты эффективности батареи и управление теплотой. В результате этих исследований заявители разработали механически усовершенствованную перезаряжаемую батарею 1, которая включает в себя: корпус 2 батареи, который включает в себя клемму 7 положительного электрода батареи и клемму 8 отрицательного электрода батареи; по меньшей мере один положительный электрод 5 батареи, расположенный внутри корпуса 2 батареи и электрически соединенный с клеммой 7 положительного электрода батареи; по меньшей мере один отрицательный электрод 4 батареи, расположенный внутри корпуса 2 батареи и электрически соединенный с клеммой 8 отрицательного электрода батареи; по меньшей мере один сепаратор 6 электродов батареи, расположенный между положительным и отрицательным электродами внутри корпуса 2 батареи, чтобы электрически изолировать положительный электрод от отрицательного электрода, но все еще допускающий их химическое взаимодействие; и электролит батареи (не показан), окружающий и смачивающий положительный электрод 5, отрицательный электрод 4 и сепаратор 6. Корпус 2 батареи является призматическим по форме и имеет оптимизированное отношение толщины к ширине к высоте. Используемый термин "батарея" конкретно относится к электрохимическим элементам, которые включают в себя множество положительных и отрицательных электродов, отделяемых сепараторами, герметизированных в корпусе, имеющем положительную и отрицательную клеммы на его внешней стороне, где все соответствующие электроды соединены с их соответствующими клеммами. Это оптимизированное отношение, как описано ниже, позволяет батарее иметь сбалансированные оптимальные свойства по сравнению с призматическими батареями, которые не имеют этого оптимизированного отношения. В особенности, толщина, ширина и высота оптимизированы, чтобы обеспечить максимальную емкость и выходную мощность, в то же время устраняя вредные побочные эффекты. К тому же, эта специфическая конструкция корпуса допускает однонаправленное расширение, которое можно легко компенсировать, прилагая внешнюю механическую силу сжатия в этом одном направлении. Заявители обнаружили, что оптимальное отношение толщины электрода и ширине должно быть между приблизительно 0,1-0,75, а оптимальное отношение высоты к ширине 0,75-2,1. Специфические примеры батарей и отношение их высоты электрода к ширине приведены в табл. 1. Следует отметить, что даже внутри оптимального диапазона отношений, имеются оптимальные поддиапазоны в зависимости от требуемых свойств батарей. Например, фиг. 24 - 29 изображают, как различные отношения высоты к ширине батарей М серии (показанные в табл. 1) дают различные оптимальные значения в зависимости от специфических требуемых свойств. Фиг.24 и 25, которые являются графиками емкости в Ачас и мощности в Вт в зависимости от типа батареи, соответственно, указывают, что для максимальной емкости и мощности М элемент является лучшим. Однако как можно видеть из фиг.26 и 27, которые являются графиками нормализованной емкости в мАчас/см2 и мощности в мВт/см2 в зависимости от типа батареи, соответственно, если емкость и мощность нормализованы к площади электродов, элемент M-40 является самым лучшим. Дополнительно, если удельная мощность батарей определена, элемент М-40 также является самым лучшим, как показано фиг. 28, которая изображает график удельной мощности батарей в Вт/кг в зависимости от типа батареи. Наконец, если важна удельная энергия батарей, элемент М-20 является лучшим, как показано на фиг. 29, которая является графиком удельной энергии батарей в Втчас/кг в зависимости от типа батареи. При определении оптимальных отношений заявители отметили, что, если батареи слишком высоки, имеется увеличиваемая тенденция раскола электродов при расширении и сжатии. Существуют также проблемы с увеличенным внутренним электрическим сопротивлением электродов и гравиметрической сегрегацией электролита к нижней части батареи, оставляя верхние блоки электродов сухими. Обе эти последние проблемы уменьшают емкость и выходную мощность батарей. Если, с другой стороны, электроды слишком коротки, емкость и мощность батареи уменьшаются из-за пониженных включений электрохимически активных материалов, и удельная плотность энергии батареи уменьшается из-за изменения отношений компонентов собственного веса батареи к электрохимически активным составляющим. Также, если батареи слишком широки, существует увеличенная тенденция раскола электродов при расширении и сжатии. Имеется также проблема с увеличенным внутренним электрическим сопротивлением, что уменьшает емкость и выходную мощность батарей. Но, если электроды слишком узки, емкость и мощность батареи уменьшается из-за пониженного включения электрохимически активных материалов, а удельная плотность энергии батареи уменьшается из-за изменения в отношениях компонентов собственного веса батареи к электрохимически активным составляющим. Наконец, если батарея слишком толстая, существуют проблемы с неправильным тепловым рассеянием от центральных электродов, что уменьшает емкость батареи и мощность. Также, существует увеличенное общее расширение средств связывания электродов в направлении толщины, что вызывает коробление и повреждение корпуса батареи и создает зазоры между положительными и отрицательными электродами, таким образом уменьшая мощность и емкость батареи. Это чрезмерное расширение средств связывания электродов нужно компенсировать внешним механическим сжатием. Однако, когда батарея слишком толста, требуется чрезмерная величина внешней силы, чтобы компенсировать расширение, и происходит раскалывание электродов. С другой стороны, если батарея слишком тонка, меньшее количество электродов заполняет батарею, и, следовательно, емкость и мощность батареи уменьшается из-за пониженного включения электрохимически активных материалов и удельная плотность энергии батареи уменьшается из-за изменения в отношениях компонентов собственного веса батареи к электрохимически активным составляющим. В данной заявке термин "расширение" включает в себя и тепловое и электрохимическое расширение. Тепловое расширение происходит из-за нагревания компонентов батареи посредством механизмов, описанных выше, а электрохимическое расширение имеет место из-за изменения между различными решетчатыми структурами в заряженном и разряженном состояниях электрохимически активных веществ батареи. Корпус 2 батареи предпочтительно изготавливают из любого материала, который является теплопроводяшим, механически прочным и жестким и химически инертным к химии батареи, такого как металл. В качестве альтернативы могут использоваться полимер или композитные вещества в качестве материала для корпуса батареи. При выборе такого материала внимание должно быть уделено теплопередаче. Как подробно описано в заявке на патент США 08/238570 от 5 мая 1995, содержание которой включено в качестве ссылки, эксперименты с пластмассовыми корпусами показывают, что внутренняя температура заключенной в пластмассовый корпус металлгидридной батареи возрастает до приблизительно 80oС от окружающей температуры после циклической работы от С/10 до 120% емкости, в то время как температура корпуса из нержавеющей стали повышается только до 32oС. Таким образом, корпуса из теплопроводящего полимера или композитного вещества являются предпочтительными. Наиболее предпочтительно, если корпус изготавливают из нержавеющей стали. Выгодно электрически изолировать внешнюю поверхность металлического корпуса от среды, покрывая ее непроводящим полимерным покрытием (не показано). Примером одного такого слоя является изолирующий полимерный слой в виде ленты, изготовленный из полимера, такого как сложный полиэфир. Механическая прочность и жесткость полимерной ленты являются важными, также как и изолирующие свойства. К тому же, она является предпочтительно недорогой, однородной и тонкой. Внутренность корпуса 2 батареи должна быть также электрически изолирована от электродов батареи. Это может быть выполнено, нанося покрытие электрически изолирующего полимера (не показан) на внутреннюю поверхность корпуса батареи, или, в качестве альтернативы, заключая электроды батареи и электролит в электрически изолирующий полимерный резервуар (не показан), который является инертным к химии батареи. Это резервуар затем закупоривают и вставляют в корпус 2 батареи. В предпочтительном варианте осуществления, показанном на фиг.2, корпус батареи включает в себя верхнюю часть 3 корпуса, к которой прикреплены клемма 7 положительного электрода батареи и клемма 8 отрицательного электрода батареи, и оболочка 9 корпуса батареи, в которой расположены электроды 4, 5. На фиг.3 показано, что верхняя часть 3 корпуса включает в себя отверстия 13, через которые положительные и отрицательные клеммы 7, 8 батареи находятся в электрической связи с электродами 4, 5 батареи. Диаметр отверстий 13 немного больше, чем внешний диаметр клеммы 1, 8, но меньше, чем внешний диаметр уплотнения 10, используемого, чтобы герметизировать клемму 7, 8 к верхней части 3 корпуса. Клеммы 7, 8 включа