Полимерные матрицы и их применение в фармацевтических составах

Реферат

 

Изобретение относится к специфическим полимерным матрицам - поли(этиленкарбонат)ам, способу их получения, фармацевтическим составам на их основе, предназначенным для лечения заболеваний, таких как хронические воспалительные состояния. Поли(этиленкарбонат), способный к биологическому распаду, содержит звенья формулы -(С(O)-О-СН2-СН2-О-)- в количестве от 70 до 100 мол. %, имеет внутреннюю вязкость 0,4-4,0 дл/г, измеренную в хлороформе при 20oС и концентрации 1 г/дл, и температуру стеклования 15-50oС. Полимер получают полимеризацией этиленоксида и диоксида углерода при их мольном соотношении от 1:4 до 1:5 при 10-80oС в присутствии катализатора, полученного реакцией диэтилцинка и растворителя, выбранного из группы: вода, ацетон, диол, ди- или трифенол. Фармацевтическая композиция содержит поли(этиленкарбонат) и фармацевтически активное соединение. Полимер по изобретению обнаруживает негидролитическую поверхностную эрозию in vivo, он стабилен в течение нескольких часов в горячей воде без существенного снижения молекулярного веса. Фармакологические композиции могут использоваться для лечения хронических воспалительных состояний, вызываемых патогенами, демиелинизирующих заболеваний и острых воспалительных состояний. 4 с. и 21 з.п. ф-лы, 13 ил., 7 табл.

Предметом данного изобретения являются фармацевтические составы, содержащие полимерные матрицы, в частности составы, содержащие ИЛ-6, предназначенные для применения при лечении заболеваний, опосредованных ИЛ-1 и/или TNF, например хронических воспалительных состояний. Показано, однако, что специфические полимеры по изобретению, особенно поли(этиленкарбонат)ные полимеры, описанные ниже, более широко применяются в качестве матричных материалов в составах пролонгированного выделения, содержащих фармакологически активные соединения, и показано, в частности, что они обладают новым, неожиданным и очень желательным свойством подвергаться негидролитической поверхностной эрозии in vivo. Поэтому также предлагают и приводят в качестве примера матрицы, содержащие другие лекарственные средства, совместно со способом получения полимеров и фармацевтическими составами, содержащими их. Кроме того, новым и неожиданным является применение ИЛ-6 для лечения состояний, опосредованных ИЛ-1 и/или TNF, (ранее считали, что многие подобные состояния обостряются под воздействием ИЛ-6), поэтому в изобретении предлагают также новое применение ИЛ-6 для лечения, например, хронических воспалительных состояний, вызываемых патогенами, демиелинизирующих заболеваний и острых и сверхострых воспалительных состояний, таких как септический шок.

Лечение заболеваний, опосредованных ИЛ-1 и/или TNF Многочисленные спонтанно проявляющиеся хронические воспалительные состояния имеют неизвестную (возможно автоиммунную) этиологию, при этом полагают, что они опосредованы ИЛ-1 и/или TNF. Например, рассеянный склероз (PC), калечащее нервное расстройство, отличительным признаком которого являются рассеянные бляшки демиелинизации в спинном и головном мозге, привлекает внимание исследовательских организаций в течение многих лет. Хотя точная этиология рассеянного склероза еще не установлена окончательно, считают, что она имеет сильную автоиммунную компоненту, что подтверждается, например, расширенной сферой действия определенных антигенов главного комплекса гистосовместимости человека у пациентов, страдающих этим заболеванием. Существующие в настоящее время противовоспалительные лекарственные препараты, такие как АКТГ (адренокортикотропический гормон) или кортикостероиды, например преднизон, по-видимому, ускоряют восстановление после острых приступов, особенно при введении на ранней стадии, но не влияют на основную этиологию заболевания. Длительное введение кортикостероидов или иммунодепрессантов приводит к возникновению опасности серьезных побочных эффектов. Недавно было показано, что рекомбинантная форма ИФН-1 уменьшает краткосрочное образование бляшек, но не удалось показать, что он влияет на процесс длительного развития заболевания. Изучение эффективности лечения осложняется тем фактом, что естественное развитие заболевания проявляется в виде чередования спонтанной ремиссии и хронического рецидива. Коротко говоря, несмотря на многолетние интенсивные исследования, до сих пор не существует общепринятой конкретной терапии для этого очень серьезного заболевания.

Считают, что другие хронические воспалительные состояния индуцируются внешними агентами, например патогенами. Например, болезнь Лайма является серьезным хроническим состоянием, причиной которого является инфицирование переносимой клещами спирохетой Borrelia burgdorferi. После начальной острой стадии, характеризующейся поражениями кожи и гриппоподобными симптомами, заболевание переходит в хроническую стадию, которая может быть охарактеризована артритом и хроническими невралгическими отклонениями. Обычно заболевание лечат антибиотиками и нестероидными противовоспалительными средствами, но оптимальная терапия, в частности для установленного заболевания, еще не разработана.

Острые или сверхострые неконтролируемые воспалительные состояния могут также вызываться внешними причинами, например тяжелыми ожогами или тяжелыми инфекциями. Например, септический шок, и в частности респираторный дистресс-синдром у взрослых (РДСВ), является опасным для жизни состоянием, для которого в настоящее время не существует эффективного лечения. Начало заболевания быстрое, а смертность, как правило, превышает 50%. Септический шок обычно является результатом тяжелой бактериальной инфекции и, как правило, характеризуется лихорадкой, за которой на поздних стадиях часто следует гипотермия, колеблющееся кровяное давление (гипердинамический синдром) с последующей гипотензией на поздних стадиях, метаболическим ацидозом, нарушением умственных способностей и обширной дисфункцией органов и, наконец, во многих случаях заканчивается смертью. Наиболее часто септический шок является результатом грамм-отрицательной бактериальной инфекции (эндотоксический шок), но также он может являться и результатом грамм-положительных бактериальных инфекций или других инфекций. Термин "септический шок", используемый в тексте, должен поэтому интерпретироваться широко как термин для обозначения шокового состояния, включая РДСВ, являющегося результатом микробной инфекции, особенно бактериальной инфекции, главным образом грамм-отрицательной бактериальной инфекции.

ИЛ-6 является известным цитокином. Известно, что его применяют для лечения различных состояний, например тромбоцитопении и некоторых раков. Обычно он продуцируется организмом в ответ на бактериальные инфекции и участвует в медиации воспаления, лихорадки и септического шока. Он является сильным иммуностимулятором, а ряд литературных данных подтверждает, что управляемые ИЛ-6 механизмы вызывают некоторые автоиммунные и воспалительные заболевания, включая системную красную волчанку, рассеянный склероз и ревматоидный артрит, а также септический шок.

Было большой неожиданностью обнаружение того факта, что ИЛ-6 пригоден для лечения хронических воспалительных заболеваний (не являющихся гломерулонефритом), например рассеянного склероза, и для лечения острых и сверхострых воспалительных состояний, например септического шока. Механизм его действия неизвестен, но, не подразумевая никакую частную теорию, мы считаем, что посредством механизма обратной связи ИЛ-6 может подавлять или ингибировать экспрессию, выделение или функционирование других цитокинов, в частности TNF и/или ИЛ-1, возможно путем положительной регуляции выделения антагониста растворимого TNF рецептора и/или ИЛ-1 рецептора, подавляя тем самым активность результирующего автоиммунного, воспалительного или шокового состояний, которые опосредованы главным образом этими цитокинами. Однако показано, что в случае состояний, характеризующихся ИЛ-6 опосредованными комплемент-активирующими антиген-антитело (IgG) комплексами, в частности гломерулонефрита, (который обычно вызывается накоплением таких комплексов в почке), ИЛ-6 обостряет это состояние. Таким образом, мы показали, что ИЛ-6 оказывает лечащее действие в животных моделях, например, для PC и артрита Лайма, о которых полагают, что они первично вызываются ИЛ-1 и/или TNF, но обостряет гломерулонефрит у мышей с волчанкой, которая, как полагают, непосредственно вызывается ИЛ-6. Мы показали также, что ИЛ-6 обладает лечебным действием в мышиных моделях эндотоксического шока, который, как предполагают аналогичным образом, вызывается главным образом ИЛ-1 и/или TNF. Поэтому мы считаем, что ИЛ-6 пригоден в качестве агента для подавления или ингибирования экспрессии, выделения или функционирования TNF и/или ИЛ-1 и особенно для лечения воспалительных состояний, не являющихся гломерулонефритом, и для лечения септического шока. Воспалительные состояния, которые поддаются излечению с помощью ИЛ-6, включают, например, артритные состояния, в частности вызываемые патогенами артритные состояния, например артрит болезни Лайма, вызываемый бактериями артрит и полиартрит; рассеянный склероз и другие демиелинизирующие состояния (в частности, заболевания, характеризующиеся демиелинизацией нервов, мозга и/или спинного мозга, включая, в частности, рассеянный склероз, острый рассеянный энцефаломиелит или послеинфекционный энцефалит, оптический нейромиелит, шум в ушах, диффузный церебральный склероз, болезнь Шилдера, андренолейкодистрофию, третичную болезнь Лайма, тропический спастический парапоэз и другие заболевания, при которых демиелинизация, особенно автоиммунная демиелинизация, является основным симптомом); острые тяжелые воспалительные состояния, такие как ожоги, септический шок, менингит и пневмония, и автоиммунные заболевания, включая полихондриты, склеродому, грануломатоз Вегенера, дерматомиозит, хронический активный гепатит, миастению беременных, псориаз, псориазный артрит, синдром Стевена-Джонсона, миастенический синдром мальабсорбции, автоиммунное воспалительное заболевание кишечника (включая, например, язвенный колит и болезнь Крохна), эндокринную офтальмопатию, болезнь Гравеса, саркоидоз, первичный билиарный цирроз печени, юношеский диабет (диабет mellitus тип I), увеит (передний или задний), кератоконъюнктивит сухой и весенний кератоконъюнктивит и интерстициальный фиброз легких.

Таким образом, согласно изобретению предложены: I) Способ ингибирования экспрессии, выделения или функционирования TNF и/или ИЛ-1; лечения или профилактики воспалительного состояния, не являющегося гломерулонефритом; лечения или профилактики состояния, опосредованного ИЛ-1 и/или TNF; лечения или профилактики любых описанных выше состояний; лечения или профилактики демиелинизирующего заболевания, в частности рассеянного склероза; лечения или профилактики вызываемого внешними причинами воспалительного состояния; лечения или профилактики воспалительной реакции на тяжелую острую инфекцию, например септический шок, менингит или пневмонию; лечения ожогов; лечения или профилактики хронического вызываемого патогеном воспалительного состояния, например болезни Лайма; указанный способ включает в себя введение терапевтически или профилактически эффективного количества ИЛ-6, например ингибирующего TNF и/или ИЛ-1 количества ИЛ-6, в частности чрИЛ-6 (в частности, особенно в тех случаях, когда ИЛ-6 вводят как единственный терапевтический или профилактический агент или возможно вводят в сочетании с антимикробными или вазоактивными агентами, в частности, не в сочетании с TNF агонистами или антагонистами или с анти-TNF антителом), возможно в медленно выделяемой или депонированной форме, в частности в сочетании с полимерной матрицей, например поли(этиленкарбонат)ной матрицей, описываемой ниже, субъекту, например млекопитающему, в частности человеку, в случае необходимости в таком лечении или профилактике; II) Применение ИЛ-6, в частности чрИЛ-6, при изготовлении лекарства для использования в способе (I), например, для лечения или профилактики любого из вышеперечисленных под (I) состояний, причем лекарство может находиться в лекарственной форме с пролонгированным выделением, может содержать полимерную матрицу, в частности поли(этиленкарбонат)ную матрицу, описываемую далее; III) Применение ИЛ-6, в частности чрИЛ-6, для лечения или профилактики любого из перечисленных в п.(I) состояний и IV) Фармацевтический состав, содержащий ИЛ-6, в частности чрИЛ-6, для применения по способу (I), например для лечения или профилактики любого из состояний, описанных выше в п.(I), возможно в форме с пролонгированным выделением, возможно содержащей, кроме того, полимерную матрицу, в частности поли(этиленкарбонат)ную матрицу, как описано далее; например состав пролонгированного выделения (в частности, состав, который претерпевает биологический распад in vivo в течение нескольких дней, недель или месяцев), содержащий ИЛ-6 в полимерной матрице, например, в форме микрочастицы или запаса, в частности, если полимер обнаруживает негидролитическую поверхностную эрозию in vivo, особенно любая из систем для введения лекарственных средств, описанных здесь, для применения при лечении любого из описанных выше состояний, например для лечения хронического воспалительного состояния.

Под ИЛ-6 понимают любое соединение, соответствующее известным разновидностям интерлейкина-6 (известного также как интерферон бета-2 (ИФН-II), В-клеточный стимуляторный фактор 2 (ВСФ-2), интерлейкин HP-1 (HR l), гепатоцитный стимулирующий фактор (ГСФ), фактор роста гибридомной плазмацитомы (ГПРФ) и 26кД фактор). Предпочтителен рекомбинантный ИЛ-6, хотя может быть использован также и нерекомбинантный ИЛ-6, например продуцируемый ИЛ-6-секретирующими раковыми клеточными линиями. ИЛ-6 производится в коммерческих масштабах или может быть получен известными способами: ЕР 220574, 257406, 326120, WO 88/00206, GB 2063882, 2217327, содержания этих источников включены здесь по сноске. ИЛ-6 может быть гликозилирован, как, например, продуцируемый эукариотическими клетками, в частности СНО клетками, либо негликозилированным, как, например, продуцируемый прокариотическими клетками, в частности Е.coli. Предпочтителен рекомбинантный человеческий ИЛ-6 (рчИЛ-6), хотя известно, что ИЛ-6 остается активным при межвидовом переносе, поэтому ИЛ-6, полученный от продуцентов, не являющихся человеком, также может быть использован и подпадает под приводимое здесь определение ИЛ-6. Считают, что белки, имеющие минорные вариации в последовательности ИЛ-6, например вставки, делеции или мутации 1, 2, 3 или более аминокислот; белки слияния, содержащие ИЛ-6 и другой белок; активные фрагменты ИЛ-6 и/или другие подобные варианты, процессированные или мутантные формы ИЛ-6, которые обладают ИЛ-6 активностью, подпадают под определение ИЛ-6.

Известны приемлемые фармацевтические составы, содержащие ИЛ-6 совместно с фармацевтически приемлемым разбавителем или носителем. ИЛ-6 может быть введен парентерально, например в форме раствора для инъекций или суспензии, в частности, согласно или аналогично описанию Remington's Rharmac. Science, 1980. К числу пригодных носителей относятся такие водные носители, как солевой раствор, раствор Рингера, декстрозный раствор, раствор Ханка, а также неводные носители, такие как фиксированные масла или этилолеат. Для обычного парентерального введения пригоден ИЛ-6 в лиофилизированной форме в количествах, соответствующих унифицированной дозе, которые могут быть смешаны с носителем для получения подходящего раствора или суспензии для инъекции.

С другой стороны, ИЛ-6 может быть введен с использованием имплантируемой системы введения лекарственных средств или системы введения лекарственных средств с пролонгированным выделением лекарства, например, в форме микрочастиц или депонированной форме в сочетании с полимером для образования полимерной матрицы, посредством чего лекарство медленно выделяется из матрицы. Это предпочтительно в тех случаях, когда, например, состояние, которое должно быть излечено, является хроническим, в частности хроническим воспалительным состоянием, и требуемое лечение продолжается недели или месяцы. Под полимером понимают любую пригодную (например, фармакологически приемлемую) линейную молекулу с высоким молекулярным весом, образованную из повторяющихся звеньев (включая гомополимеры, сополимеры и гетерополимеры), возможно разветвленную или перекрестно сшитую, которая может быть получена, в частности, путем полимеризации простой молекулы или путем сополимеризации более чем одной молекулы (например, получение поли(этиленкарбонат)а из этиленоксида и диоксида углерода, как описано ниже), и возможно содержащую включения других звеньев в полимерной цепи. Предпочтительно, чтобы полимер был линейным и состоял из углерода, кислорода и водорода, например поли-DL-лактид-со-гликолид, полиэтиленгликоль или поли(этиленкарбонат). Предпочтительно, чтобы полимер обнаруживал негидролитическую поверхностную эрозию подобно описанному далее поли(этиленкарбонат)у.

Дозировка будет изменяться в зависимости от точного типа применяемого ИЛ-6, реципиента, способа введения и природы и степени тяжести состояния, подлежащего лечению. ИЛ-6 вводят крупным млекопитающим, например человеку, путем подкожной инъекции или в виде формы с пролонгированным выделением лекарства таким образом, чтобы обеспечить дозу от 0,5 мкг/кг/день до 30 мкг/кг/день, предпочтительно от 2,5 мкг/кг/день до 10 мкг/кг/день или в любой другой дозировке, которая является безопасной и эффективной для in vivo активности в известных терапевтических способах применения ИЛ-6, в частности в дозировке, повышающей содержание тромбоцитов. В случае тяжелых острых воспалительных состояний, например септического шока, допустимо введение более высоких доз внутривенно с тем, чтобы добиться быстрой и сильной реакции. Частота введения ИЛ-6 может быть уменьшена от ежедневной до введения через день или каждую неделю, либо еще реже в случае форм пролонгированного выделения, которые предпочтительны в тех случаях, когда лечение проводят в течение длительных периодов времени. Лечение ИЛ-6 может приводить к появлению лихорадок, жара и гриппоподобных симптомов, которые в норме могут быть излечены или предотвращены путем совместного введения ненаркотических анальгетиков, таких как аспирин, ацетаминофен или индометацин. Другие серьезные побочные эффекты обычно появляются только при более высоких дозах, например свыше 10 мкг/кг/день, и могут, как правило, быть устранены понижением дозы.

Полимерные матрицы для пролонгированного выделения Далее в изобретении предлагают фармацевтические составы, пригодные для пролонгированного выделения лекарственных средств, которые пригодны, например, для введения ИЛ-6, в частности, при вышеописанных показаниях, а также для введения других лекарственных средств. Фармацевтическими составами являются главным образом те составы, которые содержат полимеры поли(этиленкарбонат)а, иногда именуемые как поли(этиленкарбонат)ы и ПЭКы.

Несмотря на то, что из уровня техники известен ряд примеров применения поли(этиленкарбонат)ов в системах для введения лекарств, в них не описаны специфические полимеры по изобретению и не описаны полимеры, способные испытывать негидролитическую поверхностную эрозию in vivo. Из уровня техники неизвестно также о таких системах для ввода ряда специфических лекарственных средств, описанных здесь, в частности ИЛ-6, и нет подтверждений тому, что для введения таких лекарств необходима система пролонгированного выделения.

Наиболее неожиданными являются показатели распада полимеров по изобретению. На основании общих химических представлений можно ожидать, что карбонатные эфирные связи являются в принципе расщепляемыми. Однако было высказано предположение, что поликарбонаты должны быть стабильными в умеренных условиях in vitro.

Согласно Chem. Pharm. Bull. 31(4), 400-1403 (1983), поли(этиленкарбонат)ы распадаются in vivo, однако исследованный полимер не был полностью идентифицирован, в частности, с помощью современных спектроскопических методов. Согласно стр. 1402, распад in vivo может быть объяснен только действием гидролитических ферментов.

Согласно Chem. Pharm. Bull. 32(7), 2795-2802 (1984), микрочастицы делали из поли(этиленкарбонат)а, содержащего дибукаин. Хотя описание относится к первоначально процитированному достижению, оказалось, что выделение дибукаина было связано не с in vitro или in vivo способами распада полимера, а с диффузией через полимер. Физические и химические свойства исследованного поли(этиленкарбонат)а также не были установлены в достаточной степени.

Согласно Makromol, Chem. 183, 2085-2092 (1982), главным образом стр. 2086, полагают, что эпоксидные полимеры диоксида углерода способны к биологическому распаду, и отмечено, что предварительные результаты подтвердили возможность биологического распада полимеров диоксид углерода-этиленоксид, а отсюда и возможность их применения в контролируемом выделении лекарств. Для подтверждения утверждения относительно возможности биологического распада ссылались на Jinko Zoki 3 (Suppl)- -(1974). В этой публикации было указано, что поли(этиленкарбонат) принадлежит к группе соединений, которые наиболее легко гидролизуются, и даже фермент проназа без труда их разрушает. Это означает, что может быть возможен ферментативный гидролиз in vitro и in vivo, поскольку проназа представляет собой смесь гидролитических ферментов. Однако это утверждение кажется очень сомнительным. Мы подвергали поли(этиленкарбонат)ы по нашему изобретению в форме спрессованных дисков диаметром 5 мм с весом 25 мг действию 10 мг/мл проназы и 5 мМ CaCl22H2O в забуференном фосфатом физиологическом растворе (ЗФР) с рН 7,4 и 10 мг/мл проназы Е и 5 мМ СаСl22O в забуференном фосфатом физиологическом растворе c рН 7,4 (при 37oС) и при этом не наблюдали никакого распада (см. Фиг.1). Раствор проназы обновляли каждый день.

Было неожиданностью установление того факта, что ряд поли(этиленкарбонат)ов с определенным содержанием этиленкарбоната, вязкостью и температурным интервалом стеклования, которые не распадаются посредством гидролиза (например, в присутствии гидролитических ферментов, в частности проназы, или в основных условиях), тем не менее распадаются in vitro и in vivo, а именно (и исключительно) из-за поверхностной эрозии. Выражение "поверхностная эрозия" применяют в литературе, особенно в отношении гидролитического разложения полиангидридов и полиортоэфиров, но его никогда точно не определяли.

Поверхностная эрозия имеет место, если есть распад массы только на поверхности полимерных частиц, без снижения молекулярного веса сохраняющегося полимерного остатка. В тех случаях, когда в литературе голословно утверждали, что наблюдали поверхностную эрозию, определений молекулярного веса остаточной массы параллельно с определениями массовых потерь никогда не проводили и поэтому в действительности поверхностная эрозия никогда не имела места.

В действительности же почти у всех исследовавшихся когда-либо полимеров наблюдали полимерную объемную эрозию. Системы, подверженные полимерной объемной эрозии, имеют существенный недостаток, заключающийся в том, что если полимер насыщают лекарственным соединением, например пептидом, который относительно нестабилен при воздействии биологической среды, в которую он будет выделяться, то лекарственное соединение уже контактирует со средой в объемной части и может терять свою активность задолго до того, как оно выделится из полимера. Если же полимер будет испытывать поверхностную эрозию, в частности, при отсутствии объемной эрозии, то введенное лекарственное соединение, например пептид, будет оставаться защищенным от пагубного воздействия биологической среды вплоть до того момента, когда развивающаяся поверхностная эрозия не достигнет частиц лекарства и частица лекарства не выделится из поверхности остаточной полимерной массы. В случае систем введения лекарств на основе полимерных матриц, подверженных поверхностной эрозии в противоположность объемной эрозии, частица лекарства подвергается пагубному воздействию биологической среды в течение короткого периода времени, что обеспечивает более длительное, сильное и стабильное выделение фармакологически активного лекарства из полимерной матрицы.

Для полиангидридов в последних публикациях Proc. Nat. Acad. Sci. USA 90, 552-556 и 4176-4180 (1993) описаны некоторые характеристики процесса, подобного поверхностной эрозии. Однако в этих случаях задействован, по-видимому, весь объем, а определений молекулярного веса не проводили. Кроме того, такая эрозия является эрозией гидролитического типа. А сейчас было установлено, что выбранная группа поли(этиленкарбонат)ов, описанная ниже, показывает, как in vitro, так и in vivo, исключительно негидролитическую поверхностную эрозию.

В изобретении предлагают полимер, распадающийся in vivo и in vitro посредством поверхностной эрозии, которая происходит по негидролитическому механизму, и имеющий этиленкарбонатные звенья формулы А -(-C(O)-O-CH2-CH2-O-)- имеющий содержание этиленкарбоната от 70 до 100 мол.%, внутреннюю вязкость от 0,4 до 4,0 дл/г при измерении в хлороформе при 20oС и температуру стеклования от 15 до 50oС.

Содержание этиленкарбоната в полимере согласно изобретению составляет от 70 до 100 мол.%, в частности 80-100%, предпочтительно от 90 до 99,9%, например от 94 до 99,9%. Внутренняя вязкость полимера составляет от 0,4 до 4,0 дл/г при измерении в хлороформе при 20oС. Предпочтительно, чтобы полимер имел внутреннюю вязкость, измеренную при 20oС и концентрации 1 г/дл в хлороформе, равную от 0,4 до 3,0 дл/г.

Его температура стеклования составляет от 15 до 50oС, предпочтительно от 18 до 50oС.

В литературе описаны поли(этиленкарбонат)ы, имеющие температуру стеклования от 5 до 17oС.

Полимеры по изобретению получают предпочтительно посредством сополимеризации этиленоксида с диоксидом углерода, способ получения также является частью изобретения. Как результат реализации этого способа получения, полимер содержит в большинстве случаев в качестве со-единицы звено этиленоксида формулы Б -(-CH2-CH2-O-)- Если полимеры по изобретению выдерживают в водной среде, например в забуференном фосфатом физиологическом растворе с рН 7,4, то среда практически не попадает в их объемную часть, как это видно, например, из Фиг.2. Поэтому никакой объемной эрозии не происходит и оставшаяся масса будет сохраняться постоянной (100%) в течение периода времени свыше 28 дней, как это показано на правом графике Фиг.3.

В настоящее время поли-DL-лактид-со-гликолиды являются наиболее широко применяемыми матричными материалами для систем пролонгированного выделения лекарственных средств. Такие полимеры, однако, в отличие от полимеров по изобретению, распадаются посредством гидролиза. Например, распад массы в ЗФР, как показано в левой части Фиг.3 для одного из наиболее сложных типов поли-DL-лактид-со-гликолидов, а именно инициированного глюкозой поли-DL-лактид-со-гликолида (DL-ПЛГГЛЮ), описан в GB 2145422.

Различие в течение распада между поли(этиленкарбонат)ами по изобретению и поли-DL-лактид-со-гликолидами (DL-ПГЛ) из уровня техники in vivo представлены на Фиг.3. В то время, как полилактид-со-гликолиды испытывают объемную эрозию, о чем свидетельствует понижение молекулярного веса остаточной массы DL-ПЛГГЛЮ, молекулярный вес остаточной массы поли(этиленкарбонат)ов остается постоянным (100%).

Остаточная масса всего имплантанта уменьшается in vivo в обоих случаях до нуля в течение 1 месяца, что означает, что поли(этиленкарбонат) претерпевает поверхностную эрозию, а не объемную эрозию. Вследствие отсутствия объемной эрозии заполненный полимер хранится длительное время, например до его введения, он непроницаем для влаги и сохраняется в том же сухом состоянии, в котором он был получен. Имплантированное в него лекарство, если оно чувствительно к влажности, остается стабильным.

В изобретении также предлагают способ получения полимера, в котором этиленоксид и СО2 полимеризуют в молярном соотношении от 1:4 до 1:5 в присутствии катализатора. Очевидно, что в рамках этой реакции возможно введение звеньев этиленоксида в полимерную цепь, если две эпоксидные молекулы реагируют друг с другом без участия СО2 молекулы, например если окси-анионный промежуточный продукт атакует другую молекулу этиленоксида перед его карбоксилированием посредством СО2. Поэтому вероятно, что полимер содержит несколько звеньев этиленоксида. Полимер по изобретению, если он содержит звенья этиленоксида, имеет случайное распределение звеньев этиленкарбоната и этиленоксида согласно суммарной формуле Аmn= -(С(O)-O-СН2-СН2-O-)-m-(-СН2-СН2-O-)-n, в которой Однако большинство звеньев этиленоксида в полимерах по изобретению имеют статистически смежные звенья этиленкарбоната, особенно в тех случаях, когда молекулярное соотношение звеньев этиленоксида невелико. Это означает, что в таких случаях большинство результирующих эфирных групп распределено случайным образом между карбонатными группами вдоль полимерной цепи. 1Н-ЯМР спектры продуктов по изобретению в СDСl3 подтверждают это предположение. Они дают сигналы при = прибл. 4,37 ррm (Пик Iа) звеньев этиленкарбоната (этиленовые звенья между двумя карбонатными группами), при прибл. 4,29 и 3,73 ppm (Пики Iб и Iв) этиленовых звеньев между одной карбонатной и одной эфирной группой и прибл. 3,65 ppm (Пик Iг) этиленовых звеньев между двумя эфирными группами. Затем в пределах точности ЯМР вычисляют долю звеньев этиленкарбоната (А) согласно формуле В качестве структурной особенности поли(этиленкарбонат)ов в литературе часто вместо содержания в них этиленкарбоната приводят содержание в них эфирных групп. Соотношение эфирных групп (Э) в полимерах по изобретению может быть вычислено по формуле Согласно WO 92/2260 получают поли(этиленкарбонат)ы, которые содержат звенья этиленоксида и звенья этиленкарбоната в молярном соотношении от 2 до 400: 2, это означает, что полимер содержит по меньшей мере 50 мол.% этиленоксида и менее 50 мол.% звеньев этиленкарбоната. В заявке WO 92/2260 упомянуты биологический распад полимеров и их применение в качестве способных к биологической эрозии матриц для пролонгированного выделения фармакологически активных соединений. Однако не представлено никаких данных о том, что полимеры действительно способны к биологическому распаду. В целом же поли(этиленкарбонат)ы, имеющие такое большое количество эфирных групп, слабо поддаются биологическому распаду. В WO 92/2260 не содержится никаких указаний на возможность поверхностной эрозии полимеров.

В примерах US 3248415 описывают поли(этиленкарбонат)ы с низким молекулярным весом, составляющим Мв=700-5000, имеющие менее чем 70 мол.% звеньев этиленкарбоната, отличающиеся от полимеров по изобретению, однако ничего не сообщается об их биологическом распаде.

Согласно WO 89/05664 описаны поли(этиленкарбонат)ы, которые содержат в описанной структуре II звенья этиленоксида и этиленкарбоната в молярном соотношении от 1 до 8:1, это означает, что полимер содержит по меньшей мере 50 мол. % звеньев этиленоксида и отсюда самое большее 50 мол.% звеньев этиленкарбоната, отличаясь от полимеров по изобретению. Несмотря на то, что полимеры описывают как применимые для медикаментозных средств, способных к биологическому распаду, например имплантантов, которые могут содержать лекарственное соединение, не приведено никакой информации о поверхностной эрозии.

В способе по изобретению содержание звеньев этиленоксида, а отсюда и содержание эфирных групп, которое снижает или ингибирует скорость биологического распада полимера, значительно понижено путем создания таких реакционных условий, как описанное молярное соотношение реакционных компонентов, температура реакции, а также путем выбора соответствующего катализатора, полученного, например, из Zn(C2H5)2 и воды или ацетона, либо ди- или трифенола, в частности флороглюцина, в молярном соотношении от 0,9:1 до 1:0,9 или 2: 1 до 1:2 соответственно либо предпочтительно полученного из Zn(C2H5)2 и диола, особенно этиленгликоля, в молярном соотношении от 0,9:1 до 1:0,9.

Способ предпочтительно реализуют в растворяющей или диспергирующей системе органического растворителя, например диоксана и СO2. СО2 предпочтительно вводят в жидкой форме, и он присутствует в избытке. Давление предпочтительно от 20 до 70 бар, а температура предпочтительно от 10 до 80oС, особенно от 20 до 70oС.

Полученные таким образом полимеры по изобретению содержат обычно менее 15% эфирных групп, предпочтительно менее 10%, в частности менее 5%, например менее 3%. Поли(этиленкарбонат)ы по изобретению, если они получены с использованием катализатора из этиленгликоля или ацетона и диэтилцинка, обладают низкими полидисперсностями (Мв/Мн), обычно менее чем 5, в частности менее 2,5.

В способе согласно изобретению считают, что катализатор или его часть является цепным инициатором (со)-полимера. Когда реакция заканчивается и цепь завершена, заключительной концевой группой является гидроксильная группа. Противоположная сторона цепи, где цепь начиналась, может быть занята катализаторной группой или ее фрагментом. Если катализатор получают из этиленгликоля и диэтилцинка или воды и диэтилцинка, то предполагают, что оба конца полимерной цепи идентичны. Однако если катализатор получают из ди- или трифенола и диэтилцинка, то в тот конец цепи, где она начинается, будет включена ароматическая группа, в то время как другой конец цепи будет гидроксильной группой. Из Фиг.4 видно, что биологический распад поли(этиленкарбонат)а, в случае если одна из его концевых групп блокирована, например, ароматическим инициатором, в частности флороглюцином, протекает медленнее.

По этой причине предполагают, что распад полимерной цепи начинается с концевой гидроксильной группы. С другой стороны, может быть принята во внимание более поздняя модификация концевой гидроксильной группы, например, путем этерификации для блокировки концевых гидроксильных групп и для регуляции биологического распада поли(этиленкарбонат)ов по изобретению. Подходящими концевыми эфирными группами являются биологически совместимые эфирные группы, подобные эфирным группам жирных кислот (C1-48), предпочтительно (С1-30), особенно эфирные группы жирных кислот (C1-18), например эфирные группы уксусной кислоты и стеариновой кислоты либо эфирная группа угольной кислоты, в частности группа этиленкарбоната, либо эфирная группа памоевой кислоты либо эфирная группа молочной или гликолевой, или полимолочной, или полигликолевой, либо полимолочной-со-гликолевой кислоты.

Поли(этиленкарбонат)ы по изобретению стабильны в течение нескольких часов в горячей воде (90-100oС) без существенного снижения молекулярного веса. Значительное увеличение температуры стеклования, например до примерно 18oС или 20oС, наблюдают после выдерживания в кипящей бидистиллированной воде в течение 5 часов. Путем проведения этой реакционной стадии получают полимер большей чистоты. Мы обнаружили, что обработанные таким образом полимеры лучше обрабатываются.

Поли(этиленкарбонат)ная часть полимеров по изобретению является, как уже говорилось ранее, негидролизуемой, поэтому они стабильны по меньшей мере в течение 1 месяца при в