Линза с переменным показателем рефракции

Реферат

 

Изобретение относится к оптическим изделиям, используемым в области офтальмологии, и способам их изготовления. Согласно изобретению оптическая линза или ее полузаготовка включают композицию из по крайней мере трех различных и отдельно налагаемых слоев. Каждый слой имеет отличный от другого показатель рефракции. Способ согласно изобретению обеспечивает простое, быстрое и малозатратное производство составных оптических линз с переменным показателем рефракции. В линзе согласно изобретению имеется переходная зона, расположенная между основанием и наружным слоем и включающая отличный и отдельно налагаемый переходный слой, имеющий эффективный показатель рефракции, промежуточный между показателями рефракции слоя основы и наружного слоя и равный средней геометрической величине показателей рефракции слоя основы и наружного слоя. Переходная зона может включать множество слоев, и каждый переходный слой имеет различный показатель рефракции. Полученная линза не имеет астигматизма, имеет широкую зону чтения, легко устанавливается пациенту и косметически совершенна. 6 с. и 22 з.п.ф-лы, 6 ил.

Изобретение относится к оптическому изделию, такому как оптическая линза и линзовая полузаготовка с непрерывным плавным изменением оптической силы от удаленного фокуса до ближнего фокуса, и более конкретно к мультифокальным линзам с прогрессией значений градиента рефракции, имеющим меньшую величину периферийного астигматизма, и к бифокальным линзам с градиентом рефракции без широкой размытой составной области, определяющей дополнительную зону.

Предшествующий уровень техники Поступающие на рынок мультифокальные линзы изготавливают из разных материалов, как правило, из пластмассы или стекла. Эти линзы бывают разных фасонов, размеров и могут быть линейного составного или прогрессивного типа. Из этих типов линейные бифокали давно используются теми, кому необходима точная коррекция зрения. Линейный бифокальный сегмент сплавляют в случае стекла или формуют в случае полимера. В любом случае линия бифокального сегмента заметна и представляет собой соединение оптических частей линзы разной оптической силы или полузаготовок с дальним и ближним фокусами. Bugbee (патент США 1509636), Meyrowitz (патент США 1445227) и Culver (патент США 2053551) раскрывают линейные бифокали или мультифокали.

Хотя линейные бифокальные линзы успешно используются в течение многих лет, они обладают существенными недостатками. Во-первых, они очень заметны и потому внешне достаточно непривлекательны; во-вторых, наличие сегментной линии обуславливает существование участка нечеткого изображения, когда взгляд переносится с дальнего объекта на ближний и наоборот; и в-третьих, происходит резкое изменение фокусного расстояния, когда взгляд переносится с дальнего объекта на ближний и обратно. Вовсе отсутствует какая-либо оптическая область с промежуточной оптической силой (фокусным расстоянием), если не используются линейные трифокальные линзы.

Составные бифокали, например, которые раскрываются в WО 82/03129, представляют собой бифокали с четкой границей раздела между оптическими зонами дальнего и ближнего фокусов; линию раздела составляют таким образом, чтобы она была менее заметна. Применение составных бифокалей можно рассматривать как попытку устранить косметический недостаток, присущий линейным бифокалям, но в этом случае возникает широкая размытая зона при переносе взгляда с дальнего объекта на ближний и обратно, а также отсутствует промежуточное зрение.

Линзы непрерывной прогрессии относятся к мультифокальному типу, который включает прогрессию коррекции оптической силы от дальнего фокуса к ближнему и обратно, обеспечивая постепенное изменение зрения от дальнего к ближнему и наоборот. Использование ряда добавочных линз является попыткой решить указанную выше проблему. Хотя прогрессия позволяет преодолеть некоторые недостатки линейных или составных линз, в оптическом изделии необходимы другие изменения, которые, в свою очередь, улучшают визуальные свойства линзовой оптики, что будет подробно рассмотрено ниже. Прогрессия дополнительной линзы невидима и обеспечивает естественный переход оптической силы от дальнего к ближнему фокусам.

Способы получения прогрессии дополнительных линз раскрываются, например, Harsigny (патент США 5488442), Maitenaz (патент США 4253747 и патент США 3687528), Cretin и др. (патент США 3785725), Maitenaz (патент США 3910691), Winthrop (патент США 4055379, патент США 4056311 и патент США 4062629). Эта линза, однако, имеет определенные конструкционные недостатки.

Первый недостаток состоит в том, что имеется только относительно узкая полоса для чтения шириной примерно 3-8 мм, определяемая как пространство между двумя меридиональными воображаемыми линиями, характеризуемая астигматизмом 0,5 диоптрий или более. Эта полоса для чтения представляет собой постепенный переход фокусных расстояний от длинного до короткого, позволяя любому видеть на далеком и близком расстояниях естественным образом, без резкого изменения оптической силы в случае линейной бифокали.

Второй недостаток состоит в том, что прогрессия дополнительных линз может обеспечить только относительно узкую зону для чтения, шириной примерно 22 мм или менее того.

Третьим существенным недостатком является нежелательный периферийный астигматизм, возникновение которого обусловлено природой последовательного оптического изделия. Нежелательный периферийный астигматизм вызывает значительные зрительные искажения у потребителя. Производители заинтересованы в ограничении величины нежелательного астигматизма, чтобы улучшить визуальные характеристики и тем самым обеспечить признание их различных конструкций. На практике все конструкции прогрессии линз представляют компромисс между существующими линзами с наиболее широким возможным каналом, наименьшей величиной нежелательного астигматизма и наиболее широкой добавочной зоной оптической силы.

Четвертый существенный недостаток заключается в трудности соответствующей подгонки пациенту прогрессии и пятый недостаток заключается в низком допустимом отклонении от требуемой величины при подгонке, позволяемом этими изделиями.

Были предприняты попытки решить указанные выше проблемы, относящиеся к линейным, составным, трифокальным и прогрессивным мультифокальным оптическим линзам. Однако до настоящего времени не найдено никаких иных коммерчески приемлемых вариантов. Глазная линза, предложенная Frieder (патенты США 4952048 и 4869588), имела своей целью устранить некоторые из этих недостатков, но не смогла реализовать поставленные цели как из-за производственных трудностей, так и из-за неудовлетворительного внешнего вида при оптической силе от умеренной до высокой. Хотя эти патенты раскрывают линзу, обладающую несколько улучшенными характеристиками в диапазоне значений добавочной оптической силы от умеренной до высокой от +1,75 до +3,00 диоптрий, у этой линзы имеется фронтальная (выпуклая) поверхность, ограничивающая периферию зоны ближней оптической силы, чтобы предварительно деформировать и тем самым вызвать видимое оптическое нарушение с обеих сторон зоны чтения. Этот признак существенно снижает ее коммерческую привлекательность. Более того, сложность изготовления такой линзы также уменьшает ее коммерческую значимость.

Maeda (патент США 4944584) раскрывает линзу с градиентом рефракции, в которой имеется первый частично отвержденный слой подложки. Наносится второй неотвержденный слой смолы, и при отверждении между этими двумя слоями протекает диффузия, в результате чего образуется третий диффузионный слой, имеющий градиент показателя рефракции в интервале значений от первого слоя до второго слоя. Для получения этого диффузионного слоя композицию из двух слоев выдерживают при заданной температуре в течение 20-26 часов. Время, которое требуется для отверждения с получением диффузионного слоя, делает эту технологию с коммерческой точки зрения непривлекательной. Более того, известно, что реализация способа Маэда, включающего операцию снятия с формы частично отвержденной линзы или полузаготовки, может быть затруднена из-за низкой его производительности. Так, хотя теоретически можно получить по Маэду третий диффузионный слой с непрерывно меняющимся показателем рефракции, фактическая сложность его производства может уменьшить вероятность того, что линза Маэда может получить коммерческое признание.

Вдобавок к ранее упомянутым осложнениям, присущим бифокальной и мультифокальной линзам, по внешнему виду эти линзы к тому же толще, чем одинарные оптические линзы эквивалентной оптической силы, так как им требуется обеспечить дополнительную положительную оптическую силу в добавленной зоне оптической силы. Это добавленное утолщение передней поверхности линзы ухудшает ее внешний вид и увеличивает ее массу. Предложен ряд решений этой проблемы.

Blum (патент США 4873029) раскрывает применение предварительно формованной пластины, содержащей требуемые мультифокальные сегменты, формованные на ней, и нанесение слоя смолы, имеющей другой показатель рефракции, на поверхность предварительно формованной пластины. При таком подходе предварительно формованная пластина будет потребляться в процессе формования, так что предварительно формованная пластина неизбежно пойдет на формование части линзы. Хотя такой подход позволяет получить по внешнему виду более привлекательную линзу, для осуществления способа необходимы сотни прокладок и выпуклые сзади сферические и торические формы, выпуклые с тыльной стороны. Эти формы, в конце концов, образуют вогнутую сторону конечной линзы. Более того, при таком решении бифокальная или мультифокальная зона видима благодаря значительному несоответствию рефракции требуемому значению и недостаточному изменению показателей рефракции у разных материалов.

В различных патентах раскрываются типы линз с бифокальным, мультифокальным или прогрессивным градиентом рефракции, например, Dasher (патент США 5223862), Maeda (патент США 4944584), Yean (патент США 52528144), Naujokas (патент США 3485556), Okano (патент США 5305028), Young (патент США 3878868), Hensler (патент США 3542535) и Blum (патент США 4919850). Однако промышленное производство мультифокальных глазных линз с градиентом рефракции до настоящего времени не получило широкого распространения из-за ограничений, обусловленных химией, технологией, производством и экономикой.

В Европейской патентной заявке Soane PCT/US 93/02470 раскрывается производство мультифокальной линзы, имеющей бифокальную и астигматическую область на тыльной вогнутой стороне фронтальной оптической предварительно формованной перегородки. Соан раскрывает отверждение смолы, отличающейся по показателю рефракции от оптической перегородки на тыльной стороне передней оптической перегородки, используя соответствующую выпуклую форму правильной кривизны. При таком подходе, однако, требуется, чтобы было создано большое число передних оптических предформ.

В свете сказанного ранее, предпочтительна линза с мультифокальной прогрессией, которая могла бы обеспечить широкое и естественное зрительное восприятие пациентом во всем диапазоне от далекого до близкого, существенно свободная от мешающего периферийного астигматизма, имеющая широкую зону для чтения, требующая меньшего числа skus (stock keeping units - инвентарный запас) и являющаяся относительно забываемой и легкой в установке пациенту. Вдобавок, желательно иметь линзу с мультифокальной прогрессией, которая имеет существенно ту же толщину, что и одиночная линза с эквивалентным рецептурным расстоянием, и которая внешне почти невидима. Также желательно производить такие оптические изделия способом, позволяющим уменьшить время обработки.

Изобретение решает эти и другие проблемы, отвечающие существующему уровню техники, путем создания оптического изделия, такого как составная мультифокальная предформа с прогрессией градиента рефракции, линза или полузаготовка, и способа получения, который обеспечивает простое быстрое и недорогое производство составных оптических предформ с прогрессией градиента рефракции, линзы или полузаготовки линзы.

Оптическое изделие, такое как линза, содержит композицию, по крайней мере, из трех различных слоев, включая слой-основу, имеющий участок переменной толщины, который представляет собой либо углубление, либо возвышение, переходную зону и наружный слой. Каждый из слоев композиции отдельно наносят и соединяют со смежным слоем или слоями. Вдобавок, каждый слой имеет различный и отличный показатель рефракции, при котором линза с мультифокальной прогрессией имеет широкий и естественный диапазон зрения от удаленного объекта до ближнего объекта. Между слоем-основой и наружным слоем находится переходная зона, включающая, по крайней мере, один переходный слой. Переходная зона имеет эффективный показатель рефракции, который имеет промежуточную величину между значениями показателей рефракции у слоя-основы и наружного слоя. Предпочтительно, эффективный показатель рефракции примерно равен среднему геометрическому значению показателей рефракции слоя-основы и наружного слоя.

Кроме того, линзы по изобретению не имеют нежелательного периферийного астигматизма, обладают широкой зоной чтения и относительно толерантны и просты в установке пациенту, а также имеют косметически незаметный внешний вид.

Вдобавок, изобретение существенно сокращает число фронтальных оптических предформ, которые требуют разработки. Например, полагая суммарную силу от +1,00 до +3,00 диоптрий, сферическую силу от +4,0 до -4,0 диоптрий, цилиндрическую силу от плоской до -2,0 диоптрий, 3 основные кривые линзы, правый и левый глаза и полагая, что астигматическая сила добавляется в соответствии с Soane (PCT/US 93/02470) для вогнутой стороны фронтальной оптической предформы, для каждого материала потребуется разработать следующий skus: 1. для бифокальных линз - для бифокальной коррекции астигматизма требуется 9720 различных фронтальных оптических предформ из расчета 180 различных градусов астигматизма3 основные кривизны2 децентрирования глаз9 бифокальных суммарных сил1 материал и 2. для одиночных оптических линз - требуется только 540 разных фронтальных оптических предформ для коррекции астигматизма из расчета 180 различных градусов астигматизма3 основные кривизны1 материал.

Так, в указанном выше примере Соана требуется в сумме 10260 фронтальных оптических предформ вдобавок к вспомогательным разработкам, которые могут оказаться необходимыми для каждого sku. Напротив, по изобретению требуется всего 540 skus и только три пары форм из расчета на 180 различных градусов астигматизма3 основные кривые1 материал. Более того, по Соану необходимо использовать большое число прокладок и форм и не получать бифокальную или мультифокальную зону, так как она косметически невидима, как в изобретении, поскольку требуется значительное несоответствие в показателях рефракции и отсутствие переходного слоя или слоев с различными показателями рефракции.

Краткое описание чертежей Фиг.1 - поперечное сечение оптической предформы по изобретению.

Фиг. 2 - поперечное сечение оптической предформы, имеющей переходный слой.

Фиг. 3 - поперечное сечение оптической предформы, расположенной напротив формы.

Фиг.4 - поперечное сечение формы, расположенной напротив наружного слоя.

Фиг.5 - поперечное сечение оптического изделия по изобретению.

Фиг.6 - поперечное сечение альтернативного примера по изобретению.

На фиг.1 показан слой-основа, который является оптической предформой 10, имеющий сферические и астигматические элементы, выполненные из материала, имеющего показатель рефракции, равный 1,49, и сферическую выпуклую поверхность с модифицированной областью 20, которая модифицирована механическими средствами для образования поверхностного углубления, которое приблизительно очерчивает границы зоны мультифокальной прогрессии. Модифицированная область 20 может быть выполнена либо на выпуклой, либо на вогнутой поверхности. Однако в этом примере модификация осуществлена на выпуклой поверхности.

Кривые астигматизма или торическая поверхность 30 располагается на вогнутой стороне. По этой причине выбирают подходящую торическую оптическую предформу и вращают до соответствующей оси астигматизма для необходимого конкретного назначения, и оптическую модификацию выполняют на фронтальной выпуклой поверхности в точной ориентации относительно необходимой оси астигматизма. При формировании модифицированной области 20 учитывается не только нужная ось астигматизма, но также соответствующее и различное положение децентрирования для каждого правого и левого глаза.

Хотя для иллюстрации раскрывается механическое изменение поверхности, следует иметь в виду, что можно использовать любой способ, который создает нужное изменение геометрии поверхности. Например, с целью только иллюстрации, углубление поверхности может создаваться различными способами, в том числе штамповкой, выжиганием, лепкой, шлифовкой, абляцией и литьем. Способ формирования углубления на поверхности отчасти зависит от условий отверждения предформы, а также от состава материала предформы. Например, чтобы осуществить шлифовку предформы, она должна быть полностью отвержденной или в твердом состоянии.

Модифицированную область 20 формируют на оптической предформе 10 для образования поверхностного углубления, которое обычно очерчивает границы зоны мультифокальной прогрессии. Необходимая геометрия углубления может быть рассчитана по известным оптическим формулам, относящимся к показателю рефракции. В общем, nd = n1d1 + n2d2, где n представляет собой суммарный показатель рефракции оптики, d означает толщину оптики, n1 означает показатель рефракции оптической предформы, d1 означает толщину оптической предформы, n2 есть показатель рефракции наложенного слоя и d2 есть толщина наложенного слоя. Оптическая сила в любой точке определяется суммарным или эффективным показателем рефракции в этой точке, который, в свою очередь, зависит от глубины полости или депрессии в этой точке, от контура поверхности (глубины прогиба) и от показателя рефракции отвержденной смолы, заполняющей полость.

В зависимости от применяемого способа модифицирования, а также материала оптической предформы после того, как модифицирование проведено и получена поверхность требуемой геометрии, ранее измененная поверхность может быть дополнительно модифицирована полировкой, литьем на поверхность или другими способами, известными в технике, для получения гладкой поверхности поверх грубой поверхности. В предпочтительном примере осуществления изобретения механически измененную поверхность обдирают для получения грубой поверхности. Как показано на фиг.2 и фиг.4, слой смолы затем накладывают на полностью выпуклую поверхность оптической предформы 10, включая модифицированную область 20, с получением переходного слоя 40, который включает переходную зону 45. В альтернативном варианте осуществления изобретения переходный слой может накладываться только на часть предформы 10, которая включает, по крайней мере, модифицированную область 20.

Приемлемые материалы для оптической предформы обычно могут включать сополимеры аллильных соединений, акрилатов, метакрилатов, стироловые и виниловые соединения, которые имеют температуру стеклования приблизительно в интервале от 50 до 200oС и показатель рефракции в пределах примерно от 1,44 до 1,56. Например, такие материалы могут включать поли А диэтил бис(аллил)карбонат, поли-(бисфенол А карбонат) и поли-(стирол)-со-(бисфенол А карбонат диакрилат)-со-(бисфенол А карбонат диметакрилат).

Материалы для переходной зоны обычно могут включать сополимеры аллильных соединений, акрилатов, метакрилатов, стироловые и виниловые соединения, которые имеют температуру стеклования приблизительно в интервале от 50 до 100oС и показатель рефракции в пределах примерно от 1,52 до 1,65. Например, такие материалы могут включать поли(полиоксиметилен диакрилат)-со-(этоксилированный бисфенолАкарбонат диакрилат)-со-(фурфурилакрилат).

Показатель рефракции переходного слоя 40 намеренно подбирается несоответствующим показателям рефракции предформы 10 и наложенного затем наружного слоя 50, чтобы достичь средней точки перехода градиента рефракции. Такая техника используется для того, чтобы область мультифокальной прогрессии была максимально невидима. К тому же, когда на предформу 10 накладывают переходный слой 40, это подготавливает предформу 10 к хорошему связыванию со следующим накладываемым слоем смолы и может существенно сгладить дефекты на поверхности, которые могут сохраниться и остаться видимыми после наложения другого слоя смолы.

Хотя показатель рефракции переходного слоя 40 подбирают с учетом достижения минимального внутреннего отражения от поверхности раздела, могут применяться другие варианты осуществления изобретения, при которых используются различные способы модификации поверхности, или оптические предформы, изготовленные из различных материалов, или показатель рефракции покрытия может подбираться из условия приближения к величине для оптической предформы или к тому, который отвечает следующему налагаемому слою смолы, или может не быть вообще необходимым.

Как следует из фиг.6, альтернативный пример осуществления изобретения может включать, по крайней мере, один дополнительный переходный слой 40, причем переходные слои помещаются сверху один на другом после частичного или полного отверждения каждого слоя. Каждый переходный слой 40 имеет отличный показатель рефракции, так что слои вместе образуют переходную зону 45, которая имеет эффективный показатель рефракции, представляющий собой примерно среднее геометрическое значение показателей для оптической предформы 10 и наружного слоя 50. В зоне перехода с эффективным показателем рефракции, близким к средней геометрической величине, показатели рефракции изменятся менее резко, и благодаря этому окончательная мультифокальная зона менее заметна. Хотя эффективный показатель рефракции близок по величине к среднему геометрическому значению, колебания в пределах 0,3 единицы дают приемлемые результаты.

Приемлемые материалы для наружного слоя 50 обычно включают сополимеры аллиловых, акрилатных, метакрилатных, стироловых и виниловых соединений, у которых температура стеклования приблизительно равна 60-225oС и показатель рефракции находится в пределах примерно от 1,56 до 1,70. Например, такие материалы могут включать этоксилированный бисфенол А диакрилат, этоксилированный бисфенол А диметакрилат, этоксилированный 1,4-дибром-бисфенол А диакрилат, бис(4-акрилоксиэтоксифенил)фосфин оксид, 1,4-дивинилбензол, бромстирол и винилкарбазол.

В соответствии с другим примером осуществления изобретения между слоем-основой и переходной зоной может помещаться дополнительный слой смолы или слои. Также, дополнительные слои смолы могут помещаться между переходными слоями в переходной зоне или между переходной зоной и наружным слоем или слоями. Этот дополнительный слой или слои должны обладать поверхностной энергией, которая в достаточной мере соответствует смежным слоям, так что смола может обеспечить необходимую степень покрытия нижележащего слоя.

Хотя в предпочтительном примере изобретения нанесение переходного слоя 40 осуществляют ручным матрицированием, его также можно наносить другими методами, хорошо известными в технике. Например, могут применяться такие методы, как центрифугирование, покрытие окунанием, распылением и т.д.

После того, как переходный слой наносят на выпуклую поверхность оптической предформы 10, переходный слой 40 частично отверждают. Процесс отверждения может осуществляться известными методами, в том числе тепловым отверждением, УФ-отверждением, отверждением под действием видимого света или их сочетанием, в отсутствии или в присутствии кислорода, с использованием приемлемых инициаторов, в условиях окружающей среды и источника отверждения. В предпочтительном примере осуществления изобретения частичное отверждение переходного слоя 40 осуществляют в бескислородной атмосфере азота с использованием ультрафиолетового света в диапазоне примерно 250-400 нм. Однако также возможно использование видимой части спектра в диапазоне 400-450 нм в бескислородной атмосфере азота. Когда при отверждении используется УФ-источник, оптическое изделие получают быстро, так как продолжительность отверждения переходного слоя в этом случае меньше пяти минут и обычно не превышает одного часа.

Как следует из фиг.3 и фиг.4, после того, как модифицированную область 20 создают в оптической предформе 10 для достижения требуемой кривизны поверхности и накладывают необходимую зону перехода 45, оптическая предформа с переходной зоной 45 легко может быть накрыта внешним слоем 50, который предпочтительно образуют отливкой смолы на переходную зону 45. Наружный слой 50 формируют таким образом, чтобы его показатель рефракции существенно отличался от такового у материала предформы 10.

В соответствии с предпочтительным вариантом смолу наружного выпуклого слоя 50 подбирают таким образом, чтобы ее показатель рефракции был равен примерно 1,49; и показатель рефракции переходного слоя 40 является константой и примерно равен 1,57. Так, выпуклый наружный слой 50 смолы с показателем рефракции 1,66 отливают на выпуклый переходный слой 40 с показателем рефракции 1,574, и этот слой прикладывают к оптической предформе 10 с показателем рефракции 1,49. Это предпочтительно осуществлено в настоящем примере при использывании одиночной сферической формы 60, которую подбирают таким образом, чтобы отлить требуемую наружную выпуклую кривизну на оптическую предформу 10, имеющую переходный слой 40. Если выпуклая кривизна оптической предформы 10 не является сферической, подходящей одиночной оптической формой для SurfaceCasting наружной выпуклой поверхности скорее будет несферическая форма, нежели сферическая форма. Эта наружная кривизна будет определять требуемую оптическую силу.

Соответствующие технологии для получения литого слоя описаны у Вlum (патент США 5178800) ("800"), Blum (патент США 5147585) ("585"), Blum (патент США 5219497) ("497") и Blum (патент США 4873029) ("029"), однако используется одиночная оптическая форма. Содержание этих патентов включено в настоящее описание в качестве ссылок. Эти технологии также используются Innotech Inc. с помощью ее Excalibur SurfaceCasting системы.

Форма 60, используемая для отливки наружного слоя 50, может быть изготовлена из любого материала, позволяющего осуществить надлежащее отверждение. Например, могут использоваться одноразовые электроформованные из никеля, стекла и полимеров формы. Перед проведением отверждения используемую для отливки наружного слоя 50 смолу можно поместить в форму 60, поместить в полость 70 между формой 60 и предформой 10 или приготовить в форме частично отвержденного полимерного слоя в форме 60 или соединенного с оптической предформой 10.

В соответствии с примерами осуществления, где наружный слой 50 получают из частично отвержденного полимерного слоя, который позднее подвергают отверждению, переходный слой или слои, которые образуют переходную зону 45 с показателем рефракции, могут прикрепляться к частично отвержденному полимерному наружному слою 50. В этом случае частично отвержденный полимерный слой и прикрепленный переходный слой 40 с показателем рефракции затем отверждают и формуют на оптическую предформу 10. Хотя в соответствии с предпочтительным вариантом при отливке наружной выпуклой кривизны на оптической предформе прокладки не используются, в определенных случаях прокладка может применяться.

Когда переходная зона включает множество слоев, показатель рефракции каждого слоя подбирают таким образом, чтобы эффективный показатель рефракции переходной зоны примерно составлял среднюю геометрическую величину между предформой и наружным слоем. В качестве лишь примера можно указать, что, если показатель рефракции для предформы примерно равен 1,50 и показатель рефракции наружного слоя составляет примерно 1,70, показатели рефракции трех переходных слоев переходной зоны могут быть равны примерно 1,54, 1,60 и 1,86, что соответствует порядку размещения слоев от предформы до наружного слоя.

Переходная зона 45 включает отдельный и раздельно налагаемый слой или слои, где каждый слой имеет собственный показатель рефракции и составляется таким образом, чтобы переходная зона 45 имела эффективный показатель рефракции, который по величине является промежуточным и приблизительно равен среднему геометрическому значению показателей рефракции оптической предформы 10 и наружного слоя 50. Показатель рефракции для каждого переходного слоя в зоне перехода обычно является константой для всего слоя.

На стадии отверждения частично отвержденный переходный слой 40, а также наружный слой SurfaceCast из смолы отверждают до требуемой степени для получения оптической линзы мультифокальной прогрессии градиентов показателей рефракции или полузаготовки. В соответствии с предпочтительным вариантом осуществления изобретения градиент показателя рефракции меняется в пределах примерно 1,40-1,66, причем переменная толщина каждого материала зависит от геометрии выпуклой поверхности модифицированной оптической предформы, вогнутого сферического и астигматического профиля поверхности оптической предформы и одиночной сферической вогнутой поверхности формы, которая добавляет необходимую наружную выпуклую кривизну на выпуклой стороне модифицированной и подогнанной оптической предформы для достижения требуемой оптической силы.

Промышленный продукт Innotech's SurfaceCasting обычно использует поверхностный слой таким образом, что длинный фокус существенно не меняется. Однако в настоящем изобретении наружный слой может или не может ограничиться сохранением длинного фокуса существенно постоянным. Более того, в отличие от промышленной технологии SurfaceCasting и технологии по патентам 800, 585, 029 и 497 добавочная область мультифокальной прогрессии по изобретению не увеличивается с помощью мультифокальной формы, а лишь создается благодаря изменению топографии поверхности оптической предформы 10, а также градиента показателя рефракции, который получается при отливке сферической или несферической поверхности на измененной топографии поверхности, которая меняется определенным образом, чтобы вызвать изменение величины градиента рефракции.

На фиг.5 показано, что после завершения отливки из формы 60 удаляют составную мультифокальную линзу 100 с прогрессией градиента рефракции. Полученную составную линзу 100 подвергают последующему отверждению в форме или вне формы, используя технологии, хорошо известные в технике.

Предлагаемый способ может использоваться для приготовления оптических предформ, оптических линз и оптических полузаготовок. При необходимости смолы, используемые для получения любого или всех слоев, могут быть фотохромными, пока обеспечивается надлежащий показатель рефракции для конкретного слоя. Вдобавок, хотя предпочтительный пример осуществления изобретения иллюстрируется на примере смол, используемых для формирования слоев, следует отчетливо понимать, что слои составной линзы также могут быть изготовлены из стекла или путем комбинации смолы и стекла.

Поверхность наружного слоя составной линзы 100 может подвергаться обработке любым известным способом, используемым в оптическом производстве, включая нанесение антибликовых покрытий, покрытий, устойчивых к появлению царапин, окрашивание, нанесение фотохромных покрытий и (или) технику фотохромной пропитки, нанесение противопыльных покрытий и так далее. Более того, возможно осуществление переноса различных покрытий при формовании в качестве составной части процесса производства в противоположность нанесению после изготовления линз и полузаготовок.

Изобретение обеспечивает бифокальную дополнительную оптическую силу и необходимое децентрирование правого и левого глаз и создает правильную оптическую торическую ось. Эти результаты предпочтительно достигаются путем модификации выпуклой поверхности оптической предформы. В соответствии с другим примером осуществления изобретения модификация геометрии оптических предформ может осуществляться изменением вогнутой стороны оптической предформы подобно тому, как это осуществляется на выпуклой поверхности. В этом случае поверхности оптической предформы и отливка подвергаются модификации на вогнутой поверхности оптической предформы, противоположной фронтальной стороне оптической предформы.

Также в соответствии с другими примерами модификация профиля поверхности оптической предформы может производиться с определенной глубиной и геометрией и может осуществляться выравнивание зоны, противоположной бифокальной или мультифокальной зоне формы, имеющей соответствующую кривизну поверхности. Это выполняется с целью увеличить не только наружную кривизну, но также добавить дополнительную ограничивающую геометрию в области бифокальной или мультифокальной зоны конечного оптического изделия. При использовании такого подхода представляется возможным использовать материалы, которые имеют меньший показатель рефракции, в отличие от материалов, используемых в предпочтительных примерах осуществления изобретения.

Формула изобретения

1. Оптическое изделие, содержащее слой основы, имеющий первый показатель рефракции и область переменной толщины, наружный слой, имеющий второй показатель рефракции, отличный от первого показателя рефракции, и переходную зону, содержащую по меньшей мере один переходный слой, заключенный между слоем основы и наружным слоем, причем каждый из слоев имеет отличный показатель рефракции, который отличается от показателей рефракции слоя основы и наружного слоя, отличающееся тем, что показатель рефракции каждого из по меньшей мере одного переходного слоя является по существу постоянным по всему слою и переходная зона имеет эффективный показатель рефракции, примерно равный среднему геометрическому значению показателей рефракции слоя основы и наружного слоя.

2. Оптическое изделие по п. 1, отличающееся тем, что поверхностное углубление располагается на выпуклой поверхности слоя основы и ориентировочно очерчивает зону мультифокального ряда.

3. Оптическое изделие по п. 2, отличающееся тем, что второй показатель рефракции наружного слоя больше первого показателя рефракции слоя основы.

4. Оптическое изделие по п. 3, отличающееся тем, что первый показатель рефракции слоя основы примерно равен 1,44-1,56.

5. Оптическое изделие по п. 4, отличающееся тем, что второй показатель рефракции наружного слоя примерно равен 1,56-1,70.

6. Оптическое изделие по п. 5, отличающееся тем, что первый показатель рефракции слоя основы примерно равен 1,49.

7. Оптическое изделие по п. 6, отличающееся тем, что второй показатель рефракции наружного слоя примерно равен 1,66.

8. Оптическое изделие по п. 1, отличающееся тем, что выпуклая поверхность слоя основы имеет возвышение и ориентировочно очерчивает зону мультифокального ряда.

9. Составная глазная линза, содержащая оптическую предформу, имеющую первый показатель рефракции и область переменной толщины, наружный слой, второй показатель рефракции которого отличается от показателя рефракции оптической предформы, и переходную зону, содержащую по меньшей мере один переходный слой, заключенный между оптической предформой и наружным слоем, накрывающий по меньшей мере область переменной толщины, отличающаяся тем, что каждый из по меньшей мере одного слоя имеет отличный показатель рефракции, который отличается от показателей рефракции оптической предформы и наружного слоя, прич