Металлирование и функционализация полимеров и сополимеров

Реферат

 

В изобретении описан способ введения функциональной группы в сополимер изоолефина и алкилстирола по месту алкилбензильного углеродного атома, включающий приготовление раствора этого сополимера в углеводородном растворителе, введение в полимерный раствор алкоксида щелочного металла (Cs, K или Na) и литийалкильного соединения с получением сверхоснования в сочетании с полимерным раствором и введение в такой основный полимерный раствор электрофильного соединения. Предлагаются также металлированные сополимеры и их функционализованные производные. Техническая задача - разработка способа функционализации сополимеров без внесения изменений в инертную углеводородную структуру главной сополимерной цепи. 4 с. и 19 з.п. ф-лы, 2 табл.

Данная заявка является частичным продолжением заявки на патент США 08/447131, озаглавленной "Металлирование и функционализация полимеров и сополимеров" и поданной 22 мая 1995 г. на имя авторов Jean M.J. Frechet, Shah Haque, Joachim Steinke и Hsien Wang, которая является частичным продолжением заявки на патент США 08/444951, поданной 19 мая 1995 г.

Изобретение относится к сополимерам, содержащим звенья алкилстирольных сомономеров, которые металлируют с использованием сверхоснования, получая металлированный сополимер, который может быть функционализован присоединением к нему электрофильного реагента.

Предпосылки изобретения До настоящего времени в качестве эластомеров при приготовлении смешанных композиций с термопластичными соединениями и другими эластомерными соединениями, предназначенными для использования при изготовлении автомобильных шин и т.п., применяли бутилкаучуки, т.е. сополимеры изобутилена и небольших количеств изопрена в качестве сомономера, и/или галоидированные каучуки, т.е. галоидированные производные бутилкаучуков. Бутил- и/или галоидированные бутилкаучуки придают этим смесям ряд целевых свойств, таких как низкая воздухопроницаемость, относительно низкая температура стеклования (Тc), широкие пики демпфирования, стойкость к старению под воздействием окружающей среды и т.д., что имеет важное значение при изготовлении шин с превосходными эксплуатационными свойствами. Однако использование с этой целью бутил- и/или галоидированных бутилкаучуков сопряжено с различными затруднениями технологического порядка, главным из которых является их высокая несовместимость с большинством других полимеров, включая даже ненасыщенные эластомерные соединения, к которым они проявляют слабую адгезию. Следовательно, особенность бутилкаучука, придающая ему те свойства, которыми обусловлена необходимость в нем как в компоненте смесей для изготовления автомобильных шин, а именно химическая "инертность", являющаяся результатом отсутствия реакционной способности у главной углеводородной цепи молекулы бутилкаучукового полимера, является также причиной его низкой реакционной способности и несовместимости с большинством других материалов, что ограничивает возможность его применения во многих областях техники.

В патенте США 5162445 были описаны уникальный сополимер изобутилена, а также способ введения функциональных групп не в главную цепь такого сополимера, благодаря чему он становится приемлемым для применения в качестве компонента смеси, который обладает всеми преимуществами свойств бутил- и/или галоидированного бутилкаучука, но которому, однако, не присущ недостаток, заключающийся в несовместимости бутил- и/или галоидированного бутилкаучука. В более широком аспекте этот новый сополимер представляетсобой прямой продукт взаимодействия изоолефина, содержащего 4-7 углеродных атомов, с параалкилстиролом, причем предпочтительными мономерами являются изобутилен и параметилстирол, и такие сополимеры характеризуются по существу гомогенным композиционным распределением. Производные такого ИБ-ПАС-сополимера, содержащие функциональные группы, которые придают им совместимость и/или способность образовывать поперечные сшивки с другими полимерными материалами, как с термопластичными, так и с эластомерными полимерами, получают через галоидированный промежуточный продукт, который готовят галоидированием ИБ-ПАС-сополимера, инициируемым свободными радикалами.

Предпочтительным по патенту США 5162445 сополимером является сополимер изобутилена и параметилстирола, и этот сополимер бромируют с получением сополимера, часть параметилстирольных звеньев которого бромирована по месту параметильных групп. Бромированный сополимер представляет собой по существу высокомолекулярный изобутилен-параметилстирол-парабромметилстирольный полимер с узким молекулярно-массовым распределением. В присутствии нуклеофильного реагента бензильные атомы брома обладают высокой реакционной способностью в мягких условиях. Было установлено, что по месту бромированных параметильных углеродных атомов боковых фенильных групп можно вводить самые разнообразные функциональные группы, замещая по меньшей мере часть атомов брома, не нарушая при этом структуры главной цепи и не меняя молекулярной массы и/или характеристик молекулярно-массового распределения главной цепи такого сополимера.

Согласно различным публикациям до настоящего времени стирольные полимеры металлируют литием путем взаимодействия с литийалкильным соединением, активированным N, N, N',N'-тетраметилэтилендиамином (ТМЭДА), а затем металлированное производное взаимодействием с электро-фильным реагентом превращают в различные функционализованные производные. У Harris и др. в патенте США 4145490 и в Macromolecules, 19, 2903-08 (1986) описано металлирование литием сополимеров изобутилена со стиролом и/или метиллированным стиролом в качестве средства введения функциональной группы в сополимер для его подготовки к полимеризации с пивалолактоном. Очевидно, что результатом такого метода, описанного у Harris и др., является введение функциональных групп по месту как первичных, так и третичных бензильных углеродных атомов метилированного стирольного сомономерного звена, а также его ароматических кольцевых углеродных атомов. Некоторыми из недостатков, с которыми связан способ Harris и др., являются необходимость использования огромного избытка реагента (алкил-Li/ТМЭДА), неполнота металлирования п-метильной группы стирольного звена и большая продолжительность реакции. Следовательно, можно предположить, что возможное преимущество способа Harris и др. как средства введения функциональной группы в новые ИБ-ПАС-сополимеры, описанного в патенте США 5162445, было бы, вероятно, достижимым только в сочетании со значительным недостатком, состоящим в нарушении углеводородной природы главной цепи такого сополимера при введении лития также по месту третичных бензильных углеродных атомов главной сополимерной цепи.

В литературе также имеются сообщения, касающиеся сочетания литийалкильного соединения с алкоксидом более тяжелого щелочного металла с образованием реагента, который получил название "сверхоснования" и который обладает очень высокой реакционной способностью при проведении реакций металлирования в органическом синтезе и химии полимеров. Применение сверхосновного реагента, приготовленного из литийалкила и алкоксида калия, для металлирования ароматических углеводородов типа бензола, толуола, этилбензола и кумола с целью получить металлированные материалы, в которых противоионом служит не литий, а более тяжелый щелочной металл, описано в таких литературных источниках, как J. Organometallic Chemistry, 28, 153-158 (1971); J. Organometallic Chemistry, 326, 1-7 (1987); Tetrahedron Letters, 32 (11), 1483-86 (1991).

В различных публикациях имеются даже сообщения о таких простых ароматических молекулах, о разнообразных промежуточных металлированных продуктах, которые являются производными продуктов, полученных в результате взаимодействия металлированного промежуточного продукта с метилиодидом. Кроме продуктов, строение которых не было определено, другие продукты реакции металлирования с использованием алкил-Li/К-алкоксида включают соединения, в структуре которых металлируют как углеродные атомы алкильных боковых цепей, так и/или углеродные атомы ароматического кольца.

У Lochmann и др. в Polym. Mat. Sci. Eng., 69, 426-7 (1993) и Polymer Preprints, 34(2), 588-9 (1993) описано металлирование гомополистирола и дендритного полиэфира алкил-Li/калий-трет-пентоксидным сверхосновным реагентом в качестве средства введения функциональных групп, благодаря чему в дальнейшем функционализованные полимерные материалы можно превращать в привитые сополимеры или полифункционализованные дендримеры с заметно измененными свойствами. В этой публикации вновь говорится о том, что металлирование главной цепи (т. е. металлирование третичных бензильных углеродных атомов главной полимерной цепи) при использовании литийалкил/калий-трет-пентоксидного сверхосновного реагента протекает в еще большей степени по сравнению с той, которая достигается с помощью литийалкил/ТМЭДА-реагента, аналогичного тому, который ранее применяли Harris и др. Металлирование таких углеродных атомов главной цепи нарушает, вероятно, углеводородную природу полимерной главной цепи этих новых сополимерных материалов, описанных в патенте США 5162445, с возможным нежелательным влиянием на их химическую инертность. Кроме того, сообщается также о значительной степени металлирования ароматических кольцевых углеродных атомов, которое происходит в случае использования литийалкил/калий-трет-пентоксидного сверхосновного реагента.

Таким образом, задачей изобретения является разработка способа конверсии новых сополимерных материалов в функционализованные производные без внесения изменений в инертную углеводородную структуру главной сополимерной цепи.

Согласно настоящему изобретению предлагается способ, который обеспечивает функционализацию описанного в патенте США 5162445 изобутилен-параалкилстирольного сополимера по месту бензильного углерода параалкильной группы стирольного сомономерного звена без заметного изменения микроструктуры главной цепи сополимера, молекулярной массы или молекулярно-массового распределения, а также природы ароматических кольцевых углеродных атомов ароматической группы, подвешенной на этой главной сополимерной цепи. Этот способ включает обработку изобутилен-параалкилстирольного сополимера в виде раствора в углеводородном растворителе воздействием сверхоснования, т.е. сверхоснования, полученного взаимодействием литийалкильного соединения с алкоксидом щелочного металла большей атомной массы, с образованием металлированного материала, противоион которого представляет собой атом щелочного металла большей атомной массы (Na, К, Cs) и который локализован по месту параалкильного углеродного атома стирольного сомономерного звена. Было установлено, что целевой металлированный полимерный материал образуется очень быстро, в течение нескольких минут, что позволяет получать целевой металлированный полимерный материал по методу непрерывной реакции в поршневом потоке. Можно осуществлять контактирование такого металлированного сополимера с электрофильным реагентом для конверсии металлированного сополимера в производное, содержащее функциональную группу, которую несет электрофильный реагент и которая ковалентно связана с бензильным углеродным атомом параалкильной группы ароматического радикала, подвешенного на главной сополимерной цепи.

Все условия реакции металлирования сополимера касательно молярного соотношения между литийалкильным соединением и молярным содержанием параалкилстирольных звеньев в сополимере, молярного соотношения между алкоксидом более тяжелого щелочного металла и алкиллитиевым соединением и температуры реакции металлирования выбирают таким образом, чтобы свести к минимуму возможность реакции металлирования по месту ароматических кольцевых углеродных атомов при максимальном металлировании по месту первичных бензильных углеродных атомов.

Было установлено, что в выбранных реакционных условиях третичный бензильный углеродный атом сополимера не подвергается металлированию (и последующей функционализации), поэтому первоначальная микроструктура главной сополимерной цепи в его функионализованных производных как в продукте, полученном при практическом осуществлении данного способа, сохраняется нетронутой. Более того, было установлено, что соответствующий выбор перечисленных выше условий в сочетании с выбором сверхоснования (Na, К или Cs) позволяет уменьшить металлирование по месту ароматических кольцевых углеродных атомов до степени, которая является несущественной, и/или до практически полного устранения, тем самым уменьшая количество вводимых функциональных групп на этих участках в конечном продукте или полностью их исключая. Кроме того, было установлено, что степень металлирования, а следовательно, и функционализацию, если иметь в виду параалкилстирольный компонент сополимера, можно довести до любого требуемого уровня, вплоть до практически стопроцентного, если это необходимо. Далее было установлено, что реакцию металлирования можно проводить до ее оптимальной степени, под которой подразумевается полнота и специфичность реакции в направлении металлирования бензильных участков в сравнении с металлированием ароматических участков в течение относительно короткого периода, обычно менее 10 мин, и без необходимости применения существенного избытка сверхосновных реагентов. В дополнение к возможности получения металлированного сополимера методом непрерывной реакции в поршневом потоке это позволяет также использовать уменьшенные количества нуклеофильных реагентов для обработки in situ металлированного сополимера при его конверсии в функционализованный сополимерный продукт. Кроме того, поскольку функциональные группы в сополимер вводят через промежуточный металлированный сополимер с использованием электрофильных реагентов, возникает возможность вводить в изобутилен-параалкилстирольный сополимер функциональные группы некоторых типов, введение которых по способу с применением бромирования нуклеофильного реагента, описанному в патенте США 5162445, невозможно.

Таким образом, предлагается способ металлирования сополимера изоолефина и алкилстирола по месту алкилбензильного углеродного атома, причем этот способ включает приготовление раствора сополимера в углеводородном растворителе; добавление в такой полимерный раствор алкоксида щелочного металла и литийалкильного соединения с образованием сверхоснования в сочетании с полимерным раствором и выделение металлированного сополимера. В соответствии с настоящим изобретением предлагается также способ введения функциональной группы в сополимер изоолефина и параалкилстирола по месту алкилбензильного углеродного атома, причем этот способ включает приготовление раствора сополимера в углеводородном растворителе; добавление в такой полимерный раствор алкоксида щелочного металла и литийалкильного соединения с образованием сверхоснования в сочетании с полимерным раствором; добавление в основный полимерный раствор электрофильного соединения и выделение металлированного сополимера. Предлагаются также новые статистические сополимеры эмпирической формулы где а = 1-70000, b = 1-7000 и с = 0-7000, R1 и R2 каждый независимо друг от друга - C15алкил или водород при условии, что по меньшей мере один из R1 и R2 - алкил и R1 + R2 5 углеродных атомов; R3 и R4 каждый независимо друг от друга - водород или С14алкильная группа, а М - щелочной металл, отличный от лития. В предпочтительном варианте щелочной металл выбирают из группы, включающей натрий, калий или цезий. Также предпочтительным алкилстиролом является параалкилстирол. По другому варианту выполнения настоящего изобретения предусмотрено контактирование металлированного сополимера с электрофильным соединением с получением переведенного в электрофильную форму алкилстирола.

Предлагаются также функционализованные производные продуктов формулы I. Такой функционализованный полимер представляет собой продукт, образующийся в результате взаимодействия сополимера моноизоолефина и алкилстирола со сверхоснованием и электрофильным реагентом. Эти сополимеры соответствуют формуле где а = 1-70000, b = 1-7000 и с = 0-7000, R1 и R2 каждый независимо друг от друга - С15алкил или водород при условии, что по меньшей мере один из R1 и R2 - алкил и R1 +R2 5 углеродных атомов; R3 и R4 каждый независимо друг от друга - водород или фрагмент С14алкильной группы, a F - электрофил.

Моноизоолефин-параалкилстирольные сополимеры, которые можно применять в процессе металлирования/функционализации по предлагаемому способу, представляют собой продукты, описанные в патенте США 5162445, который в полном объеме включен в настоящее описание в качестве ссылки. Этими сополимерами, представляющими особый интерес и, следовательно, предпочтительными сополимерами, являются сополимеры изобутилена (ИБ) и параалкилстирола (ПАС), в частности сополимеры изобутилена и параметилстирола (ПМС), которые далее обозначены как ИБ-ПМС-сополимеры. Из этих ИБ-ПМС-сополимеров наиболее предпочтительные представляют собой ИБ-ПМС-сополимеры, которые проявляют эластомерные свойства, т. е. те, у которых массовое процентное содержание ИБ-мономерных звеньев обычно составляет от примерно 99,5 до примерно 50, а содержание ПМС-мономерных звеньев равно от примерно 0,5 до примерно 50 мас.%. Среднечисленная молекулярная масса (Мn) этих эластомерных ИБ-ПМС-сополимеров обычно составляет 500 или более, предпочтительно 25000 или более, варьируется в интервале до приблизительно 2000000, а их молекулярно-массовое распределение составляет менее 6,0, предпочтительно менее 4,0 и наиболее предпочтительно менее 2,5.

ИБ-ПМС-эластомерные сополимеры, когда они функционализованы в соответствии с настоящим изобретением, особенно эффективны и целесообразны для применения в составе компаундированных резиновых смесей, а также в качестве компонентов смешения при приготовлении композиций в смеси с другими термопластичными и/или эластомерными полимерами, применяемыми при изготовлении каркаса, боковины, протектора и других составных элементов пневматических шин, обладающих превосходными эксплуатационными свойствами.

Сверхосновный реагент для металлирования Реагент, используемый для обработки ИБ-ПМС-сополимера с получением его металлированного варианта, представляет собой продукт, образующийся в результате взаимодействия литийалкильного соединения (AkLi) с алкоксидом более тяжелого щелочного металла (АkОМ), когда оба вещества находятся в нейтральном неполярном растворителе, таком как углеводородный растворитель.

Литийалкильное соединение В соответствии с одним из критериев выбора литийалкильного соединения, используемого для получения сверхоснования, следует выбирать такое литийалкильное соединение, значение рК алканового аналога которого, вероятно, превышает значение рК Н-связи бензильного углеродного атома.

Алкоксид щелочного металла Алкоксидный реагент с более тяжелым щелочным металлом может быть получен взаимодействием металлического натрия (Na), калия (К), рубидия (Rb) или цезия (Cs) с алканолом в неполярном растворителе. При этом алкоксиструктура (АkО) алкоксида щелочного металла как реагента соответствует алканолу (АkОН), из которого он получен. Среди алкоксидов щелочных металлов, которые могут быть использованы в качестве реагентов для практического осуществления настоящего изобретения, можно назвать те, которые получают взаимодействием щелочного металла с изопропанолом, втор-бутанолом, трет-бутанолом, 2-пентанолом, 3-пентанолом, трет-пентенолом, 3-метил-3-пентанолом, 2-гексанолом, 3-гексанолом, 2-метил-2-гексанолом, 2-гептанолом, 3-гептанолом, 4-1(-)ментолгептанолом, 3-метил-3-гексанолом, 2-этил-2-гексанолом, 3-этил-3-гексанолом, 2-пропил-2-пентанолом, 2-изопропил-2-пентанолом, 3-пропил-3-пентанолом, 3-изопропил-3-пентанолом, метанолом и т.п. Обычно в предпочтительном варианте для удобства проведения процесса и выделения побочных продуктов реакции функционализации в качестве реагента используют алкоксид щелочного металла, температура кипения алкинольного предшественника которого под давлением 1 атм составляет 200oС или меньше. Наиболее предпочтительными алкоксидами щелочных металлов в качестве реагентов являются содержащие щелочные металлы продукты взаимодействия с участием 2-этил-2-гексанола (2EtHexOH), ментола (МеnОН), трет-пентанола (трет-РеОН).

Получение сверхоснования Растворители, которые могут быть использованы для получения литийалкила, алкоксида щелочного металла и/или сверхоснования, которое образуется в результате их взаимодействия, представляют собой нейтральные неполярные жидкости, предпочтительно такие, как углеводородные растворители, температура кипения которых составляет от примерно 0 до примерно 200oС. Когда это целесообразно, температура кипения может быть выше или ниже. В качестве углеводородного растворителя можно применять алифатический или циклоалифатический углеводород, предпочтительно углеводород, в котором ИБ-ПМС-сополимер растворим по меньшей мере в степени приблизительно 2 мас.%. Среди приемлемых растворителей предпочтительные растворители включают пентан, н-гексан, гептан, октан, декан, циклогексан, метилциклогексан и т.п.

Сверхосновный реагент можно готовить отдельно от полимерного раствора, в который его вводят в дальнейшем, или его можно получать in situ, т.е. в полимерном растворе введением в этот раствор литийалкильного соединения и алкоксида щелочного металла. В случае получения in situ в полимерном растворе в предпочтительном варианте вначале вводят алкоксид щелочного металла, после чего добавляют литийалкильное соединение. Молярное количество сверхоснования обычно равно молярному количеству литийалкила, используемого для его получения.

Реакционные условия металлирования Касательно степени, в которой металлируют алкилбензильные углеродные атомы в сравнении с ароматическими кольцевыми углеродными атомами стирольных звеньев ИБ-ПАС-сополимера, необходимо отметить, то на ход и природу реакции согласно наблюдениям значительное влияние оказывают следующие реакционные параметры: (1) молярное соотношение между сверхосновным соединением и стирольным сомономерным компонентом сополимера; (2) молярное соотношение между литийалкильным соединением и алкоксидным соединением щелочного металла, которые применяют для получения сверхоснования; (3) природа атома щелочного металла (М), используемого для получения сверхоснования; (4) температура полимерного раствора во время реакции металлирования; (5) природа алкильного остатка литийалкильного соединения, выбранного для получения сверхоснования, и (6) условия смешения, в которых протекает реакция металлирования. При правильном выборе условий реакция металлирования может протекать до степени практически полной металлизации стирольного компонента сополимера. Реакция с участием третичных бензильных углеродных атомов (т.е. бензильных атомов главной полимерной цепи) либо не протекает, либо протекает в настолько малой степени, что оказывается неопределимой по стандартным методам ЯМР-анализа.

Молярное отношение сверхоснования к параалкилстирольному сополимеру может находиться в интервале от примерно 1 до примерно 2, предпочтительно составляет 2,0. Литийалкил можно применять в количестве, при котором молярное отношение его к стирольному сомономерному компоненту превышает 2,0. Содержание сверхоснования, при котором соотношение превышает 2:1, может оказаться нежелательным, поскольку такое содержание потребовало бы увеличения количества нуклеофильного реагента, используемого для обработки in situ металлированного сополимера для его конверсии в функционализованный продукт. Количество алкоксида щелочного металла, используемого для получения сверхосновного реагента, может находиться в интервале, при котором молярное отношение его к количеству используемого литийалкила составляет от примерно 1 до примерно 5, предпочтительно от примерно 1,1 до примерно 3,0 и более предпочтительно равно или приближается к 3,0. Предпочтительно использовать избыточное количество алкоксида щелочного металла относительно количества литийалкила, причем предпочтительное молярное соотношение между алкоксидом щелочного металла и литийалкилом при получении сверхоснования составляет приблизительно 3:1. В этих интервалах более высокая степень металлирования с наибольшей направленностью в отношении металлирования бензильных углеродных атомов параалкильных групп стирольного сомономерного компонента в сравнении с металлированием по месту ароматических углеродных атомов достигается в том случае, когда молярное соотношение AkLi/AkOM/стирольный сомономерный компонент составляет примерно 2/6/1.

Более того, когда литийалкильное соединение и алкоксид щелочного металла применяют в предпочтительных количествах, самая высокая степень металлирования по месту бензильных углеродных атомов параалкильных групп стирольного сомономерного компонента при наибольшей степени направленности в сравнении с металлированием по месту ароматических углеродных атомов достигается в том случае, когда щелочным металлом алкоксида щелочного металла как реагента является цезий (Cs), менее предпочтителен калий (К), а наименее предпочтительным является натрий (Na). Далее, в случае использования предпочтительных алкоксидов Cs и К наибольшая степень направленности в отношении металлирования по месту бензильных углеродных атомов параалкильных групп стирольных сомономерных звенев достигается тогда, когда в качестве литийалкильного реагента используют соединение, в котором атом Li связан не с третичным углеродным атомом, а со вторичным углеродным атомом алкильного остатка.

Предпочтительными сверхосновными системами для металлирования изоолефин-параалкилстирольного сополимера являются сочетания втор-бутиллития либо с трет-РеОК, либо с MenOCs. Наиболее предпочтителен MenOCs. В этой системе для металлирования реакция металлирования протекает в широком температурном интервале, начиная от температуры непосредственно выше точки замерзания используемого растворителя и до температуры непосредственно ниже точки кипения растворителя. На степень и направленность, при которых протекает реакция металлирования, температура, при которой ее проводят, значительного влияния, по-видимому, не оказывает. В предпочтительном варианте реакцию металлирования проводят при температуре в пределах 15-85oС, преимущественно 20-70oС, более предпочтительно при примерно комнатной температуре, т.е. при приблизительно 20-25oС.

Реакция металлирования проходит относительно быстро, а ее продолжительность, как правило, находится в интервале примерно нескольких минут, в частности составляет от примерно 2 до 30 мин, предпочтительно приблизительно 15 мин, причем она является тем временем, в течение которого реакция протекает до оптимальной степени. Продолжительность реакции более 60 мин не требуется, а в некоторых случаях приводит к снижению качества получаемого продукта относительно оптимального, которого иначе достигают в течение более короткого времени реакции.

Функционализация металлированного продукта Для конверсии металлированного изобутилен-параалкилстирольного сополимера в производный продукт в раствор, содержащий этот сополимер, электрофильный реагент можно вводить как таковой или в виде раствора.

Электрофильный реагент с (FMo) представляет собой молекулу, которая содержит атом или группу (F) с дефицитом электронов, обычно взаимодействующую с атомами нуклеофильного соединения, у которых имеется избыток электронов. Остаток электрофильного реагента может характеризоваться любой молекулярной структурой (Мо), включающей любое число функциональных групп (F). Атомы с дефицитом электронов электрофильного реагента взаимодействуют с металлированными углеродными атомами металлированного сополимера, причем эти последние представляют собой по существу металлированные бензильные углеродные атомы параалкильных групп стирольного сомономерного компонента, которые имеют избыток электронов и способны отдавать пары электронов. Таким образом, реакцию, в которой Р обозначает полимерную цепь, можно представить в следующем виде: Электрофильный реагент присоединяется к бензильным углеродным атомам параалкильных групп и сам образует функциональные группы получаемой композиции (как в случае с диоксидом углерода, который образует карбоксильную функциональную группу, или диметилкарбоната, который образует метилкарбоксилатную функциональную группу) или вносит в получаемую композицию уже существующие функциональные группы (как в случае 3-бром-1-пропеном, который образует 4-бутиленовую боковую группу).

Приемлемые электрофильные реагенты включают органические или неорганические соединения. Примерами кислот Льюиса органических классов, которые могут быть использованы в качестве электрофильных реагентов, являются соединения, несущие карбонильные углеродные атомы, такие как альдегиды, кетоны, сложные эфиры; соединения, содержащие атомы галогенов, такие как органические галогениды, ацилхлориды (акрилилхлорид, метакрилилхлорид), триалкилсилилгалогениды (бромиды и хлориды), триметилсилилхлорид, сульфонилхлорид, бензилгалогениды, алифатические или силилгалогениды; еноны, фторароматические соединения, замещенные электроноакцепторными группами, такие, как парафторнитробензин и парафторбензофенон; соединения, содержащие эпоксидные функциональные группы, такие как этиленоксид, и СО2.

Композиция, образующаяся в результате реакции с участием металлированного сополимера моноизоолефина и параалкилстирола, представляет собой фактически новый сополимер или тройной сополимер в зависимости от степени металлирования этого сополимера моноизоолефина и параалкилстирола перед его взаимодействием с электрофильным реагентом. В том случае, когда сополимер металлирован в степени, которая ниже полной металлизации его параалкилстирольного сомономерного компонента, продукт, образующийся в результате его взаимодействия с электрофильным реагентом, представляет собой тройной сополимер моноизоолефина, параалкилстирола и парафункционализованного алкилстирола, где термин "парафункционализованный алкилстирол" обозначает сомономерную композицию, которая образуется в ходе взаимодействия металлированного параалкилстирольного сомономера с электрофильным реагентом. Хотя изобретение описано применительно к алкилстиролу, представляющему собой п-алкилстирол, возможно применение также м-алкил- и о-алкилстиролов.

Эти полимеры применяют в материале шин, при получении полимерной смеси, при приготовлении конструкционных пластиковых смесей, при формовании воздушных мембран, при приготовлении клеевых материалов и герметиков, материалов для нанесения покрытий и изготовлении изделий механическим формованием.

ПРИМЕРЫ Общая методика А Металлирование изобутилен-параметилстирольного сополимера Очищенный и высушенный изобутилен-параметилстирольный сополимер растворяют в углеводородном растворителе, предпочтительно в циклогексане (ц-гексане) или гексане (н-гексане) и гомогенный раствор перемешивают. Концентрация полимера в этом растворе составляет 5% (вес/объем). Перед введением алкоксида щелочного металла (приблизительно 1 М раствора алкоксида щелочного металла в гексане или циклогексане) раствор охлаждают или нагревают до температуры, которая указана в таблицах 1 и 2. После введения алкоксида щелочного металла добавляют также литийалкильный компонент, который во всех случаях, если не указано иное, представляет собой приблизительно 1,3 М раствор втор-BuLi в гексане. Почти мгновенно окраска раствора меняется с бесцветной на желтую, оранжевую, красную или густую темно-красную в зависимости от выбора алкоксида и молярных количеств используемых реагентов (алкоксида щелочного металла и литийалкила). Обычно реакции образования сверхоснования (СО) дают протекать в течение 15 мин. Добавление избытка соответствующим образом выбранного электрофильного соединения (как такового или в виде раствора) типа триметилсилилхлорида (ТМСХл) приводит к образованию прозрачного и почти бесцветного раствора. Перед обработкой перемешивание продолжают в течение по меньшей мере часа.

Общая методика Б Обработка функционализованного изобутилен-параметилстирольного сополимера Органическую фазу, содержащую функционализованный металлом полимер, экстрагируют дважды 10%-ным водным раствором НСl, дважды 1 н. водным раствором NaOH, дважды насыщенным водным раствором бикарбоната натрия и в завершение водой. Органический слой отделяют от водного. Осаждением в ацетоне, изопропаноле или метаноле (в зависимости от характеристик растворимости функционализованного полимера) получают целевой полимерный продукт. Органическую жидкость декантируют, а оставшийся полимер несколько раз промывают, используя метанол. В заключение полимер сушат в вакууме при комнатной температуре или при несколько повышенной температуре (60o С).

Общая методика В Изучение зависимости металлирования изобутилен-параметилстирола от времени Очищенный и высушенный изобутилен-параметилстирол растворяют, предпочтительно в углеводородном растворителе, таком как гексан или циклогексан. Продолжая перемешивание, добавляют алкоксид металла. После этого раствор охлаждают или нагревают, как указано в таблицах 1 и 2. Быстро добавляют литийалкильное соединение, что приводит к почти мгновенному образованию раствора, окрашенного в темно-красный цвет. Через заданные интервалы времени отбирают аликвоты раствора металлированного полимера и их быстро вводят в 4-8-кратный избыток ТМСХл, который перемешивают при комнатной температуре. По истечении 1 ч реакционную смесь осаждают в 5-10-кратном объеме ацетона. Верхний слой жидкости декантируют, а оставшийся полимер несколько раз промывают, используя метанол, с последующей сушкой при 60o С в вакууме в течение по меньшей мере 24 ч.

ПРИМЕРЫ НА МЕТАЛЛИРОВАНИЕ Молярные количества, приведенные для изобутилен-параметилстирольного сополимера, относятся к числу п-метилстирольных звеньев, содержащихся в полимере. Реакции проводили по методике, описанной в разделе "Общая методика А". Если не указано другое время, то период между добавлением литийалкильного соединения и ТМСХл составлял 15 мин. Обработку, описанную в разделе "Общая методика Б", проводили без экстракции органической фазы. Полимерные продукты сушили при 60o С в вакууме в течение по меньшей мере 24 ч. Реакции, продолжительность которых указана как отличная от 15 мин, проводили согласно разделу "Общая методика В".

В представленных ниже таблицах 1 и 2 приведены сводные данные о сверхосновных реагентах и реакционных условиях металлирования, показателем которого служит результат силилирования. В этих таблицах "экв." обозначает молярные эквиваленты использованного продукта относительно числа п-метилстирольных звеньев, содержащихся в изобутилен-параметилстирольном сополимере; "бензильное/кольцевое" означает степень силилирования по месту бензильного и кольцевого положений в п-метилстирольном звене сополимера; "КТ" означает комнатную температуру. Степень силилирования по месту бензильного/кольцевого положений определяли по 1Н-ЯМР-спектрограмме; эта степень представляет собой силилирование в мольных процентах по этим участкам в пересчете на молярное содержание п-метилстирольного сомономерного компонента сополимера.

Эксперименты, результаты которых представлены в таблице 2, проводили в соответствии с общими методиками А и Б, за исключением того, что в некоторых экспериментах, как указано, сверхоснование дополняли ТМЭДА или протонной губкой в качестве добавки, 1,8-бис (диметиламино) нафталина (протонная губка), которую в указанных количествах вводили в полимерный раствор во