Распылитель лекарственного средства (варианты) и способ подачи распыляемого лекарственного средства пациенту

Реферат

 

Устройство и способ подачи аэрозоля пациенту относится к медицинским распылителям. Распылитель включает отклоняющий элемент, расположенный в камере в фиксированном положении относительно выхода сжатого газа и жидкостного выхода с возможностью отклонения сжатого газа от упомянутого выхода газа через упомянутый жидкостной выход для образования аэрозоля, и защитное средство, расположенное в упомянутой камере с возможностью движения в соответствии с дыханием пациента. Второй вариант изобретения отличается наличием элемента смещения, включающего гибкую мембрану, и связанного с отклоняющим элементом. Способ подачи распыляемого лекарственного средства пациенту предусматривает перемещение элемента смещения силой вдыхаемого воздуха, при этом перемещается подвижное защитное средство, а лекарственное средство защищено от попадания в камеру. Конструкция распылителя и способ обеспечивают синхронизацию подачи аэрозоля с дыхательным циклом и экологию лекарственного средства. 3 с. и 34 з.п. ф-лы, 20 ил.

Настоящее изобретение относится к способу и устройству для введения аэрозольного распыленного жидкого или твердого лекарственного средства либо паров в дыхательные пути пациента, а более конкретно изобретение относится к усовершенствованному распылителю лекарственного средства, который обеспечивает аэрозоль более эффективно и с улучшенной равномерностью размеров частиц.

Медицинские распылители лекарственных средств для генерирования мелко распыленного или аэрозольного жидкого лекарственного средства, которое может вдыхать пациент, являются широко известными и используемыми для лечения определенных состояний и болезней.

Распылители применяют в процедурах для находящихся в сознании, самопроизвольно дышащих пациентов и для управляемо ингалируемых пациентов.

В некоторых распылителях газ и жидкость смешивают и направляют против заслонки. В результате жидкость превращена в аэрозоль, т.е. жидкость образует мелкие частицы, которые взвешены в воздухе. Этот аэрозоль жидкости может затем вдыхаться в дыхательные пути пациента. Одним из способов смешения газа и жидкости является пропускание быстро движущегося потока по наконечнику с отверстиями жидкостной трубки. Отрицательное давление, создаваемое потоком сжатого газа, является фактором, который способствует вытягиванию жидкости из наконечника с отверстиями в поток газа и переходу ее в аэрозоль.

Некоторые учитываемые требования в конструкции и работе распылителей лекарственных средств включают регулирование дозировок и поддержание постоянного размера аэрозольных частиц. В обычной конструкции распылителя газ под давлением может осуществлять увлечение жидкости против заслонки на непрерывной основе пока жидкость резервуара не истечет. Непрерывная аэрозолизация может приводить в результате к расходу аэрозоля во время выдоха пациента или во время задержки между вдохом и выдохом. Этот эффект может также усложнять регулирование дозировок, потому что может быть трудным количественное определение величины израсходованного аэрозоля. Кроме того, непрерывная аэрозолизация может отрицательно влиять на размер частиц и/или плотность. В дополнение к этому, может быть избыточная потеря медикамента при конденсации на распылителе или мундштуке во время периодов невдыхания. С другой стороны, прерывистая аэрозолизация может также влиять на размер частиц и плотность с прекращением и возобновлением аэрозолизации.

Имеются несколько других соображений, которые относятся к эффективности ингаляторной терапии. Например, предполагалось, что ингаляторная терапия является более эффективной, когда генерирование аэрозольных частиц является сравнительно равномерным, т. е. получение частиц особого размера, частиц в пределах в каком-то диапазоне размеров и/или частиц, значительный процент которых находится в каком-то диапазоне размеров. Один из диапазонов размеров частиц, который рассматривался подходящим для терапии вдыхания, включает диапазон примерно в 0,5-2 микрона. Другие диапазоны размеров частиц могут быть подходящими или предпочтительными для специальных применений. В общем, капли больших и малых размеров должны быть сведены к минимуму. Учитывалась также желательность того, что для некоторых случаев терапии значительная доля, например свыше 75% аэрозольных частиц, была менее 5 микрон, в зависимости от требуемой площади осаждения частиц в дыхательном тракте. В дополнение, может иметь свое преимущество для распылителя лекарственного средства способность генерировать большое количество аэрозоля быстро и равномерно так, чтобы надлежащая доза могла быть введена. Соответственно, с учетом этих соображений существует потребность в усовершенствованном распылителе лекарственного средства.

Краткое изложение сущности изобретения Настоящее изобретение предлагает способ и устройство для введения аэрозольного жидкого или твердого лекарственного средства либо пара в пациента. В соответствии с одним из аспектов настоящее изобретение включает распылитель лекарственного средства, который вырабатывает аэрозоль во время вдыхания, а иногда - во время вдыхания и выдыхания, что может быть использовано как пациентами при вентиляции легких, так и непроизвольно дышащими пациентами.

В соответствии с другим аспектом изобретения предусмотрен распылитель лекарственного средства, который чувствителен к давлению, так что аэрозолизация скоординирована с естественным физиологическим циклом пациента, таким как дыхательный цикл пациента. В одном из вариантов элемент смещения, такой как мембрана, перемещает отклоняющий элемент.

В соответствии с еще одним аспектом предусмотрен распылитель лекарственного средства, имеющий кольцевой жидкостный насадок, который диспергирует аэрозоль в радиальном направлении в ответ на поток сжатого газа из газового насадка, расположенного концентрически первому насадку.

И еще в одном аспекте изобретения предусмотрен распылитель лекарственного средства, имеющий камеру с множественными жидкостными насадками и/или газовыми насадками, расположенными в ней. Множественные насадки могут быть кольцевыми насадками. Может быть предусмотрен отклоняющий элемент для направления газа через множественные жидкостные насадки.

В следующем аспекте изобретения резервуар распылителя включает верхний (широкий) участок и нижний (узкий) участок для применения сравнительно равномерного давления на жидкостном насадке, которое вытягивает жидкость из резервуара.

Краткое описание чертежей Фиг. 1 изображает вид сбоку с частичным разрезом первого варианта распылителя лекарственных средств в соответствии с настоящим изобретением.

Фиг.1А - разрез распылителя по фиг.1, показанного в цикле вдыхания.

Фиг.2 - разрез сборки сопла распылителя по фиг.1.

Фиг. 3 - вид сверху в разрезе распылителя по фиг.1 по линии 3-3' (без заслонки).

Фиг.4 - изометрический вид верхнего участка распылителя по фиг.1.

Фиг. 4А - изометрический вид верха распылителя, показанного в цикле вдыхания по фиг.1А.

Фиг.5 - разрез второго варианта распылителя настоящего изобретения.

Фиг.6 - разрез донной части вытяжной трубы варианта по фиг.5.

Фиг.7 - разрез, подобный фиг.6, показывающий альтернативный вариант донной части вытяжной трубы распылителя, показанного на фиг.5.

Фиг. 8 - разрез участка распылителя по фиг.5, показывающий кольцо отклоняющего элемента.

Фиг.9 - разрез, подобный фиг.8, показывающий альтернативный вариант устройства кольца отклоняющего элемента для варианта распылителя по фиг.5.

Фиг.10 - разрез, подобный фиг.8, показывающий другой альтернативный вариант устройства кольца отклоняющего элемента.

Фиг.11 - разрез третьего варианта распылителя по настоящему изобретению.

Фиг.12 - вид сверху сборки сопла варианта по фиг.11.

Фиг.13 - сечение варианта по фиг.11 по линии 13-13'.

Фиг.14 - сечение распылителя по четвертому варианту.

Фиг.15 - сечение распылителя по пятому варианту.

Фиг.16 - сечение распылителя по шестому варианту.

Фиг. 17А и 17В показывают сечения седьмого варианта настоящего изобретения.

Подробное описание предпочтительных вариантов I. Первый вариант Первый предпочтительный вариант распылителя 10 показан на фиг.1.

Распылитель 10 является распылителем небольшого объема и включает корпус или контейнер 12, образующий внутреннюю камеру 14. Корпус 12 образован участком боковой стенки цилиндрической формы 18, верхним участком 20 и донным участком 22. Компонентные части корпуса 12 могут быть составлены из отдельных множественных кусков материала, которые соединены вместе посредством сварки, адгезивов и т.д. или (что более предпочтительно) некоторые компонентные части могут быть образованы из отдельного куска материала способом инжекционной формовки. Например, донный и боковые участки 22 и 18 могут быть образованы из отдельных кусков, которые соединены вместе, или предпочтительно эти части могут быть образованы из одного куска формованного пластика. Любой ряд пластиков может быть подходящим, включая поликарбонат или поликарбонатные смеси. Крышка 21 съемно установлена на верхнем участке корпуса 12 посредством защелочного устройства крышки, резьбового закручивания, винтов и крепежных средств других типов. Корпус 12 - примерно 6 см по высоте и имеет диаметр примерно в 4 см.

Нижний участок 23 камеры 14 служит в качестве резервуара для содержания текучей среды 25 для аэрозолизации, такой как раствор, содержащий лекарственное средство. В нижнем участке 23 корпуса 12 находится сборка сопла 24. По фиг.1-3 сборка сопла 24 выступает вниз от камеры 14 корпуса 12 к фитингу 28, расположенному вне камеры 14 на донной стороне 22 корпуса 12. Фитинг 28 подогнан по размерам для присоединения к подаче 27 сжатого газа через обычные трубки 29. Сжатый газ может подаваться любым подходящим источником, таким как обычная газоподача, используемая в больницах: насос, компрессор, баллончик, фильтрующая коробка и т.д.

Сборка сопла 24 состоит из внешнего трубчатого элемента 30 и внутреннего трубчатого элемента 32. Внутренний трубчатый элемент 32 имеет канал 34, который идет от отверстия 36 в донном конце фитинга 28 к насадку газового выхода 38, расположенному на верхнем конце 39 сборки сопла 24. Внутренний трубчатый элемент 32 расположен во внутреннем канале 40 внешнего трубчатого элемента 30 так, что он сцентрирован в последнем. Канал 42 образован канавками или прорезями на внешней поверхности внутреннего трубчатого элемента 32 и/или внутренней поверхности внешнего трубчатого элемента 30. Канал 42 проходит от отверстия 44 в резервуаре 23 нижнего участка камеры 14 к насадку жидкостного выхода 46, расположенному на верхнем конце 39 сборки сопла 24. Канал 42 служит для подачи жидкого лекарственного средства из резервуара 23 в донной части камеры 14 к насадку выхода жидкости 46 на верхней части сборки сопла 24. (В альтернативном варианте канал 42 может быть образован пространствами или участками между ребрами на внешней поверхности внутреннего трубчатого элемента 32 и/или внутренней поверхности внешнего трубчатого элемента 30.) Как показано на фиг.3, насадок выхода жидкости 46 имеет кольцевую форму по торцевым концам внешнего трубчатого элемента 30 и внутреннего трубчатого элемента 32 сборки сопла 24. Насадок выхода газа 38 имеет круглую форму и расположен концентрично кольцевому жидкостному насадку. В одном варианте насадок выхода газа 38 имеет диаметр примерно 0,022 дюйма (0,05588 см), а жидкостного выходного насадка 46 - 0,11-0,125 дюйма (0,2794-0,3175 см) с внутренним диаметром примерно в 0,084 дюйма (0,21336 см). Эти размеры приведены в качестве примера, и распылитель может быть изготовлен с другой требуемой размерностью.

Верхний конец 39 сборки сопла 24 образован верхними концами, внешним и внутренним, трубчатых элементов 30 и 32. В настоящем варианте верхний конец 39 является в общем плоской поверхностью с диаметром примерно в 0,18 дюйма (0,4572 см). В альтернативных вариантах верхний конец 39 может иметь форму, отличную от плоской, например, внутренний трубчатый элемент 32 может отстоять от внешнего трубчатого элемента 30 таким образом, что жидкостный насадок 46 расположен ниже газового насадка 38.

Сборка сопла 24 или участок ее могут быть выполнены как часть корпуса 12 из одного куска материала при инжекционном формовании. Например, внутренний трубчатый элемент 32 может быть выполнен из того же куска формованного пластика, что и дно корпуса 12.

По фиг.1 распылитель 10 включает также вытяжную трубу 50. Вытяжная труба 50 расположена в верхнем участке камеры 14 над жидкостным резервуаром 23. Вытяжная труба 50 включает трубчатый корпус 51, который образует внутренний канал 52, проходящий от отверстия входа 56 в крышке корпуса 21 к отверстию выхода 58 в донной стенке в трубчатом корпусе 51. Таким образом, вытяжная труба 50 служит входным каналом для окружающего воздуха в камеру 14. Входное отверстие 56 сообщается с окружающим воздухом (через каналы заглушки рабочего органа, как описано ниже), а выходное отверстие 58 сообщается с камерой 14.

На нижнем конце вытяжной трубы 50 имеется дивертор 60. Отклоняющий элемент 60 может быть выполнен из того же куска формованного пластика, что и труба 50, или, как вариант, элемент 60 может быть выполнен из отдельного куска материала, который прикреплен подходящими средствами к остальной части трубы 50. (Может быть также предусмотрено, что функция элемента 60 осуществляется пневматически, например противостоящим источником газа, расположенным непосредственно против сопла). Элемент 60 расположен непосредственно против насадка газового выхода 38 и насадка жидкостного выхода 46, расположенных в верхнем конце 39 сопла 24. Элемент 60 перемещаем таким образом, что расстояние между элементом 60 и верхней поверхностью 39 сопла 24 может быть изменено. Элемент 60 имеет форму плоского круга с диаметром примерно в 0,18 дюйма (0,4572 см), так что он проходит по газовому и жидкостному насадкам 38 и 46 к кромке верхней поверхности 39 сопла 24.

Вытяжная труба 50 присоединена к корпусу 12. Конкретно, труба 50 прикреплена к верхнему участку 20 корпуса 12 посредством мембраны или диафрагмы 64.

Мембрана 64 представляет собой кольцеобразный элемент из гибкого упругого материала, такого как силиконовая резина. Внешний обод мембраны 64 закреплен в канавке на верхнем участке 20 корпуса 12 и/или крышки 21. Внутренний обод мембраны 64 закреплен в щели, образованной двумя частями вытяжной трубы 50. Мембрана 64 имеет прокатный профиль в сечении, как показано на фиг. 1. Это позволяет мембране 64 действовать как качающаяся диафрагма. Мембрана 64 допускает ограниченное движение трубы 50. Труба 50 присоединена к мембране 64 таким образом, что мембрана 64 смещает трубу 50 от сопла 24, как показано на фиг. 1. При установке, показанной на фиг. 1, нижняя часть трубы 50 отстоит примерно на 0,15 дюйма (0,381 см) от верхней поверхности сопла 24.

На верхнем конце вытяжной трубы 50 расположен рабочий орган 68. Рабочий орган 68 присоединен к трубчатому корпусу 51 сборки вытяжной трубы 50 и проходит через отверстие 56 в верхней части корпуса 12 на крышке 21. Рабочий орган 68 включает закрытую верхнюю сторону с одним или более открытыми каналами 72.

По фиг. 4 на сторонах корпуса рабочего органа 68 расположены индикаторы 69А и 69В. Индикаторы 69А и 69В могут быть выполнены из цветовых отметок или параллельных колец на сторонах рабочего органа 68. В предпочтительном варианте индикатор 69А красного цвета и расположен рядом с верхней стороной корпуса распылителя 12. Индикатор 69В предпочтительно зеленого цвета и расположен рядом и над индикатором 69А.

В камере 14 на нижнем конце трубы 50 находится колоколообразный отражательный элемент 74. Элемент 74 проходит от отверстия 58 в нижней части канала вытяжной трубы 51 вовне по направлению к внутренней стенке цилиндрического участка 18 корпуса 12. Отражательная перегородка 74 включает горизонтальный участок 75 и вертикальный участок 76, который направлен вниз от горизонтального участка 75 к верхней части сопла 24. Перегородка 74 имеет открытую нижнюю сторону, создавая воздушный канал вокруг нижней стороны цилиндрической вертикальной стенки 76.

Как упомянуто выше, элемент 60 перемещаем относительно сопла 24. Настоящий вариант предусматривает устройство для ограничения хода элемента 60 относительно сопла 24. Это может осуществляться несколькими путями. В настоящем варианте движение элемента 60 к соплу 24 ограничено одним или несколькими стопорными пальцами 80. Стопорные пальцы 80 выступают от донного участка 22 корпуса. В данном варианте имеются три стопорных пальца. Верхние концы стопорных пальцев 80 отстоят от нижнего конца вертикальной стенки 76 перегородки 74. В силу того, что вытяжная труба 50 перемещаема вертикально, благодаря ее соединению с корпусом 12 посредством гибкой мембраны 64, стопорные пальцы 80 обеспечивают нижний предел движения вытяжной трубы 50. В настоящем варианте стопорные пальцы расставлены таким образом, что когда нижняя кромка вертикальной стенки перегородки 74 входит в соприкосновение со стопорными пальцами 80, создается пространство "h" между элементом 60 и верхней поверхностью сборки сопла 24. В предпочтительном варианте пространство "h" составляет приблизительно 0,025-0,045 дюйма (0,0635-0,1143 см) или более, предпочтительно 0,03-0,04 дюйма (0,0762-0,1016 см), а наиболее предпочтительно приблизительно 0,033 дюйма (0,08382 см).

В альтернативных вариантах движение дивертора 60 к соплу 24 может быть ограничено другими средствами, отличными от стопорных пальцев. Например, если корпус выполнен способом инжекционного формования, уступы, заплечики, ребра или другие конструктивные элементы могут быть выполнены вдоль стенок корпуса для ограничения хода вниз вытяжной трубы и/или элемента 60.

Кроме того, в камере 14 расположено отклоняющее кольцо 82. Отклоняющее кольцо 82 находится на внутренней стенке цилиндрического участка 18 корпуса 12. В частности, отклоняющее кольцо 82 расположено смежно перегородке 74. Отклоняющее кольцо 82 имеет размерность, определяющую зазор 86 вокруг перегородки 74. Отклоняющее кольцо 82 служит для задерживания больших капель жидкости, которые могут образовываться на внутренней стенке корпуса 12, и отклонения больших капель обратно в резервуар 23 в донной части корпуса 12. В дополнение, отклоняющее кольцо 82 служит для обеспечения сравнительно извилистой траектории для потока аэрозольных частиц от нижнего участка камеры 14 к верхнему участку. Эта извилистая траектория служит также для уменьшения наличия больших частиц и способствует образованию частиц более равномерной размерности.

Как упоминалось выше, дно камеры 14 служит в качестве резервуара 23 для жидкости, подлежащей аэрозолизации. В настоящем варианте резервуар имеет воронкообразную форму для направления жидкости, подлежащей аэрозолизации, вниз ко входу 44. Резервуарный участок камеры 14 образован, по крайней мере, двумя участками или уступами. В настоящем варианте верхний участок 88 резервуара сравнительно широкий - примерно того же диаметра, что и диаметр цилиндрического участка 18 корпуса 12, например 2,36 дюйма (5,9944 см). Верхний участок 88 сравнительно мелок, например 0,3125-0,25 дюйма (0,79375-0,635 см). Верхний участок 88 резервуара воронкообразно сведен на конце к нижнему участку 90 (или вторичному колодцу) резервуара. Нижний участок 90 сравнительно узок, но сравнительно глубок, например 0,25 дюйма (0,635 см). Нижний участок 90 резервуара несколько шире, например 0,625 дюйма (1,5875 см), чем внешний диаметр сопла 24. Отверстие 44, из которого вытягивается жидкость, расположено в дне нижнего участка 90 резервуара. В настоящем варианте резервуар 23 также включает промежуточный участок 92, расположенный между верхним участком 88 и нижним участком 90. Промежуточный участок 92 резервуара 23 имеет высоту и ширину по этим верхним и нижним участкам.

В варианте распылителя лекарственного средства, показанного на фиг.1, сравнительные размеры и габариты верхнего, нижнего и промежуточного участков резервуара 23 имеют свое значение в генерировании аэрозоля, где размер частиц аэрозоля и выход сравнительно равномерны. Как описано ниже, жидкость в резервуаре 23 вытягивается через отверстие 44 и по жидкостному каналу 42 отрицательным давлением, вызываемым потоком газа по жидкостному насадку 46. Сила всасывания, создаваемая газовым потоком, вытягивает жидкость из резервуара к верху сопла и захватывает жидкость с определенной скоростью в воздушный поток. С аэрозолизацией жидкости уровень жидкости в резервуаре снижается и этим непосредственно увеличивается расстояние, через которое жидкость должна быть вытянута из резервуара к насадку на вершине сопла. С увеличением расстояния от уровня поверхности жидкости к вершине сопла требуется больше энергии для вытягивания жидкости к жидкостному насадку на вершине сопла 24. Если допустить, что давление газа относительно постоянно, это увеличение расстояния может вызывать уменьшение потока жидкости через жидкостный насадок, что, в свою очередь, может влиять на равномерность размера аэрозольных частиц и скорость.

Вариант распылителя лекарственного средства по фиг.1 снижает этот возможный отрицательный эффект. В варианте по фиг.1 сравнительно большая часть жидкости содержится в верхней части 88 резервуара, а сравнительно меньшая часть жидкости содержится в нижней части 90 резервуара. Поскольку большой участок 88 резервуара является широким и сравнительно мелким, поверхностный уровень жидкости в резервуаре изменяется сравнительно немного, так как жидкость в этом участке резервуара вытягивается вниз. Поэтому требуется небольшое изменение в энергии для вытягивания этого количества жидкости из резервуара к жидкостному насадку 46, когда эта часть жидкости исчерпывается. Когда вся жидкость в верхнем участке 88 резервуара аэрозолизирована, оставшаяся жидкость в нижнем участке 90 резервуара вытягивается в жидкостный канал 42, а высота поверхности жидкости быстро падает. Однако, поскольку нижний участок 90 резервуара сравнительно узок, он содержит только малую часть жидкости, подлежащей аэрозолизации, существует сравнительно незначительное воздействие на размер аэрозольных частиц и выход из этой части жидкости.

Другим преимуществом, какое обеспечивается воронкообразной формой резервуара, является то, что сравнительно узкий размер нижнего участка 90 резервуара имеет меньшую площадь поверхности, направляя жидкость к отверстию 44. Это обусловливает то, что наибольшая часть или вся жидкость направляется к отверстию 44 с небольшими потерями.

Распылитель лекарственного средства 10 по фиг.1-3 может включать также датчик 89. Датчик 89 может быть прикреплен к корпусу 12 в любом удобном участке, таком как на крышке 21, как показано на фиг.1. Датчик 89 управляет рабочими циклами, управляя движением участка трубы 50 относительно корпуса 12. С датчиком 89 может быть использована любая подходящая техника, такая как электроника, пневматика или механика. Например, датчик может реагировать на изменение в емкостном сопротивлении с перемещением вытяжной трубы ближе и далее от верха корпуса. Как вариант, датчик может реагировать на включенный магнит или может замерять оптический параметр и т.д. Датчик 89 управляет циклами работы и обеспечивает счет, который наблюдается пользователем или обслуживающим лицом. Это позволяет пользователю или обслуживающему лицу рассчитать, как много медикамента было введено. Датчик 89 включает дисплей или подобное устройство для этой цели. В дополнение, датчик может также включать соответствующую программу для отчета о продолжительности, частоте, скорости и т.д. работы распылителя лекарственного средства. Эти параметры могут быть также предусмотрены для информирования пациента или обслуживающего лица относительно ввода медикамента. Этот вариант распылителя может также включать соответствующую программу для установления предела объема лекарственной терапии или лекарств, которые могут быть применены. Например, если распылитель используется для ввода лекарств для снятия болей, таких как морфин, распылитель лекарственного средства может быть запрограммирован на ограничение количеств таких лекарств, которые могут быть введены пациенту.

Вариант распылителя, показанный на фиг.1-3, приспособлен для использования непроизвольно дышащим пациентом так, что аэрозоль от распылителя лекарственного средства выводится к мундштуку или маске, используемым пациентом. Соответственно в верхнем участке камеры 14 размещен адаптер 99, имеющий выход 98, присоединенный к мундштуку 100. В альтернативных вариантах, как описано ниже, распылитель может быть использован с системами вентилирования, и вместо мундштука 100 выход 98 адаптера 99 будет присоединен к системе вентилирования.

Для работы распылителя 10 соответствующее количество жидкости, такой как лекарство или вода, помещается в резервуар камеры 14. Для заполнения резервуара жидкостью удаляют крышку 21, мембрану 64 и вытяжную трубу 50 и наполняют резервуар надлежащим количеством жидкости, затем устанавливают крышку 21, мембрану 64 и трубу 50 к корпусу 12. В предпочтительном варианте мембрана и вытяжная труба собраны вместе и будут съемными вместе как единое целое. (Альтернативно жидкость может быть помещена в резервуар через мундштук 100 или, кроме того, может быть предусмотрен распылитель, предварительно заполненный надлежащим количеством медикамента изготовителем, либо, в еще одном варианте, может быть предусмотрен распылитель с разгерметизируемым каналом заполнения.) Источник сжатого газа 27 присоединен к фитингу 28. Источник сжатого газа 27 может быть внешним источником, который подает газ со скоростью 4-10 литров в минуту в диапазоне 35-50 фунтов на кв. дюйм (2,38-3,4 атмосфер), хотя другие скорости и давления могут быть подходящими. Газ подается через канал 34 и выбрасывается из насадка выхода газа 38 в камеру 14. Однако на этой стадии до вдыхания пациентом газ проходит вверх от насадка выхода газа 38 и аэрозолизации не происходит, поскольку элемент 60 находится в положении неаэрозолизации. Мембрана 64 удерживает сборку вытяжной трубы 50, включая дивертор 60, в стороне от сопла 24. В положении неаэрозолизации расстояние между элементом 60 и верхней частью сопла составляет примерно 0,15 дюйма (0,381 см). На этом расстоянии зазор между элементом 60 и соплом 24 таков, что поток газа не создает достаточного отрицательного давления по жидкостному насадку 46 для вытягивания жидкости.

Для получения аэрозоля распылителем лекарственного средства подносят мундштук 100 ко рту. Когда пациент делает вдох, воздух вытягивается из камеры 14, понижая давление внутри корпуса 12. Низкое давление в камере 14 приводит к тому, что мембрана 64 изгибается, оттягивая трубу 50 вниз. Нижнее положение трубы 50 показано на фиг.1А. Движение вниз трубы 50 ограничено стопорными пальцами 80. Когда стопорные пальцы 80 ограничивают движение вниз трубы 50, элемент 60 отстоит на заданное расстояние "h" от верхней поверхности 39 сопла 24. В настоящем варианте зазор "h" составляет примерно 0,033 дюйма (0,08382 см).

Сжатый газ, который может непрерывно инжектировать в распылитель через фитинг 38, отклоняется в сторону примерно на 90o элементом 60. Поскольку насадок выхода газа 38, элемент 60 и вершина сопла 39 в общем круговые, газ, выходящий из насадка 38, диспергируется равномерно по всем 360o, т.е. по радиальной схеме. Жидкое лекарственное средство в резервуаре вытягивается по каналу 42 и выходит из насадка выхода жидкости 46 частично посредством отрицательного давления, создаваемого движущимся газом, проходящим по насадку жидкостного выхода. Жидкость, втянутая в отклоненный газовый поток, аэрозолизируется, по крайней мере, ко времени достижения крупнообъемного пространства камеры. В настоящем варианте жидкое лекарственное средство, вытянутое из насадка жидкостного выхода 46, ударяется незначительно или совсем не ударяется об элемент 60. Однако в альтернативном варианте жидкость, втянутая в газовый поток, может быть направлена против элемента 60.

Когда жидкость аэрозолизирована, она проходит в камеру 14 по траектории вокруг нижней кромки перегородки 74. Когда пациент вдыхает, аэрозоль жидкости проходит вверх через зазор 86 между перегородкой 74 и отклоняющим кольцом 82 и через мундштук 100 попадает в дыхательные пути пациента.

Когда пациент прекращает вдыхание, давление в камере 14 растет. Смещение мембраны 64 опять достаточно перемещает трубу 50 вверх, увеличивая расстояние между элементом 60 и верхней поверхностью 39 сопла 24, и аэрозолизация жидкости прекращается. В альтернативных вариантах пружина, пневматические клапаны или другое устройство смещения могут быть использованы отдельно или в комбинации друг с другом и мембраной для перемещения элемента 60 в положение неаэрозолизации. Таким образом, распылитель лекарственного средства автоматически совершает циклы генерирования аэрозоля по времени дыхательного цикла пациента.

Если пациент делает выдох в распылитель, никакой аэрозолизации не происходит, поскольку элемент 60 находится в положении неаэрозолизации вследствие смещения мембраны 64. Движение вверх трубы 50 ограничивается крышкой 21.

Во время вдыхания может создаваться некоторый поток воздуха через распылитель по траектории через трубу 50. Этот поток воздуха в камеру 14 может быть обеспечен из окружающего воздуха через каналы 72, вход трубы 56, канал трубы 52 и выход трубы 58. Этот воздушный поток может продолжаться в течение как вдоха - когда труба 50 находится в нижнем положении, так и выдоха - когда труба находится в верхнем положении. Как вариант, поток воздуха через трубу 50 может быть остановлен или снижен в течение вдоха, когда труба 50 находится в нижнем положении. Управление воздушным потоком через распылитель во время вдоха или выдоха может осуществляться посредством подходящего подбора размеров входа трубы 56, выхода трубы 58, каналов рабочего органа 72, кольца дивертора 82 и других элементов, которые обеспечивают воздушный поток через камеру, таких как фильтры.

В варианте, описанном выше, мембрана 64 обеспечивает упругий включающий порог, который обеспечивает цикличную аэрозолизацию, совпадающую с дыханием пациента. Этот порог установлен на падение в пределах нормальных параметров дыхания человека так, что дивертор приближается и отдаляется от вершины сопла, как функция нормального дыхания человека. В одном варианте этот уровень может быть меньшим или примерно равным 3 см воды. Может быть целесообразным, чтобы порог мог быть установлен на различных уровнях, учитывая различные типы пациентов. Например, если распылитель разработан для использования с младенцами или новорожденными, упругий порог мембраны может быть ниже порога, используемого для взрослых. Подобным же образом отличный порог может быть использован для гериатрических пациентов. Распылитель может быть использован также для ветеринарных применений, таких как для лошадей или собак. В ветеринарных применениях может быть сравнительно широкий диапазон порогов, связанных с различными размерами животных. Распылители, имеющие надлежащим образом выбранные рабочие пределы, могут быть разработаны для ветеринарных использований. Признано также, что отверстия в камере, такие как отверстие 56, могут влиять на рабочий порог для аэрозолизации. Таким образом, рабочий порог распылителя может легко регулироваться посредством выполнения регулируемого рабочего органа 68. Как вариант, рабочий порог может регулироваться посредством выбора размера отверстий 56 и 72 в камеру, что будет также управлять входом воздуха. Это позволит пользователю регулировать пороги, если это желательно. Посредством надлежащей регулировки рабочих порогов может быть обеспечено управление потоком через распылитель. Например, может быть желательным, чтобы пациент не вдыхал или выдыхал слишком быстро или слишком глубоко. Для взрослых подходящей скоростью потока может быть приблизительно 30-60 литров в минуту. Отверстия в камеру и из нее могут быть надлежащим образом подобраны для обеспечения этих скоростей.

Распылитель может приводиться в действие вручную вместо задействования дыханием. Для приведения в действие распылителя вручную рабочий орган 70 прижимают вниз к крышке 21. Как упомянуто выше, рабочий орган 70 присоединен к трубе 50. Нажатие на рабочий орган 70 приводит элемент 60 вниз в положение аэрозолизации, приближая к соплу 24. Отпускание рабочего органа 70 вызывает подъем трубы 50 вследствие смещения мембраны 64, этим самым прекращая аэрозолизацию.

По фиг. 4 и 4А индикаторы 69А и 69В обеспечивают удобный способ подтверждения того, что распылитель работает. Как упомянуто выше, когда элемент 60 отстоит от вершины сопла 24, никакого аэрозоля не производится. Когда элемент 60 отстоит от рабочего органа 68, рабочий орган 68, который присоединен к элементу 60 через трубу 50, находится в верхнем положении, а красный индикатор 69А на стороне рабочего органа 68 виден вдоль верхней стороны 21 распылителя 10, как показано на фиг. 4. Когда пациент делает вдох, достаточный для приведения элемента 60 в нижнее положение, красный индикатор 69А на стороне рабочего органа 68 выходит через отверстие 56 в верхней стороне 21 распылителя 10. Красный индикатор 69А больше не видим, однако, зеленый индикатор 69В, который расположен над красным индикатором 69А, остается видимым на верхней части распылителя. Таким образом, пациент или медицинский работник может легко определить, находится ли распылитель в работе. В варианте распылителя для детей рабочий орган и/или индикаторы могут быть выполнены с комическими фигурками.

Приведение в действие распылителя дыханием удобно и эффективно. Посредством цикличности аэрозолизации жидкости распылитель может быть более эффективен, таким образом снижая стоимость терапии.

Важное преимущество, вытекающее из признака этого распылителя, заключается в том, что аэрозолизация может быть циклирована таким образом, чтобы была в координации с физиологическим циклом пациента. В частности, посредством аэрозолизации только во время вдыхания, например, доза медикамента, вводимая пациенту, может более точно вводиться и регулироваться. Это позволяет для этого варианта распылителя обеспечивать дозиметрическое медикаментозное введение в такой степени, какая в других случаях отсутствовала бы. Ограничение медикаментозного ввода циклом вдыхания пациента может быть обеспечено дозиметрическим введением медикамента.

В дополнение, распылитель 10 обеспечивает высокий выход и единообразную аэрозолизацию благодаря расположению газовых и жидкостных насадков 38 и 46 относительно элемента 60. Кольцевая конфигурация жидкостного насадка 46 относительно газового насадка обеспечивает генерирование аэрозоля вкруговую на 360o. Это обеспечивает возможность сравнительно высокой и единообразной степени аэрозолизации.

Единообразность повышена в силу того, что жидкость выходит с незначительным или без всякого удара о дивертор.

В альтернативном варианте распылителя крышка 12 может включать воздушный фильтр, который покрывает воздушный вход 56. Фильтр служит для предохранения камеры от загрязнений и удерживает выход аэрозоля жидкости. Такой фильтр может быть съемным, что обеспечивает простую недорогостоящую замену.

Еще в одном варианте распылитель может быть использован в сочетании с аэрозолизационным расширителем, таким как Аэрочэмбер, продаваемый "Труделл Медикал Партнершип", Лондон, Онтарио. Аэрочэмбер описан в патенте США 4470412. В этом альтернативном варианте выход распылителя будет направлен во вход Аэрочэмбера, из которого пациент вдыхает аэрозоль через выход Аэрочэмбера.

Другое преимущество, предлагаемое этим вариантом распылителя, заключается в меньшей утечке аэрозоля в окружающую атмосферу. Это дает определенную выгоду для предоставляющих лечение, по сравнению со случаем, если бы кто-то подвергался воздействию аэрозоля медикамента, который высвобождается из распылителей при выработке его на непрерывной основе.

В настоящем варианте мембрана 64 смещена для удержания вытяжной трубы в верхнем положении неаэрозолизации за исключением времени вдыхания. Таким образом, в периоды времени между вдохами и выдохами, или если пациент делает перерыв и вынимает мундштук,